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Abstract: A method that makes use of combinatorics for selecting N objects out of  distinguishable objects is developed 

for constructing D-optimal N-point exact designs. The difficulties which are experienced in the variance exchange 

algorithms for constructing D-optimal exact designs, such as cycling, slow convergence and failure to converge to the 

desired optimum, are not experienced by this method. The method converges rapidly and absolutely to the desired N-point 

D-optimal design and is effective for determining optimal designs in block experiments as well as in non-block experiments 

for finite or infinite number of support points in the space of trials. 
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1. Introduction 

Given the experimental space, { X
~

, Fx, x}, the problem in this work is to develop an algorithm for 

constructing an N-point D-optimal exact design measure  

   x1    w1 

       
*

N   = x2    w2 

  •      • 

  •      • 
  •      • 

  xN    wN 

 

xi = (x1i, x2i, …, xni) X
~

;  

 wi   =  
N

1
  for all  i  

where, 

X
~

is an n-dimensional space of trials which is compact, continuous and metric (see Onukogu; 1997). The 

space of trials, X
~

, shall be considered as having a regular or an irregular geometric area and shall consist 

of support points, {x1, x2, …, x N }, where N  represents the number of support points in a finite space of 

trials. By regular geometric area we imply a geometric area that has a single simple mathematical formula 
for computing its area. By irregular geometric area we imply a geometric area that does not have a single 

simple mathematical formula for computing its area. By finite space of trials we imply a space of trials for 

which the underlying pointset is finite. That is, a space for which there are only finitely many points.   
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Fx  = { f(x) } is a linear space of finite dimensional continuous function defined on X
~

. 

x is a space of random observation error defined on X
~

. 

 

Following Kiefer and Wolfowitz (1959), we assume that at each point, x  X
~

, a random variable, namely,   

yx = f(x) +  
is defined and is such that 

E(yx) = f(x)  
where 

  =  ( 1, 2, … , p )
  

is a px1 vector of unknown parameters which are estimated on the basis of N uncorrelated observations; 

 is the random additive error associated with yx and is independent and identically distributed with E() = 

0 and E(
2
) = 

2

 ; a constant. We also assume that Var (yx) = 
2
 (normalized for convenience = 1), Cov 

(
1

xy ,
2

xy ) = 0 ; x, x1, x2  X
~

 (x1 ≠ x2). 

 
In defining experimental designs, it is important to distinguish between exact designs and continuous 

designs. According to Cook and Nachtsheim (1980), a design N is an N-point exact design if N is a 

probability measure on X
~

 which  attaches a mass 
1

N to each point of the design and NN is a non-negative 

integer for x  X
~

. We shall denote the space of N-point exact designs on X
~

 by 
N

X
~ . On the other hand, a 

continuous design is a probability measure  on X
~

 such that  
X

dx
~

1 . 

The measure  is an element of the space, 
X
~ , of probability measure on X

~
and N need not be an 

integer. 

 

The above stated problem is a combinatorial one; a problem of choosing N out of N in X
~

 such that the 

determinant of the information matrix of the design is maximized.  The information matrix, M(N), of the 

design N is given by  

M(N) = 
1

N  XX   

where X is an Nxp design matrix of N, whose i
th
 row is f(xi). According to Karlin and Studden (1966), the 

determinant value of the information matrix is a simple measure of the magnitude of the information 

matrix. Thus, if M )( )1(

N  and M )( )2(

N  are two pxp non-singular information matrices associated with 
)1(

N and 
)2(

N , respectively, 

M )( )1(

N  ≥ M )( )2(

N   M )( )1(

N ≥M )( )2(

N  (see Onukogu (1997), pg. 69). The maximization of the 

determinant of a real-valued non-singular pxp information matrix, say,  
 

  m11  m12  … m1p 

     M   = m21 m22  … `m2p 

 • 

 • 

 • 
 mp1    mp2  … mpp 
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is achieved when mjj; j = 1, 2, …, p are maximized and |mjj| ; j ≠ j are minimized; Onukogu and Chigbu 

(2002). A design, 
*

N
 
, is said to be a D-optimal exact design if the determinant of the information matrix, 

M(
*

N ), is maximized over all N  
N

X
~  (see Cook and Nachtsheim (1980)). 

