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Abstract: In this article, we construct a numerical technique for s@\the first and second kinds of Abel’s integral equationsing
the spectral collocation method, the properties of fracticalculus and the Gauss-quadrature formula, we can eesiigh problems
into those of a system of algebraic equations which greathplifies the problem. The proposed numerical techniquease on
the shifted Jacobi polynomials and the fractional integgalescribed in the sense of Riemann-Liouville. In additioar numerical
technique is applied also to solve the system of generalideal’s integral equations. For testing the accuracy andlitglof the
proposed numerical techniques, we apply them to solve alevemerical examples.
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1 Introduction

The Abel’s integral equation, a special case of the \olteriegral equations of the first kind, is considered as oné®f t
most important integral equations as it can be derived tiréom a mechanical or physical problem, that gives it the
ability to describe many engineering and physical phen@aecurately, such as simultaneous dual relatibhsfellar
winds [2], water wave 8], spectroscopic datal] and others%,6,7], more about the properties of this equation and its
different kinds can be found ir8[9].

Finding numerical techniques for solving Abel’s integrgliations has become an active research undertaking. Liu
and Tao [0,11]] introduced a mechanical quadrature technique for apprating the solution of the first kind Abel's
integral equation. Also, inl2], the authors used the Bernstein polynomials for constrga numerical solution of the
Abel’s integral equation, while in13], the authors introduced the Mikusinskis operator of fi@wl order for solving
it numerically. Recently, Jahanshahi et dl4]used the properties of the fractional calculus definititarssolving the
Abel's integral equation of first kind. Another numericat@iqus have been applied for solving the first kind Abel's
integral equation, sedp,16,17].

On the other hand, Yousefl§] applied the Legendre wavelets method for solving the seédamd Abel’s integral
equation, while Khan and Gondalq] applied the two-step Laplace decomposition method forr@gmating its
numerical solution. Recently, Kumar et aR(] applied the homotopy perturbation transform method fodifig a
numerical solution of the second kind Abel’s integral eqpratMeanwhile, many researchers have interested in stgdyi
the system of generalized Abel’s integral equations, 24¢ Kumar et al. 2] applied the homotopy perturbation
method for solving the system of Abel’s integral equatiomkile in [23], the authors constructed a numerical method
based on the Laguerre polynomials for approximating itatgm.

Fractional calculus, the theory of derivatives and integnath any non-integer arbitrary order, has become thedocu
of many researchers in recent years due to its high accunagyoteling many engineering and physical phenomena,
such as economic24], anomalous transpor2f], Bioengineering 26] and others 27,28,29]. Therefore, studying the
properties of the fractional differential equations andiifig effective analytical and numerical techniques foniheas
become very important topic to be studied, such as the wavefelaxation method3(], the alternating-direction finite
difference methodd1], the Haar wavelet metho®#8], the differential transform metho®8] and others34,35].
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One of the best methods for approximating the solution dedéht kinds of differential equations, is the spectral
collocation method36,37,38]. Besides, the spectral collocation method has high acguiialso has exponential rates
of convergence. By using the spectral collocation methadmoontrast to finite difference and finite element methoas,
have numerical solution of better accuracy with far fewedemand thus less computational time. The spectral coitotat
method is used for obtaining the approximate solution ofesaypes of fractional differential equations, such as the
fractional Langevin equation89] and the generalized fractional Pantograph equatid@is |

An important role of the Jacobi polynomials has been playeithé implementation of spectral methods. Using the
Jacobi polynomials in terms of the Jacobi parametersnd 3, we have the advantage of obtaining the approximate
solution in terms of these parameters. For that reasomgadsif finding the approximate solution for each pair of these
parameters, we can use the Jacobi polynomials in obtainingmproximate solution. Recently, the Jacobi polynomials
have been used as basis functions of the spectral collocatéthod for approximating the solution of different types
of differential equations such as the generalized Fokkandk type equationsAfl], the nonlinear complex generalized
Zakharov system42] and the nonlinear Schrodinger equati@8][ On the other hand, the shifted Jacobi polynomials
are used as basis functions for solving types of fractioifi@réntial equations such as ordinary fractional differal
equations44], fractional advection-dispersion equatiod§[and the multi-term time-space fractional partial diffietial
equations46.

