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Abstract: In the present study, a B-spline collocation method has beenapplied to obtain a numerical solution of the sine-Gordon
equation. Then, the obtained numerical results have been compared with those given in the literature. The error normsL2 andL∞ are
computed and they have been found out small enough to be accepted.
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1 Introduction

The sine-Gordon equation is a nonlinear hyperbolic
partial difefrential equation appearing in a number of
physical applications such as relativistic field theory,
Josephson junctons, mechanical transmission lines and
modern physics. Hence it is of great interest for many
scientists and mathematicians. Therefore, its analytical
and numerical solutions are found by many authors using
various methods. In this paper, we will deal with the
sine-Gordon equation given in the form

utt = uxx− sinu, x∈ (L0,L1), t > 0 (1)

where u is the dependent variable, andt and x are the
independent time and space parameters, respectively. In
the present study, the numerical solutions of Eq.(1) will
be sought with the following boundary conditions

u(L0, t) = f0(t),
u(L1, t) = f1(t),

t ≥ 0.

The initial conditions will be taken as follows

u(x,0) = φ(x),
ut(x,0) = ψ(x), x∈ [L0,L1].

The main purpose of this study is to apply the cubic
B-spline collocation finite element method to develop a
numerical technique for solving the sine-Gordon
equation. Eq.(1) has been solved by several authors using

various methods and techniques. For example, Rashidinia
and Mohammadi [1] have developed two implicit finite
difference schemes for the numerical solution of
one-dimensional sine-Gordon equation by using spline
function approximation and also given stability analysis
of the method. Dehghan and Shokri [2] have proposed a
numerical scheme to solve the one-dimensional
undamped Sine-Gordon equation using collocation points
and approximating the solution using Thin Plate
Splines(TPS) radial basis function(RBF). Rigge [3] has
presented several numerical solutions to the 1D, 2D, and
3D sine-Gordon equation and given comments on the
nature of the solutions. Sheng et al.[4] have concerned an
adaptive splitting scheme for the numerical solution of
two dimensional sine-Gordon equation. Uddin et al [5]
have proposed a numerical method based on radial basis
functions for the numerical solution of nonlinear
sine-Gordon equation. Keskin et al. [6] have implemented
reduced differential transform method (RDTM), which
does not need small parameter in the equation, for solving
the sine-Gordon equation. Kaya [7] has implemented the
decomposition method for solving the sine-Gordon
equation by using a number of initial values in the form of
convergent power series with easily computable
components. Soori and Aminataei [8] have applied the
spectral method with a basis of a new orthogonal
polynomial which is orthogonal over the interval [0,1]
with weighting function one. Akgül and Inc [9] have
proposed a reproducing kernel Hilbert space
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method(RKHSM) for solving the sine-Gordon equation
with initial and boundary conditions based on the
reproducing kernel theory. In this paper, first of all, we
will deal with the sine-Gordon equation (1) in terms of a
system composed of two equations

ut = v, vt = uxx− sinu (2)

to obtain the numerical solution of the sine-Gordon
equation. The performance of the method has been tested
on numerical examples.

2 The Finite Element Solution

Let’s assume that the interval[a,b] is divided intoN finite
elements having uniform equal length by the knots
xm, m= 0(1)N such thata= x0 < x1 · · ·< xN−1 < xN = b
and h = xm+1 − xm. The cubic B-splines φm(x),
(i = −1(1)N+ 1) at the knotsxm are defined over the
interval[a,b] as [10]

φm(x) =
1

h3



















(x−xm−2)
3, x∈ [xm−2,xm−1],

h3+3h2(x−xm−1)+3h(x−xm−1)
2−3(x−xm−1)

3, x∈ [xm−1,xm],
h3+3h2(xm+1−x)+3h(xm+1−x)2−3(xm+1−x)3, x∈ [xm,xm+1],
(xm+2−x)3, x∈ [xm+1,xm+2],
0, otherwise.