 
When the experiment is to be performed in b incomplete blocks of sizes k1, k2, …, kb respectively, we seek 

an N-point D-optimal design 

 
 

   x11     x12  x1b 

       N
*
  = x21     x22        … x2b 

  •       •  •  

  •        •  • 
  •       •  • 

  xk11     xk22  xkbb 

 

xij = (x1ij, x2ij, …, xnij)  X
~

 ; i = 1, 2, …, kj   ,j = 1, 2, …, b, 

N = 


b

j

jk
1

 

Defining Xt as an N x p coefficient matrix for treatments and XB as an N x b indicator matrix for blocks 
with 0 and 1 elements, N x (p + b) design matrix is 

 


 )( bpNx

X   
Nxp

tX  
Nxb

BX  

and the information matrix to be maximized is  

 

M(N) = )()( 1

tBBBBttt XXXXXXXX  
   

 

2. Literature Review 

The exchange algorithms cited above become slow due to the need to follow each. They have been of 

much usefulness in the construction of D-optimal exact designs. One of the earliest of such algorithms is 
due to Mitchell-Miller (1970). The algorithm begins with a randomly chosen N-run design and moves in 

the direction of increasing value of the determinant of information matrix. The procedure involves two 

stages at each iteration by first adding an (N + 1)
st
 run to the initial design and then subtracting from the 

resulting design the point that leads to the minimum possible decrease in determinant value of information 

matrix. The algorithm stops when there is no further improvement in the determinant value or when the 
same point is deleted and then re-entered. The point added corresponds to point of maximum variance of 

prediction over X
~

 and the point deleted corresponds to the point of minimum variance of prediction. The 

algorithm of Van Schalkwyk (1971) is similar to that of Mitchell-Miller (1970) but first deletes at each 
iteration the point in the initial N-point design with minimum variance of prediction. The N-point design is 

then recovered by adding a point from X
~

 that gives a maximum increase in the determinant value of 
information matrix. The algorithm stops when the same point deleted is afterwards re-entered. 

 

An application of the Van Schalkwyk (1971) algorithm in comparison with the Mitchell-Miller (1970) 

algorithm on the problem of constructing a 7-point D-optimal exact design over the space, X
~

 ; -1  X
~
 1, 

for a bivariate quadratic surface, 

f( 1x , 2x ) = 00a  + 10a 1x  + 20a 2x + 12a 1x 2x  + 11a 2

1x  + 22a 2

2x + , 

reveals that the number of variance evaluations are reduced by not less than 50%. Although the Van 
Schalkwyk algorithm in application is more direct. However, both algorithms are computationally 

demanding due to the need to update the designs and evaluate the determinant at each iteration. 

. . . 
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The exchange algorithm of Fedorov (1972), pg. 164 begins with an N-point design and at each iteration 

evaluates all possible exchanges of the pairs of points, xk , from the design and xl from the set of candidate 
points. The exchange giving the maximum increase in the determinant value of information matrix is 

considered. The procedure continues as long as an interchange increases the determinant. The Fedorov’s 

exchange algorithm is made slow by the large number of points to be considered at each iteration. As a 
way of speeding up the Fedorov’s algorithm, many modifications have been suggested (see e.g. Cook and 

Nachtsheim (1980), and Johnson and Nachtsheim (1983), Atkinson and Donev (1992). Each of these 

modifications aims at reducing the number of points to be considered for exchange. For example the KL 
algorithm of Atkinson and Donev (1992), pg. 173 exchanges points in the design having relatively low 

variance of prediction with candidate points for which variances are relatively high. The algorithm begins 

with an N-point design and moves one step at a time in the direction of increasing value of determinant of 
information matrix. When there is no longer any exchange that would increase the determinant value, the 

algorithm terminates. The KL algorithm is followed by an adjustment algorithm which searches away from 

the candidate list (see Atkinson and Donev (1992), pg. 175-178). They also investigated the properties of 
optimum designs when there are both qualitative factors (represented by the blocks) and quantitative 

factors. The modified algorithm (BLKL) provides the opportunity to divide the experimental trials into 

blocks of specified sizes (see Altkinson and Donev (1989, 1992)). 
 

The DETMAX algorithm of Mitchell (1974) though slightly different from the exchange algorithms 

described above is a generalized version of the Mitchell-Miller algorithm. It begins with a randomly 
chosen N-run design and a pre-specified list of candidate set. A chosen number of points is sequentially 

added to and then deleted from the design (following its excursion scheme) thus improving the starting 

design. In DETMAX, the requirement that an (N + 1)-point design be returned immediately to an N-point 
design is relaxed. The algorithm makes use of positive and negative “excursions” during which the size of 

the design may vary from N to N + K and from N to N – K, respectively, where K is a user-selected integer 

constant. The DETMAX algorithm is run several times ( 10 times) in each case, each time starting with a 
different randomly selected initial N-run design and the “Best DETMAX design” is that which gives the 
largest determinant value in the number of tries. When an excursion size reaches K, the algorithm 

terminates. 