Our main aim in this article is to construct a numerical meitfiar solving the first kind, the second type and the
system of Abel’s integral equations. Using the spectrdbcaktion method with some properties of the fractional ghis,
we reduce such problems into those consisting of a systemg@b@ic equations which greatly simplifies the problem.

This article is organized as follows. In the next section,present some properties of the Jacobi polynomials and
shifted Jacobi polynomials. In Sections 3 and 4, the spectiéocation method is used based on the shifted Jacobi
polynomials to solve the first and second kinds of Abel’sdgnéé equations, respectively, while in Section 5, we apply
our technique for approximating the solution of the systdrlmel’s integral equations. In Section 6, several numérica
examples with their approximate solutions obtained usimgtechnique are introduced to show the efficiency of our
technique. Concluding remarks are given in Section 7.

2 Properties of shifted Jacobi polynomials

In this section, we reprise some basic properties of orthabghifted Jacobi polynomials that are most relevant totsake
approximations. A basic property of the Jacobi polynomisithat they are the eigenfunctions to the singular Sturm-
Liouville problem

L= (X +[9—0+(0+9+2)XP (X) +k(k+ 6+ +1)y(x) =0. (1)
The Jacobi polynomials are generated from the three-tecormence relation:

R 00 = @%b RN 0~ TR, k=1

1 1
R =1, P7x) = 5(8+9 +2x+ (8- 9),

3

wheref, 9 > —1,xe[-1,1] and

0.9) (k+0+89+1)(2k+6+9+2)

B 2(k+1)(k+6+9+1) ’
p(69) _ (8%2-02)(2k+0+3 +1)
K 2(k+1)(k+ 6+ +1)(2k+0+3)’
(6,9) (k—l— 9)(k+19)(2|(—|— 9—|—19—|—2)

C = .
K (K+1)(k+0+9 +1)(2k+0+3)
The Jacobi polynomials satisfy the relations

0.9 0.9 0.9 —Dkr(k+39+1
RO (x) = (—1)R@(x, RO (1= |1!r((19+1) ) @)
Moreover, thejth derivative oﬂDj(e”s)(x), can be obtained from
Dqu(e’ﬁ)(x) _Fi+6+9+a+ 1)P(9+q,z9+q)(x). 3)

2r (j+60+9+1) 174
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Denoting byPLek”? (x) = Plie’g)(zx 1) L > 0, the shifted Jacobi polynomial of degre€l he explicit analytic form
of the shifted Jacobi polynomlall% ' (X) of degreek is given by

09) 0 v gk TKES+DM(j+k+6+9+1) J-
FLk (X)_ZO( U o [ T o B T PR THT

: 4)
B Fk+0+1)rk+j+6+35+1) (x—L)!
ZOJ (k= (j+6+1)r (k+6+39+1)LI ’
and this in turn, enables one to get
(69) ) — (K (KEF+1)
PL*(m_(l)rw+1)|d’
(8,9) - I'(k+ 9+1)
PLk “%‘rw+nm’
which will be of important use later.
In virtue of (2) and @), we can deduce that
—DkAr (k+ 9 +1)(k+0+9+1)
ap(0.9) . (= ( q
DO Lrk-q+0Hrq+sd+1) °’ ®)
ap(8:9) 1\ _ F(k+6+1)(k+6+9+1)q
DR (L) Lar (k—q+1)r(q+6+1)° ©
DmP,Eﬁ("”(X): r(m+k+60+9+1) (©+md-m) %

L™ (k+6+8+1) Lkm
Next, Ietw(LG"9> (x) = (L—x)9%?, then we define the weighted spaﬁ%_ﬁ) [0,L] in the usual way, with the following inner
WL !

product and norm

1
UV 05 = [ UVOOWTD () dx, [V 08) = (MV)Z 0 ®)
Wi W |(_ )
0

The set of shifted Jacobi polynomials forms a compllér(gﬁ) [0,L]-orthogonal system. Moreover, and due&) (ve have
WL !