The set of cubic B-splines{φ−1(x),φ0(x), . . . ,φN+1(x)}
constitutes a basis for the functions to be defined over the
interval[a,b]. Thus, an approximation solutionUN(x, t) to
analytical solutionU(x, t) and an approximation solution
VN(x, t) to analytical solutionV(x, t) on this interval can
be written in terms of these cubic B- splines as

UN(x, t) =
N+1

∑
m=−1

δm(t)φm(x), (3)

VN(x, t) =
N+1

∑
m=−1

σm(t)φm(x) (4)

in whichδm(t)’s andσm(t)’s are unknown time dependent
element parameters to be determined. Because of the fact
that each cubic B-spline covers four elements, on the other
hand, each element[xm,xm+1] is covered by four cubic B-
splines. In this paper, the finite elements are identified with
the interval[xm,xm+1] and the elements knotsxm andxm+1.
In terms of the local coordinate transformationξ = x−xm,
the cubic B-splines can now be expressed in terms of the
local variableξ as follows

φm−1
φm
φm+1
φm+2

= 1
h3















(h− ξ )3,
h3+3h2(h− ξ )+3h(h− ξ )2−3(h− ξ )3,
h3+3h2ξ +3hξ 2−3ξ 3,
ξ 3,

(5)
where 0≤ ξ ≤ h. Since all other cubic B-splines are
identically zero over the element[xm,xm+1], the variations

of UN(x, t) and VN(x, t) in Eqs. (3)-(4) over a typical
element [xm,xm+1] is written as

UN(ξ , t)=
m+2

∑
j=m−1

δ j(t)φ j(ξ ) (6)

and

VN(ξ , t)=
m+2

∑
j=m−1

σ j(t)φ j (ξ ). (7)

If we use the Eqs.(5) and(6), then the nodal values ofUm

andU
′′

m at the knotsx= xm can be easily found in terms of
element parameterδm as follows

Um =U(xm) = δm−1+4δm+ δm+1,
U ′′

m =U ′′(xm) =
6
h2 (δm−1−2δm+ δm+1).

(8)

If we use the Eqs.(5) and(7), then the nodal value ofVm
at the knotsx= xm can be easily found in terms of element
parameterσm as follows

Vm =V(xm) = σm−1+4σm+σm+1. (9)

If we put the nodal values given by Eqs.(8)-(9) into Eq.
(1), we obtain the following systems of equations:

δ̇m−1+4δ̇m+ δ̇m+1 = σm−1+4σm+σm+1 (10)

and

σ̇m−1+4σ̇m+ σ̇m+1 =
6
h2 (δm−1−2δm+ δm+1)− sinû.

(11)
In Eq.(10), if we take the

δ̇ =
δ n+1− δ n

∆ t
,

σ =
σn+1+σn

2
and put them in their places, we obtain

1
∆ t

δ n+1
m−1+

4
∆ t

δ n+1
m +

1
∆ t

δ n+1
m+1−

1
2

σn+1
m−1−2σn+1

m −
1
2

σn+1
m+1 =

1
∆ t

δ n
m−1+

4
∆ t

δ n
m+

1
∆ t

δ n
m+1+

1
2

σn
m−1+2σn

m+
1
2

σn
m+1 (12)

wherem= 0(1)M. In Eq.(11), if we take the

σ̇ =
σn+1−σn

∆ t
,

δ =
δ n+1+ δ n

2
and put them in their places, we obtain

−
3
h2δ n+1

m−1+
6
h2 δ n+1

m −
3
h2 δ n+1

m+1+
1

∆ t
σn+1

m−1+
4

∆ t
σn+1

m

+
1

∆ t
σn+1

m+1 =
3
h2 δ n

m−1−
6
h2 δ n

m+
3
h2 δ n

m+1 (13)

+
1

∆ t
σn

m−1+
4

∆ t
σn

m+
1

∆ t
σn

m+1− sinû,m= 0(1)M.
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Both the systems(12) and (13) consist ofN+ 1 linear
equations including N + 3 unknown parameters
(δ−1, . . . ,δN+1)

T and (σ−1, . . . ,σN+1)
T . To obtain a

unique solution to these systems, we need four additional
constraints. These are obtained from the boundary
conditions and can be used to eliminateδ−1. δN+1, σ−1
andσN+1 from the systems.

2.1 Initial state

To proceed with the iterative formula (12) and (13), first of
all, we do need the initial vectorsd0 andd̃0 which is going
to be determined from the initial and boundary conditions.
To achieve this, the approximations (3) and (4) ought to be
rewritten for the initial condition as

UN(x, t0)=
N+1

∑
m=−1

δm(t0)φm(x)

and

VN(x, t0)=
N+1

∑
m=−1

σm(t0)φm(x)

where the δm’s and σm’s are unknown element
parameters. Now, if we force the initial numerical
approximationsUN(x, t0) and VN(x, t0) comply with the
following boundary conditions to discardδ−1, δN+1, σ−1
andσN+1

UN(x, t0) =U(xm, t0), m= 0,1, ...,N
(UN)x(a, t0) = 0, (UN)x(b, t0) = 0,

and
VN(x, t0) =V(xm, t0), m= 0,1, ...,N
(VN)x(a, t0) = 0, (VN)x(b, t0) = 0,

we obtain the matrix form for the initial vectord0 as

Wd0 = b

where

W =



















4 2
1 4 1

1 4 1
...