 
The exchange algorithms cited above become slow due to the need to follow each successful exchange by 

updating the design, the information matrix, the variance-covariance matrix, the variances of the predicted 

values at the design and candidate points and the evaluation of respective determinant values of 
information matrices. Moreover, these algorithms are based on the variance of the predicted response and 

hence, have the high probability of getting trapped at a local optimum. We present a new method of 

constructing D-optimal designs. The method is based on the combinatorics of the support points that make 

up X
~

 and  is such that for given {X
~

, Fx, x}, the support points that make up X
~

 can be arranged into 

concentric balls (groups) and an optimal combination of these balls can be obtained so that the 

corresponding N-point exact design measure is D-optimal. An attractive feature of this method is that by 
grouping it is easy to identify sets of information matrices with equal diagonal elements, so as to compare 

the information matrices within a given set on the basis of the off-diagonal elements without necessarily 

evaluating their determinant values. By some rules for selecting the design points to go into the design, 
non-promising designs within a given design class are eliminated and by proper use of the algorithm the 

number of classes to be examined for a particular problem is reduced to only a few. The procedure moves 

sequentially in the direction of increasing value of determinant of information matrix as the search 
proceeds from one optimum to another. The required exact D-optimum design is reached when there is no 

further improvement in the determinant value of information matrix.  

 

3. Methodology 

In order to solve the problem defined in section 1.1 above the N support points are arranged into H 
concentric balls, g1, g2, …, gH, such that the h

th
 ball, gh, is defined by 



 

Mary Iwundu et al: A HILL-CLIMBING: ALGORITHM FOR CONSTRUCTING                                                   137   

______________________________________________________________________________________________ 























hnh

h

h

h

x

x

x

g


2

1

 ; 
ihx = (x11, x12, … , x1n)    

and consists of nh support points and nh = N ; h = 1, 2, … , H. Moreover, each support point in gh is of 

distance, rh = 
'

ihx
ihx ;    i = 1, 2, … , nh from the centre of X

~
. Besides, r1 > r2 > … > rH. The purpose of 

the grouping is to make it easy to identify sets of p x p information matrices with equal diagonal elements, 

so as to compare the information matrices within a given set (without necessarily evaluating the 
determinant values) on the basis of the off-diagonal elements. 

 

4. The Algorithm  
The Hill-Climbing combinatorial algorithm is embodied in the sequence of steps following. If tk is the H-

tuple of support points at the k
th
 step, then the H-tuple of support points at (k+1)

st
 step is formed by holding 

H-2 of the rhk values fixed and altering the values of just two balls. That is, only two values of the rhk are 

altered while the remaining H-2 values are held fixed subject to rhk = N; N is the design size.  

Given N  support points in X
~

 which have been partitioned into H groups (balls) as, we suppose that at 
the k

th
 step of the sequence an H-tuple, tk = {r1k, r2k, …, rHk}, of support points are selected from the balls. 

Then the number of available designs at this k
th

 step is 



H

h

hkk aa
1

  

where ahk is the number of sub-designs in the h
th
 ball and is computed simply as 











hk

h

hk
r

n
a  ; hkh rn   

However, when nh is less than rhk we shall compute ahk as  











hk

h

hk
f

n
a   

where fhk is a positive integer value defined by  

fhk  =  rhk - nh       

and  is a positive integer value such that fhk < nh. 

For convenience, we shall present the details of the algorithm starting with  
H = 2, H = 3, etc. 

 

S2 Search (H=2):   
The S2 search is embodied in the sequence of steps in Table 1 below. 

Table 1:  Combinatorics for Choosing D-Optimal Design 
Step k Ball combination Number of available designs, ak Determinant Value, 

d2k 

 g1 g2   

0 r1 r2 a0 d20 

1 r1+1 r2-1 a1 d21 

2 r1+2 r2-2 a2 d22 

          

m  r1+m r2-m am d2m  

m+1 r1+m+1 r2-m-1 am+1 d2(m+1) 
m+2  r1-1 r2+1 am+2 d2(m+2) 
m+3 r1-2 r2+2 am+3 d2(m+3) 

          

q  r1-w r2+w aq d2q  
q+1 r1-w-1 r2+w+1 aq+1 d2(q+1) 
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w = q – m            4.1 

 
d21 < d22 < … < d2m > d2(m+1) 

d2(m+2) < d2(m+3) < … < d2q > d2(q+1) 

 

 

 )(detmax ),(

2

ji

k
a

k Md
k

 ; )( ),( ji

kM     
pxp

kS ; k = 0, 1, 2, …, q+1 

pxp

kS  is the space of non-singular pxp information matrices at the k
th
 step. 