L 6+9+1 0.9) 0.9)
||P|_k ”2(98 <§> hy ™ =h 9)
We denote by<§\,9] ) o< j <N, the nodes of the standard Jacobi-Gauss interpolation omtiweral [—1, 1], their

corresponding Christoffel numbers axéf ) 0 < j < N. The nodes of the shifted Jacobi-Gauss interpolation on the

interval [0, L] are the zeros d?,f N+)1( X), WhICh we denote b)\((L N J), 0<j<N. ClearlyxLN f = I-(xﬁ\, ] 74 1), and their

corresponding Christoffel numbers ané = )9+5+1w,\, , 0< j <N. Let Sy[0,L] be the set of polynomials of
degree at mostl. Thanks to the property of the standard Jacobl Gauss quaer# follows that for anyp € Sn1[0, L],

we have
L L 6+39+1 1 L
/L x)° dx_<2> /(1—x)9(1+x)’9q0(§(x+1)>dx
0 -1

<%>9+3+1N%wNJ ( N! +1)) (20)
iﬂ_N PP (XI(_GNSJ))
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Consequently, theth-order derivative of shifted Jacobi polynomial can be writtin terms of the shifted Jacobi
polynomials themselves as

DR %cq (k,i,08,9)P" (), (11)

where

(k+A)g(k+A+)i(i+084+9g+1)k_iql (i+A)
Lad(k—i—aq)! T (2i+A)

—k+i+q, k+i+A+qg i+6+1 (12)
X3F2 ,1 9

i+6+q+1, 2i+A+1

Cqy(k,i,0,9) =

and for the general definition of a generalized hypergeamséries and speciaF,, see §7], p. 41 and pp. 103-104,
respectively.
3 First kind Abel's integral equation

In this section, we use the spectral collocation methodligedbe first kind Abel’s integral equation in the followingrin
[10,11]

O/ (X%tt))udt = g(X), 0 <x< L, 0< H < 1, (13)

whereg(Xx) is a given function, and(t) is the unknown function.

First, we state the Riemann-Liouville integral definitianthe following form:
Definition 3.1 The integral of ordep > 0 (fractional) according to Riemann-Liouville is given by

1 o
J“f(x):—/(x—t)“ ft)dt, >0, x>0,

r(u) Jo (14)
J0F(x) = f(x),
where ®
ru)= / xH-leXdx
0
is the gamma function.
The operatodH satisfies the following properties
) = VI () = BV, g = L AFD (15)

FrA+u+1)
Using definition (4), the Abel’s integral equatiorl@) is transformed to the fractional integral equation in thenf:
F1-—p)d* Hux)=g(x), 0<x<L O<u<Ll (16)
In order to use the spectral collocation method based orhifted Jacobi polynomials, we approximaite) by the

shifted Jacobi polynomials as
N

W) =3 a RS, (17)

In virtue of (@) and (L5), we can express the fractional integration of ogdef any shifted Jacobi polynomi@f?’f)) (x)
as

HPEGVx) = PL‘” ) (x)

B (—1) K (i+94+1)r(i+k+6+39+1) e (18)
Z/'|—k+1) Fk+pu+0rk+3+1)ri+6+39+1Lk ’
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therefore, easily we can write
I Huy(x zoa. PSP (19)
Therefore, adoptingl®) with (19), we can write {3) in the form:
N 0,9,1-
F(l—u)Z}a.PL( Wix)=g(x), 0<x<L 0<p<L (20)

Here, we apply the spectral collocation method by settiegéisidual of the previous equation to be zero atthel
collocation points as following:

r1—p) an'PLeﬁl u )):g(xg’\l'?b’ O<u<1 k=0,---,N. (21)

The previous equation alternatively may be written in thérndorm:

r(1—p)PiHa=g, (22)
where 0,9,1 0,9 6,9,1 6,9 0,9,1 0,9
P M) R BT )
6,9,1- 6.9 6,9,1— 0.9 6,9,1— 6.9
RS HERD  RETTHGD  RRTT D)
— 0,9,1— 0,9 6,9,1— 6,9 . 0,9,1— 0,9
P — | RPN RGPS L RO EY) |

(e 9.1 )XL’(%J:]s)_l ’(19 9.1 )XL7(%"§§1 L’Pe 8.1-p) ’('g”:ls)_l
Rlo g N Rl g (XA PN : (X AN)
0,9
a¢‘No)
o (x89)y
a 9XL N1
A= CH ) G= g(xl(_gNsl))
aglgl Q(X(L N, l\)l—l)
(6,9)
Q(XL N, )

The previous system of algebraic equations can be solvad tls¢ Newton’s iterative method.