1 4 1
2 4



















d0 = (δ0,δ1,δ2, . . . ,δN−2,δN−1,δN)
T

and

b = (U(x0, t0)+
h
3 U ′(x0, t0),U(x1, t0),U(x2, t0), . . .,U(xN−2, t0),U(xN−1, t0),U(xN , t0)−

h
3 U ′(xN , t0))

T .

andd̃0 as
Wd̃

0
= b̃

where

W =



















4 2
1 4 1

1 4 1
...

1 4 1
2 4



















d̃0 = (σ0,σ1,σ2, . . . ,σN−2,σN−1,σN)
T

and

b̃ = (V(x0, t0+ h
3 V′(x0, t0)),V(x1, t0),V(x2, t0), . . .,V(xN−2, t0),V(xN−1, t0),V(xN , t0)−

h
3 V′(xN , t0))

T .

3 Numerical examples and results

Numerical results for sine-Gordon problem are obtained
by Collocation finite element method using cubic B-spline
base functions. The accuracy of the method is measured
by the error normL2

L2 =
∥

∥Uexact−UN
∥

∥

2 ≃

√

√

√

√h
N

∑
j=0

∣

∣

∣
Uexact

j − (UN) j

∣

∣

∣

2

and the error normL∞

L∞ =
∥

∥Uexact−UN
∥

∥

∞ ≃ max
j

∣

∣

∣
Uexact

j − (UN) j

∣

∣

∣
.

To show how good the method, we have considered the
following two problems into consideration.

Problem 1

First of all, we will deal with the sine-Gordon equation (1)
in terms of a system composed of two equations

ut = v, vt = uxx− sinu.

The exact solutions of the above equations have been
obtained as [12]

u(x, t) = 4tan−1(exp[γ(x−Ct)+β ]), (14)

v(x, t) =
−4γC(exp[γ(x−Ct)+β ])

1+exp[γ(x−Ct)+β ]2
(15)

where γ = (1 − C2)−1/2. The initial conditions
u(x,0), v(x,0) and boundary conditions
u(a, t), u(b, t),v(a, t), v(b, t) of the problem have been
taken from those exact solutions (14) and (15). We have
solved the current problem in the solution interval
−2 ≤ x ≤ 58. The results of Problem 1 are tabulated in
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Tables 1 and 2. In Table 1, we have compared the error
normsL2 andL∞ at different times with those in [12,13].
As it is seen from the table, the results obtained in the
present study are in agrement with those in other studies
and become better as time increases. In table 2, it is seen
that as the number of elements increase,that is mesh sizes
decrease, the error norms decrease. In Fig. 1, the
numerical solutions of the problem have been drawn at
timest = 9,36,108.

Table 1: Error normsL2 andL∞ when solution for∆ t = 0.001,
N = 120,C= 0.5, β = 0 in [−2,58].

t
Present [12] [13]

L2 L∞ L2 L∞ L∞
9 0.169580 0.133033 2.683E-002 6.836E-003 4.518E-001
36 0.680536 0.500513 3.113E-001 8.032E-002 2.293E+000
108 2.025488 1.480139 2.378E+000 6.253E-001 5.120E+000

Table 2: Error normsL2 andL∞ when solution for∆ t = 0.001,
C= 0.5, β = 0 in [−2,58] for different values ofN.

t
N = 120 N = 240 N = 360 N = 480

L2 L∞ L2 L∞ L2 L∞ L2 L∞
9 0.169580 0.133033 0.044859 0.036136 0.020158 0.016270 0.011383 0.009170
18 0.345557 0.254219 0.091444 0.070693 0.041090 0.031807 0.023203 0.017988
36 0.680536 0.500513 0.180242 0.135790 0.080998 0.061487 0.045739 0.034824
54 1.017154 0.737338 0.269906 0.203068 0.121319 0.091966 0.068512 0.052105
72 1.354803 0.978039 0.359861 0.270816 0.161747 0.122360 0.091341 0.069204
108 2.025488 1.480139 0.539357 0.403595 0.242441 0.1829800.136907 0.103556

0 5 10 15 20 25 30 35 40 45 50 55
1

2

3

4

5

6

7

t=108t=36t=9

U
N(

x,
t)

x

Fig. 1: Numerical solutions of Problem I att = 9,36,108 for x ∈ [−2,58],β =
0,C = 0.5,N = 240 and∆ t = 0.001.