The sequential steps involved in setting up the table are as follows: 

1) At k = 0, define an initial 2-tuple,  

t0 = ( r1  ,  r2  )  
of support points such that r1 ≥ 0, r2 ≥ 0 and r1 + r2 = N 

2) Compute the values of a10 and a20 designs from ball 1 and ball 2, respectively, and set 
 a0 = a10 a20; a0 is the number of all the available designs at step k = 0,

 

3) Express the a10 designs from g1 and a20 designs from g2, respectively, as follows: 

 )1(

10 , )2(

10 , …, )(

10
10a ;  )1(

20 , )2(

20 , … , )(

20
20a

,
 

4) Define the a0 designs as composite designs; i.e. 

 















)1(

20

)1(

10)1,1(

0



 , … , 
















)1(

20

)(

10),1(

0

10

10






a

a
 
















)2(

20

)1(

10)1,2(

0



 , … , 
















)2(

20

)(

10),2(

0

10

10






a

a
 

      
















)(

20

)1(

10)1,(

0
20

20

a

a




 , … , 
















)(

20

)(

10),(

0
20

10

1020

a

a

aa




   

Where, M  ),(

0

ji   
pxpS0  ; i = 1, 2, …, a20  ;  j = 1, 2, …, a10  

It will be noticed that the a0 design measures are grouped into a20 sets, each set containing a10 designs and 
within each set the diagonal elements of information matrices are exactly the same. For example, consider  

an experimental area whose support points are grouped into 

 
 -1  1      0  1 

g1  =   1  1 ; g2  =  -1   0 ; g3  = (0  0). 

   1 -1      0 -1  
  -1 -1      1  0  

 

Suppose  
t0  =   {3,  3,  0} 

then   a10  =  4,   a20  =  4,   a30   = 1,    a0  =  16 

The a10  =  4 designs from g1 are 
 

 

 1    1   1   1   1   1   1  -1 
)1(

10  =   1   -1  ;     
)2(

10    = 1  -1 ;   
)3(

10    = -1 -1 ;    
)4(

10    = -1 -1 

 -1  -1   -1  1   -1  1   -1  1 
 

 

and the a20 = 4 designs from g2 are 
 

4.2 
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 0    1   0   1   0   1            0  -1 
)1(

20  =   0   -1  ;    
)2(

20    = 0  -1 ;   
)3(

20    = 1   0  ;   
)4(

20    =     1   0 

 -1  0   1   0   -1  0           -1   0 

 

The four sets of designs are as follows: 
Set 1:   

   1    1   1    1   1   1    1  -1 
)1,1(

0  =    1  -1     ;  
)2,1(

0    = 1   -1  ;  
)3,1(

0    =     -1  -1 ;    
)4,1(

0    = -1  -1 

    -1  -1   -1   1             -1   1   -1   1 

     0   1    0   1   0   1    0   1 
     0  -1   0   -1   0  -1   0   -1 

    -1   0   -1   0             -1   0   -1   0 

 
Set 2: 

  1   1   1   1   1   1   1  -1 
)1,2(

0  =   1 -1     ;    
)2,2(

0    = 1  -1  ;  
)3,2(

0    =     -1   -1 ;    
)4,2(

0    =    -1  -1 

   -1  -1   -1  1             -1   1             -1   1 
     0   1    0  1   0   1              0   1 

     0  -1   0  -1   0  -1   0  -1 

    1  0   1   0   1   0   1   0 
  

Set 3: 

   1   1   1   1   1   1   1  -1 
)1,3(

0  =   1  -1     ;  
)2,3(

0    = 1  -1  ;  
)3,3(

0    = -1 -1 ;    
)4,3(

0    = -1 -1 

    -1  -1   -1  1   -1  1   -1  1 

     0   1    0  1   0   1    0  1 

     1   0   1   0   1   0   1   0 
    -1   0   -1  0   -1  0   -1  0 

 

 
Set 4:  

  1    1            1   1   1   1   1  -1 
)1,4(

0  =   1  -1    ; 
)2,4(

0    =    1  -1     ;   
)3,4(

0    = -1 -1 ;    
)4,4(

0  = -1 -1 

    -1  -1           -1   1   -1  1   -1  1 

     0  -1            0  -1   0  -1    0 -1 
     1   0            1   0   1   0   1   0 