4 Second kind Abel’s integral equation

In this section, we apply our technique to solve the second Abel’s integral equation in the form:

9(x), 0<x<L,0O<pu<1, (23)

whereg(x) is a given function, whilei(t) is an unknown function.
As in the previous section, the second kind Abel’s integgalsgion 23) may be transformed into the fractional integral
equation:
uxX)+r(@a—p)d-Hux) =g(x), 0<x<L O<u<1. (24)
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After expressingi(X) by shifted Jacobi polynomials as ih{) and approximating the fractional integral of order
of u(x) as in (L9), we can write 24) as in the form:

gaPL’iﬁ X)+ T (1—p) ZOaPL”lm()—g(x), 0<x<L, O<pu<1, (25)

whereP,_e 9171 () is defined as inX).
Now, we collocate the previous equation at bhe- 1 collocation points as following

0.9, 0.9 0.9)
Z}a{(PL. 0+ PSR =g, 0<p<L k=0, N. (26)
The previous system may be rewritten in a matrix form as
(P+r(1—u)P<1—“>)A:G, @27)
whereP~H) A andG are given as in42) and
6.9),,(6.9 0.9),.(6.9
Lo, ) T, s P Ol
PL 0 (XL N, 1) P (N4 PN (X Na)
0.9),,(6,9 0.9),.(0.9)  0.9), 0.9
P= PIE,O )(XI(_N |)) PL(,l )(XI(_N |) PIE7N )(XI(_N |))
0.9), (8.9 6.9),.(6.9 C(6.9),.(6.9
PL(?@ 39(>X(L ) 5')9?1) PL(’<19 ) (>X(L (s ';9?1 A ¢ ) (>XL’<'§’N1)931)
Plo (X NK) PL,17 (XUNN - PL7N (XA

The previous system of algebraic equations can be solved d&wton'’s iterative method.

5 System of generalized Abel's integral equations

In the current section, we apply our technique to solve thersg kind Abel’s integral equation in the form

X 1
a11(x) / (Xu 7t +212(%) / vt 91(X),

° ) (28)
a21(x) / (tu 7t +a25(x) / v 92(X),

X 0

whereag1(X), a12(X), a21(X), a22(X), g1(x) andgy(x) are given functions, while(t) andv(t) are unknown functions.
Definition 5.1 The left- and right-sided Riemann-Liouville fractionalégrals of orde: of any functionf (x) for x € [0, L]
are defined, respectively, as

JHE(x) = %/Ox(x—t)“lf(t)dt, u>0,

I (x) = % /XL (t—xHLf)dt, p>0, (29)
2 f(x) = f(x).

The left- and right-sided Riemann-Liouville fractionatégrals operators satisfy the following properties
B B+ gy

rB+1+u) ’ (30)
e CVPr(B+Y) s
H(x—L)P = FETLr (L—x)PHH,
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The system of generalized Abel’s integral equatid2fy €an be transformed into the following system of fractional
integral equations

a11 ()M (1— p)IF Hu(x) +as2() M (1 — )35 Hy(x) =g1(x),
ap1 ()1 (1— )" Hu(x) + aza(X) 1 (1 — ) ITHv(x) =ga(x).
First, we expressg(x) by shifted Jacobi ponnomiaIs as ihq) and express(x) as

zob. PLI ) (32)
The left- and right-sided Riemann-Liouville fractionatégrals of shifted Jacobi polynomials may be given by
0.9 6.9,
KR 00) =R 00

(31)