Problem 2

Secondly, we will deal with the sine-Gordon equation (1)
in terms of a system composed of the following two
equations

ut = v, vt = uxx− sinu.

The exact solutions of the above equations have been
obtained as[14]

u(x, t) = 4tan−1(sech(x)t),v(x, t) =
4sech(x)

1+ t2sech2(x)
(16)

with the initial conditions

u(x,0) = 0, v(x,0) = 4sech(x), −10≤ x≤ 10. (17)

Boundary conditionsu(a, t), u(b, t), v(a, t), v(b, t) have
been taken from those exact solutions (17). We have
solved the present problem in the solution interval
−10≤ x ≤ 10. The results of Problem 2 are evaluated in
Tables 3,4 and 5. In Table 3, fort > 10, the error normL∞
of the present study are better than those in [14].

Table 3: Error normsL2 and L∞ when solution for∆ t = 0.01, N = 400 in
[−10,10].

t
Present [14]

L2 L∞ L∞
1 1.115×10−3 2.281×10−4 1.678×10−4

2 3.251×10−3 4.258×10−4 4.237×10−4

5 3.028×10−3 3.269×10−4 3.257×10−4

10 8.092×10−3 9.512×10−4 4.829×10−3

15 1.7508×10−2 1.953×10−3 1.124×10−2

20 3.0830×10−2 3.541×10−3 1.155×10−2

In Table 4, the error normsL2 and L∞ are tabulated for
different values of mesh sizes. It is clear that as the
number of elements increase, as it is expected, both of the
error norms decrease. Finally, the error norms are
computed for different values of time steps. Again, the
error norms have become smaller as time step decreases.
We have also depicted the numerical solutions of the
problem in Fig. 2 at timest = 5,20.

Table 4: Error normsL2 andL∞ when solution for∆ t = 0.01 in
[−10,10] for different values ofN.

t
N = 200 N = 250 N = 500

L2 L∞ L2 L∞ L2 L∞
1 3.394×10−3 1.012×10−3 2.396×10−3 6.360×10−4 7.546×10−4 0.134×10−4

2 9.814×10−3 2.141×10−3 6.935×10−3 1.215×10−3 2.229×10−3 0.277×10−4

5 1.127×10−2 1.849×10−3 7.534×10−3 1.076×10−3 2.314×10−3 0.220×10−4

10 4.858×10−2 7.787×10−3 3.119×10−2 4.489×10−3 2.551×10−3 0.187×10−4

15 1.113×10−1 1.746×10−2 7.122×10−2 9.993×10−3 2.175×10−3 0.181×10−4

20 0.199 3.175×10−2 0.127 1.817×10−2 1.686×10−3 0.203×10−4

Table 5: Error normsL2 andL∞ when solution forN = 400 in
[−10,10] for different values of∆ t.

t
∆ t = 0.1 ∆ t = 0.05 ∆ t = 0.01

L2 L∞ L2 L∞ L2 L∞
1 1.395×10−2 3.103×10−3 2.862×10−3 5.808×10−4 1.115×10−3 2.281×10−4

2 5.570×10−2 8.094×10−3 1.269×10−2 1.642×10−3 3.251×10−3 4.258×10−4

5 2.861×10−1 3.104×10−2 6.940×10−2 7.445×10−3 3.028×10−3 3.269×10−4

10 1.222 1.351×10−1 2.945×10−1 3.253×10−2 8.092×10−3 9.512×10−4

15 2.764 3.071×10−1 6.744×10−1 7.495×10−2 1.7508×10−2 1.953×10−3

20 4.846 5.396×10−1 1.204 1.341×10−1 3.0830×10−2 3.541×10−3
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Fig. 2: Numerical solutions of Problem 2 att = 5,20 for x∈ [−10,10],N = 250
and∆ t = 0.01.

4 Conclusions

In this paper, numerical solutions of the sine-Gordon
equation based on the cubic B-spline finite element
method have been calculated and presented. Two test
problems have been worked out to examine the
performance of the present algorithm. The performance
and efficiency of the method are shown by calculating the
error normsL2 andL∞. The obtained results show that the
error norms are sufficiently small during all computer
runs. The obtained results indicate that the present
method is a particularly successful numerical scheme to
solve the sine-Gordon equation. As a conclusion, the
method can be efficiently applied to this type of
non-linear problems arising in physics and mathematics
with success.
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