    -1   0           -1   0   -1  0   -1  0 

 
Using the quadratic model  

f( 1x , 2x ) = 00a  + 10a 1x  + 20a 2x + 12a 1x 2x  + 11a 2

1x  + 22a 2

2x + , 

the information matrices of the four designs in the first set are respectively, 

 
 

 

M1 = 6  0 -1  1  4  5  ; M2 = 6  0  1 -1  4  5 
  0  4  1 -1  0  1    0  4 -1  1  0  1 

  -1 1  5  1 -1 -1    1 -1  5  1  1  1 

  1 -1  1  3  1  1    -1 1  1  3 -1 -1 
  4  0 -1  1  4  3    4  0  1 -1  4  3 

  5  1 -1  1  3  5    5  1  1 -1  3  5 
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M3 = 6 -2  1  1  4  5  ; M4 = 6 -2 -1 -1  4  5 
  -2 4  1  1 -2 -1    -2 4 -1 -1 -2 -1 

  1  1  5 -1  1  1    -1-1  5 -1 -1 -1 

  1  1  1  3  1  1    -1-1 -1  3 -1 -1 
  4 -2 1  1  4  3    4 -2 -1 -1  4  3 

  5 -1 1  1  3  5    5 -1 -1 -1  3  5 

 
It is clearly seen that the diagonal elements of the information matrices of all design in the first set are 

exactly the same. This is also true for the other designs in the same sets. 

5) By comparing the absolute values of the off-diagonal elements of the information matrices 

belonging to the same set, identify the best design, )(

0

i , in the i
th
 set, such that   

M  )(

0

i  = )(max ),(

0

ji

j
M  ;  i = 1, 2, …, a20 ; M  )(

0

i ,  M  ),(

0

ji   
pxpS0  . 

6) Define 0  such that 

det {M( 0 )} = )}(det{max )(

0

i

i
M   = d20 ; i = 1, 2, … , a20 . 

7) Set 
kt = ( r1+k  ,  r2-k )  ; k = 1, 2, …, m+1, m+2, …, q+1 and following steps 2 to 5 ,above obtain { 

d2k }. From equation 4.2, determine d2m and d2q.  

8) Set 
cd  = max {d20, d2m, d2q}. Then

c

N , the corresponding design measure is the required D-optimal 

exact design. 

 

S3 Search (H = 3): 

As with S2 search, we assume that the N  support point in X
~

 have been grouped into g1, g2 and g3 

balls and we proceed with the following steps; 

1) At k = 0, define an initial 3-tuple t0 = ( r1 , r2, r3 ) of support points taken from g1, g2 and g3, 
respectively, such that r1 ≥ 0, r2 ≥ 0, r3 ≥ 0 and  

r1 + r2 + r3 = N. 

2) Holding ball g1 fixed at r1, apply the procedures of S2 search on the remaining two balls and obtain 
d30(r1+0) and the corresponding tuple 

 ),,( *

3

*

21

*

0 rrrt    ;  
*

2r  and 
*

3r  are the optimal number of support points taken from g2 and g3, 

respectively, when ball g1 is held fixed at r1. 

3) Set k = 1, 2, …, q+1 and obtain { )(3 1 krkd  } as in steps 1 and 2 above. Hence, determine )(3 1 mrmd   

and )(3 1 qrqd  . 

4) Set 
cd  = max { )0(30 1rd , )(3 1 mrmd  , )(3 1 qrqd  }. Then

c

N , the corresponding design measure is the 

required D-optimal exact design. 

SH Search (for general H) : 

For SH search, the N support points in X
~

 are arranged into H balls, namely, g1, g2, …, gH 

following the usual procedure and the search proceeds along the following steps;  

1) At k = 0, define an initial H-tuple, 
 t0 = (r1 , r2, …, rH ), 

of support points taken from g1, g2, …, gH, respectively, such that r1 ≥ 0, r2 ≥0, … , rH  0 and r1 + r2 
+ … + rH = N. 

2) Holding ball g1 fixed at r1, apply the procedures of SH-1 search on the remaining H-1 balls and 
obtain dH0(r1+0) and the corresponding tuple, 

 ),,,,( **

3

*

21

*

1 Hrrrrt    ;  
*

2r , 
*

3r  …, 
*

Hr  are the optimal number of support points taken from balls, 

g2, g3, …, gH, respectively, when ball g1 is held fixed at r1. 
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3) Set k = 1, 2, …, q+1 and obtain { )( 1 krHkd  } as in steps 1 and 2 above. Hence, determine )( 1 mrHmd   

and )( 1 qrHqd  . 