B (1)K (i+8+1)r(i+k+6+39+1) e
zr|—k+1) Fk+pu+1)rk+9+1)r(i+6+9+1)Lk ’

(33)
8,9 0,9,
PR 00) =R
e (—Dkr(i+0+1D)r(i+k+0+39+1) (x— L<h
_k;r(i—k+1)r(k+u+1)r(k+9+1)r(i+9+8+1)Lk ’
then, easily we can write
l “UN zoa'PLeﬁl u ’
M0 = 3 AR o)
(34)
E}: uVN %bIPLeﬁl [J ’
l u (6,9,1— u
~ TN Z)b P,_
Therefore, adopting3@)-(34), the system31) may be written in the form:
an(0r (1 p Zﬁﬂ”l W)+ (1~ p)ana(x Zﬁﬂ”l M%) =01(%).
(8,9,1— p (6,8,1—p) (35)
a(X)r (1—u) EOa‘PL X)+ T (1— p)aga(x Zob'PL (X) =G2(%),
0<x<L, O<u<l
As in the previous section, we collocate the syst86) &tN + 1 collocation points as
an(Or (1- 1) Z)aPL“l PxGo0 +T (1= x5
zoblpf’“ D) = 1),
: (36)

azl( r(1—mu) Z}a«PLOM W ))+/—(1 H)azz(( 9k)

Z)bIPL”” 00 = %4500,

O<pu<l k=0,---,N
The previous system of algebraic equations can be solved d&wton'’s iterative method.
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Fig. 1: The exact and numerical solutions curves for Exangplevith 6 =0, 3 = % andN = 1.

6 Numerical results

For clarifying the validity and accuracy of the presentegbathm, we have applied it to solve numerical examples ef th
first kind, the second kind and the system of generalized'é\bgkgral equations.

6.1 Example 1

Firstly, we introduce the first kind Abel's integral equatio the following form [L5]

X
/ u(t)ldt:x%, 0<x<1, 37)
5 (X=1)3
Lo 10x
and the exact solution is given loyx) = 95

Using the technique discussed in Section 3 with differenicdof 6, 3 (e.g.e =3 = 0 (shifted Legendre-Gauss
collocation method)d =9 = UF% (first and second kind shifted Chebyshev-Gauss collocattbe- 0, 9 = % and@ =

. . 10x .
0,9 = %) atN > 1, we obtained the exact solutioy = ——. In the case 08 =0, 9 = %andN =1, the numerical and
exact solutions curves for proble®@7) by using our method are shown in Fi.
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Fig. 2: The exact and numerical solutions curves for Exangpkavith 6 =1, 3 = —% andN = 3.
6.2 Example 2
Here, we consider the problem
X
u(t 4
/ ()ldt:—x3/2(35—24x2), 0<x<1, (38)
J (x—1)2 105

The exact solution of this problem is given bgx) = x — x°.

Also, the approximate solution for this problem gives thaasolution for different choice dd, 9 atN > 3. The
approximate solution obtained using our methodat 1, 9 = —% andN = 3 for (38) shown in Figure Z) to make it
easier to compare with the exact solution.

6.3 Example 3
Consider the following Abel’s integral equation studied 110, 11]
X
X2 +t4 1 32768 a1 2621442 128 1
———u(t)dt = z 74 x4 <x<1
/ (x—1)3 ut)d = 150047 " T o0ss28 | T2zi<  0=X=L (39)

0

which having an exact solution given iyx) = x2.
By applying the technique described in Section 3, we obtaih t

K (P2 + 44+ 1)(3 aP®(1)

=0 dt
(x-t)%

_ 32768 5 262144y 128 y
~ 100047 908523 231

,0<x<1, (40)
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yields the following system of algebraic equations

Xk L \2¢2 | +4 )
(O +1)(.§ a‘PL' ())dt 32768 11+262144 g+128(x )11
10094% Nk 90852§ Nk 231Nk (41)

0<x<1, k=0,--,N

Despite that the best results for the maximum absolute eachieved by using the numerical methods (mid-point
rectangular, trapezoidal quadrature, Asymptotic exmansiombination algorithm, a posteriori estimate and meida
quadrature methods) given i, 11] with 40 or 80 steps are bounded between7®7x 102 and 18779x 108, we
obtained the exact solution usihg> 2 and different choice o, 3.