4) Set 
cd  = max { )0(0 1rHd , )( 1 mrHmd  , )( 1 qrHqd  }. Then

c

N , the corresponding design measure is 

the required D-optimal exact design. 
 

5.  Properties of SH Search  
Every sequential technique can generally be characterized by how to begin the search, in what direction to 
continue, at what step length and how to end the search. The SH search  is governed by certain properties 

which for simplicity in presentation are outlined below for H = 2. 

1) Starting point: 
The S2 search commences at an arbitrary 2-tuple of support points 

t0 = ( r1 , r2 ) ; r1 ≥ 0,  r2  0 ; r1 + r2 = N 

2) Direction of search: 
The search moves in the direction of increasing values of determinant, d2k, as in equation 4.2. The 

direction is determined after examining all the available designs at the preceding step. It should be 

noted that although a 100% search is required at each step, by the application of Theorem 2 and 

the properties of the search, the number of determinant evaluations at each step reduces to no more 
than a2k. 

3) Step length: 
The search moves one step at a time in both the increasing and the decreasing values of    ( r1, r2 ). 

That is, at step k, we have the tuple, 

tk = ( r1 + k , r2 - k ) or tk = ( r1 - k , r2 + k ) ; k = 0, 1, … 

4) Stopping point: 
The search terminates at k = q+1, as in equation 4.2. 

5) The set of steps given by 

{ tk } = { (r1  k,  r2  k) }  
defines a path or direction of search that is in accordance with property 2 above. The set is 

completely exhaustive of all possible paths. In other words, for any other starting point, say,  

),( *

2

*

1 sst  ; 
*

2

*

1 , ss   0 ; 
*

2

*

1 ss  = N 

where 

*

1s  = s1  k ; s1  r1   

*

2s  = s2  k ; s2  r2, 

the path defined by { tk } and { t } will coincide somewhere along the search. The proof of property 5 is 
simple since any of the components in tk = (r1, r2) takes any integer value from 0 to N and each number pair 

is such that the components sum upto N. It is obvious that the combinations exhaust all pairs whose 

components sum upto N. Consequently, { tk } is exhaustive of all possible paths. 

We show in Theorem 1 that d
c
 is the global D-optimum. It is sufficient to establish this for H=2.  

 

Theorem 1 

Let 
*d = det M(

*

N ) = 
Xx
~

max


 {det M(N)}    M(N)  
pxpS  

be the global value of determinant of all pxp information matrices for all non-singular designs. Then det 

M(
c

N ) =  det M(
*

N ),  

where  

det M( c

N ) =  
k

max {det M(k)} ; k = 0, 1, …, m, m+1, m+2, …, q, q+1, 
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       =  
cd  

Proof (By Contradiction) 

Suppose { tk } converges to the value 
cd   

*d , let it be possible to start a fresh sequence at another point, 

say,  ),( *

2

*

1 sst  ; 
*

2

*

1 , ss   0 ; 
*

2

*

1 ss  = N 

which converges to the value 
gd  such that 

gd  = 
*d . Then with respect to property 5 of the S2 search, { t 

} must coincide with { tk } somewhere along the search. Then 
cd  = 

*d  and c

N , the corresponding design 

measure, is the D-optimal exact design. Q.E.D. 

 

5.   Numerical Illustrations 
We present some illustrations to demonstrate the working of the algorithm developed in section 4. The 

demonstrations are based on first and second order models. The essence of demonstrating with first order 

models is to show that this new approach performs credibly well even for first order models, and then 
extend it to second order models. However, this does not preclude the working of the algorithm for higher 

order models. 

 Illustration 1 

Given a first order model, 

f(x1, x2) = a0 + a1x1 + a2x2 + a12x1x2 + ,             

defined on a regular geometric area having a finite number of support points as in figure I, we seek to 

construct an N-point D-optimal exact design measure, 
*

N  ; N = p, p+1, …, 2p 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  A regular geometric experimental region at specified values. 

By arranging the support points as described in 4, we form the following groups 
 

 -1  1      0  1 

g1  =   1  1 ; g2  =  -1  0  ; g3  = (0  0) . 
   1 -1      0 -1  

  -1 -1      1  0  

 
The problem of constructing D-optimal designs for the model is greatly simplified by the fact that to 

achieve D-optimality, each xi must be a vertex point. A proof of this has been given by Box and Draper 

(1971) for the case when N=p (i.e., when the design size is the same as the number of parameters in the 
model) and also by Mitchell (1974) for the case when N>p. Since the D-optimal design must consist 

entirely of corner points (vertex points) we restrict ourselves to the vertex points. In this example the 

  (-1,1) (0,1) (1,1) 

(1,0) (0,0) 
(-1,0) 

(-1,-1) (0,-1) (1,-1) 
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vertex points refer to supports points in ball g1. The design points of the D-optimal measure, 
*

N ; N = 4, 5, 

6, 7, 8, are summarized in Table 2 below. 

 

Table 2:  Design Points for D-optimal Exact Design for a first order model defined on Figure 1 

 

Design 

Size, N 

Ball combination Design Points Determinant 

Value g1 g2 g3 

4 4 0 0 -11, 11, 1-1, -1-1 1.0000 

5 5 0 0 -11, 11, 1-1, -1-1, 11 0.8192 

6 6 0 0 -11, 11, 1-1, -1-1, 11, -1-1 0.7901 

7 7 0 0 -11, 11, 1-1, -1-1, 11, -1-1, 1-1 0.8530 

8 8 0 0 -11, 11, 1-1, -1-1,11,-1-1,1-1,-11 1.0000 

 

These results indicate that for first order models defined on a space of trials as in Figure 1, and for 

a given N-point D-optimal exact design measure, 
*

N , the N+1 point D-optimal exact design measure, 


*

N+1, is obtained by adding a vertex point (in accordance with the rules for maximizing information 

matrix) to 
*

N . 

 

Illustration 2 
Given the first order model, defined on an irregular space of trials as in Figure 2 below, we seek to 

construct N-point D-optimal exact design measure, 
*

N .  

 

 
 

 

   
 

 

 
 

 

 

 

 

 

Figure 2:  An irregular-shaped experimental region at distinct points 

 

By grouping the vertex points according to their distances from the center of X
~

, the following groups are 
formed; 
 

g1 = -1 -1 g2 = 0   2 g3  = -1    1 g4 = -½   1 

 1 -1     1    1  ½    1 
 

The operations that lead to a 4-point D-optimal design are as tabulated in Table 3 below. 

 
 

 

 
 

 

(0, 2) 

  (-½,1) (½,1) 
(1,1) 

(0,0) 
(1,0) 

(1,-1) (0-1)    (-1,-1) 

(-1, 0) 

(-1, 1) 
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Table 3  Combinatorics for obtaining a 4-point D-optimal exact Design on the Irregular Geometric 

area in Figure 2 
Step k  Ball combination Number of available 

designs, ak 

Best Determinant Value, dk 

g1 g2 g3 g4 

0 2 1 1 0 2 0.56 

1 2 2 0 0 1 SINGULAR 

2 2 0 2 0 1 1.0000 

3 2 0 1 1 2 0.5625 

4 3 0 1 0 4 SINGULAR 

5 4 0 0 0 1 SINGULAR 

6 1 1 2 0 2 0.0625 

7 1 0 3 0 4 SINGULAR 

8 1 0 2 1 2 4.0625 x 10
-16

 

 
 d

*
 = 1.0000 

The corresponding D-optimal exact design measure is 

 
 1   1 ¼  

 1  -1 ¼  
*

4 = -1  1 ¼  

 -1 -1 ¼  
 

The design points that make up the D-optimal N-point exact design measure  (N = 5, 6, 7, 8) are 

summarized in Table 4 below. 

 

Table 4:  Design points of D-optimal exact design for a first order model defined on figure 2 

 

Design 

size N  

Ball combination Design Points Determinant 

Value g1 g2 g3 g4 

5 2 1 2 0 -1-1, 1-1, 0 2, -1 1, 1 1 0.9216 

6 3 1 2 0 -1-1, -1-1, 1-1, 0 2, -1 1, 1 1 0.8765 

7 4 1 2 0 -1-1,-1-1,1-1, 1-1, 0 2, -1 1,1 1 0.9329 

8 4 0 4 0 -1-1,-1-1,1-1, 1-1,-1 1,-1 1, 1 1, 1 1 1.0000 

 

Illustration 3 
In this illustration, we demonstrate the effectiveness in the performance of the algorithm for constructing 