o
—
><
zr
X
\./

6.4 Example 4
Let us consider the following second kind Abel’s integ0][
X
mm:x+gﬁ_/)“mlm x e [0,1], (42)

5 (x—1)2

Applying the numerical technique discussed in Section 4 btain thatuy (X) = x, N > 1, which is the exact solution
of the mentioned problem. Although we got the exact solutising a small number of noddd ¢ 1 and different choice
of 8, 9) where the best value of the maximum absolute errors oltamgR0] was 5x 10~ atN = 25.

6.5 Example 5
Here, we tested the following second kind Abel’s integralatgpn 0]
X
u(x):xz—i—E;xg—/ u(t)ldt ,0<x<1,. (43)
15 (x—1)2

Kumar et al. Q] introduced this problem and applied the homotopy pertiimbaransform method, the maximum
absolute error achieved i@ was 5x 10~/ atN = 25.

TakingN > 2, we used the technique presented in Section 4 with diffetesices ofo, 9 (e.g.@ =39 =0 (shifted
Legendre-Gauss collocation methofl)= 9 = q:% (first and second kind shifted Chebyshev-Gauss collocgtda-
0,3 = % and8=0,9 = %) the numerical approximatiau () is equal to the exact solutiar{x) = x2.

6.6 Example 6
As a system of Abel’s integral equations, we consider thidfam 23]

X 1
u(t) 1 v(t) 16 1
o/<x_t)%dt+ix/(t_x)% BECARET A

N\u‘l

% X2(1—X)2 + % x2(1—x)?

1 11 3 1 7 3 5
+§x3(1—x)2 3 X(1—X)2 + ﬂ(l X)2 4 6 X(1—x)2,
3 16 s 96 7
t=—(1— 3 1—-Xx)2 1—X)24+ —x2 +"xz
Z/t— 3/xt d ( X)2 4+ x3( x)+2x( x)+5x+35x

where the exact solutiomx) = x? andv(x) = X% + x>.

Setia and Pandey§] introduced this problem and used the Laguerre polynonf@alapproximating its numerical
solution. In order to show that our technique discussed oti@e5 is accurate than this introduced Rf], in Fig. 3,
we plot the exact and numerical solutionsugk) andv(t) at N = 3 with different choice ofg andJ. the numerical
approximatioruy(x) is equal to the exact solutiar(x) = x* andv(x) = x% + x>.
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6.7 Example 7

Now, we consider the following system of Abel’ integral etjaas [23]

X

1
x+1

2 u(t) v(t) 1 4 1,
X +1)O/(x—t)%dt+ ) =% —ﬂ\/l—X—F%X\/l—X—I—BX V1-x
+% g+12x3\/1T+ x“\/—x+

v(t)

1, 4 64 7
= - - 2
dt 5 V1—x+ 15X vV1—Xx+ 35X

8 32 9
+1—5X4\/1—X+3—5X

with exact solution given by(x) = x? andv(x) = x°.
Using the method presented in Section 5, we plot the grapheofitimerical and exact solutionsuif) andv(x) at
N = 3 with different choice oB, J in Fig. 4.

7 Conclusion

In this article, a new fast numerical technique is consedc¢o introduce an approximate solution of the first and sécon
kinds of Abel’'s integral equations. Our numerical approsotonsisting of transforming such problems into a fraction
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Fig. 4: The exact and numerical solutions curves for Exangpfevith 8 =1, § = —% andN = 3.

integral equation (described in the Riemann-Liouvilles#nUsing the shifted Jacobi polynomials as basis funstion
of the spectral collocation method and the Gauss-quadrédumula, the fractional integral equation is reduced ito
problem consisting of system of algebraic equations thateasolved using any standard iteration method. The system
of generalized Abel’s integral equations is investigatisd asing the proposed technique. The numerical resultsawe h
obtained demonstrate the high accuracy of our techniqug aosmall number of shifted Jacobi polynomials are needed
to obtain a satisfactory result.
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