D-optimal exact designs in blocks of unequal sizes. For the purpose of illustration, we consider 

constructing a 7-point D-optimal design measure in two blocks of sizes k1 = 4 and k2 = 3, for the bivariate 
quadratic surface,  

f( 1x , 2x ) = 00a  + 10a 1x  + 20a 2x + 12a 1x 2x  + 11a 2

1x  + 22a 2

2x + , 

 defined on a regular and continuous experimental area such as in Figure 1 but with 25 grid points. The 

points are arranged in the following groups; 
 

 

 -1  -1  -½   1  0   -1  -½  ½  -½  0  
g1 =   1   -1 g2 = ½   1 g3  = 0    1 g4 = ½  ½ g5 = 0   ½ g6  =  (0  0) 

 -1    1  -½  -1  1    0  -½ -½  ½   0  

 1   1  ½  -1  -1   0  ½ - ½  0  -½  
   1   ½        

   1  -½        

   -1   ½        
   -1 -½        
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The sequential procedures for constructing the 7-point D-optimal design are laid out in Table 5 below. 
 

Table 5: Combinatorics for obtaining a 7-point D-optimal exact design in 2 blocks of sizes k1 = 4 and 

k2 = 3 
 

Step 
k 

Ball Combination 

g1     g2      g3         g4       g5          g6 

No of Available 

Designs ak 

Best Determinant Value dk 

0 4      0        3       0       0        0 4 1.5737 x 10-3 

1 4      1        2       0       0        0 48 3.8079 x 10-3 

2 4      0        2       1      0        0 24 2.9144 x 10-3 

3 4      0        2       0       1        0 24 4.9736 x 10-3 
4 4      0        2       0       0        1 6 4.9736 x 10-3 

5 4      1        1       0       1        0 128 4.2269 x 10-3 
6 4       0        1       1       1        0 64 1.1016 x 10-3 

7 4       0        1       0       2        0 24 5.3549 x 10-4 
8 4       0        1       0       1        0 16 1.8663 x 10-3 
9 4       1        1       0       0        1 32 7.7713 x 10-5 
10 4       0        1       1       0        1 16 1.2434 x 10-3 
11 4       0        1       0       1        1 16 1.2823 x 10-3 

12 4       0        1       0       0        2 4 1.2434 x 10-3 

13 5      0        2       0       0        0 24 1.2434 x 10-3 

14 5      0        1       0       1        0 64 1.2434 x 10-3 

15 5      0        1       0       0        1 16 1.2434 x 10-3 
16 6      0        1       0       0        0 24 SINGULAR 
17 6      0        0       0       1        0 24 SINGULAR 
18 6      0        0       0       0        1 6 SINGULAR 

19 3      1        3       0       0        0 128 1.0928 x 10-3 
20 3      0        4       0       0        0 4 1.2434 x 10-3 
21 3      0        3       1       0        0 64 9.5250 x 10-4 
22 3      0        3       0       1        0 64 1.4037 x 10-3 
23 3      0        3       0       0        1 16 1.2434 x 10-3 
24 3      1        2       0       1        0 768 1.7076 x 10-3 
25 3      0        2       1       1        0 384 1.7550 x 10-5 
26 3      0        2       0       2        0 144 7.5892 x 10-6 
27 3      0        2       0       1        1 96 5.9499 x 10-5 
28 3      1        2       0       0        1 192 1.0928 x 10-5 
29 3      0        2       1       0        1 96 4.9735 x 10-6 

30 3      0        2       0       0        2 24 SINGULAR 
31 2      2        2       0       1        0 4032 1.2568 x 10-4 
32 2      1       3       0       1        0 768 2.5183 x 10-5 
33 2      1       2       1       1        0 4608 2.0384 x 10-5 
34 2      1       2       0       2        0 1728 6.0452 x 10-4 
35 2      1       2       0       1        1 1152 2.6850 x 10-4 

 

 d
*
 = 4.9736 x 10

-3 

The corresponding D-optimal design measure is 

 

 1  1 -1 -1  
*

7 = -1  1 1 -1 or  

 0 -1  0  1  
 1  0   

 

 1  1 -1 -1  
*

7 = -1  1 1 -1 or  

 0 -1  0  1  

 ½  0   

 
 1  1 -1 -1  



  
                         Mary Iwundu et al: A HILL-CLIMBING: ALGORITHM FOR CONSTRUCTING 146 

-_________________________________________________________________________________ 

ξ7
* 
= -1  1 1 -1 . 

 0 -1  0  1  
 0  0   

 

7.   Conclusion 
This work has successfully produced a new approach known as the Hill-Climbing Combinatorial 

procedure, for constructing D-optimal exact designs. Results obtained show that the algorithm compares 

favourably well with known algorithms.  
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