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Abstract: A new type of a non-linear entangled pair coherent statetisdnced. Under a certain choice of the non-linear funstion
the solution of the recurrence relation is obtained. Phemam of squeezing and the Poissonian distribution are examlt is shown
that the eigenvalue of the photon number sum (Hparameter) is responsible for some of nonclassical phenom Furthermore, the
quasi-probability distribution functions (the Wigner aQefunctions) are discussed. For the Wigner function the lemsical behaviour
is only displayed for odd values of tlggparameter in a restricted subspace. Finally the phasibdisbn in the framework of Pegg and
Barnett formalism is considered.
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1 Introduction the above mentioned states are just few of many other
intermediate states. Besides these intermediate states
there exist other states termed as correlated stafgs [
For instance pair coherent stat€Cg) |{,q) represent an
important type of correlated two-mode states which

osses prominent nonclassical properties. These states
Egﬁtisfy the following eigenvalue relations

The number statén) represents the corner stone to deal
with any problem related to the fields of quantum
mechanics and quantum optidsZ]. In the meantime, the
appearance of the coherent state besides the thermal st
opened the door to discover other states which have
nonclassical propertie,[3,4,5,6]. In this sense one may 4,4,|(,q) =Z|{,q) and (L —f2)|{,9) =0|{,q),
mention the binomial state, the generalized geometric 1
state and the logarithmic state, e#%§,9,10,11]. In fact where a"‘(é;r) i = 1,2 are the annihilation (creation)
these states are intermediate states which interp0|at§perat0rs andy;i = 1,2 are the photon number operators
between either the number state and the coherent statsf the two field modes. The parametgis an integer and
[7], or between the number state and pure thermal statg may be a complex numbers. Also we may refer to
[9]. However, the logarithmic state can be viewed as ananother type of correlated two-mode states that is a
interpolation between the generalized Bose-Einsteinfinite-dimensional pair coherent state. In analogy to the
states and the coherent state. The above mentioned statggfinition of the pair-coherent state, the finite dimensiona

are generated from quantum systems which describ@CsSis defined as the eigenstate of the pair of operators:
kinds of interaction between an atom and a field. Fora{ At

~ ~ ~t\9 2 . .
example the binomial state can be generated from a1a2+(ala2) ¢H/(a!)7 j with eigenvaluer and the
system consisting of the linear combination between twosum of the photon number operators for the two modes
raising and lowering operators related to the angularf1+N2) with eigenvaluey. In terms of the number states
momentum operatorsLp,13,14]. While the generalized ©Of the two modes, thus state is given iy5[17]
geometric state can be generated from the Hamiltonian
which describes the interaction between multiphoton 7.6) =N i zn (q—n)! q—n.n) @)
processes in finite level atomic syste@i. [As one can see ’ qn; g'n! e
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where is a complex parameter arggis an integer and

Ng is the a normalization constant, for more details one ‘
may consult the above references. In fact the state in the
above equation has been introduced during the study of
the statistical properties of a two-photon cavity mode in
the presence of frequency converter.

As another example may be mentioned in this context,
the two mode nondegenerate entangled state. This state is
constructed from the eigenstate of the pair operators
(puéb+ va'o" — ,/mv(aa" + b'b)) and the difference of
the photon number operatoff; — fiy) for two modes !
[18]. 2, by

In this paper, we address the problem of constructing R e
and discussing some properties of a new correlated two ' P /
mode states. The results that we are going to present states Ty
that stem from an approach to a nonlinear PCS (NLPCS)

namely
Fig. 1. The coefficienim against the variablé and(.
(M3 (Ra) 1 (Ry) + v (P () aE"
—VAv(@" (f(fla+1)) 0% (1()2)|¢.{,0) = £]£.2.9),
(a'a—b')[&,¢,q) = ql¢.{,a),

( Poissonian distribution. This can be discussed when one

pses the usual definition for the quadrature variances as
well as the Glauber second order correlation function,
respectively. Therefore we devote this section to consider
these phenomena in some details. For this reason we
divide this section into two subsections and start with the
phenomenon of squeezing.

where( reflects the squeeze parameter which is a resul
of definingu = coslf ¢ andv = sini  and satisfying the
conditionu — v = 1, £ is a complex parameter of the state
while theq parameter is an integer number.

When we Choose the non-linear function to take the
form f(f) = i = a,bthe state is given by

\/77
EvZa = \/1_ m2 mﬂ +n,n), .
5.9 Im ,go & ) 2.1 The squeezing phenomenon
m = tanh{ | (1+ %) - \/(1+ %)2—4) It is well known that squeezing means reduction in the
sinhZ sinhZ noise of an optical signal below the vacuum limit. The

(see Appendix) phenomenon has wide applications in optical
Now in figure (1) we plotm againsté and which ~ communications networks and in the gravitational wave
shows that for small values gfthe curve increases slowly detection 19,20,21,22]. From mathematical point of
but then it shoots to become almost 1. By increadinge ~ view we can measure the squeezing if we calculate the
curve shoots faster to reach almost its maximum. Hermitian quadrature varianceX and Y. These
It is clear that wherg = O the state (4) becomes two quadrature operators satisfy the commutation relation

mode vacuum state and when m approach to one the staf¥,Y] = iC, whereC may be an operator oE-number
(4) become phase state. dependmg on which kind of squeezing we want to

Since we are concerned with some statisticaldiscuss. For the present state it is most likely to observe
properties of the stated), therefore we devote the next the phenomenon of the squeezing if we use the definition
section to consider some of the nonclassical properties?f the frequency sum squeezing. Therefore, to facilitate
Precisely we discuss the phenomenon of squeezing a@ur discussion we introduce the frequency sum squeezing
well as the correlation function. In Secti@we discuss quadratures defined by
the quasi-probability distribution functions, namely the . N N .
Wigner andQ-functions. Sectior is devoted to consider g _ b+ a'o' g_ 8- a'p' 5)
the phase properties which is followed by Sectibn o 2 ’ - 2i

where our conclusion is given. _ . _ .
which satisfy the commutation relation

2 Nonclassical properties

O>

[X¥] =
A traditional task for the nonclassical properties is to .
consider the phenomenon of the squeezing as well asthe C =

I\)ll—‘

(fa+fip+1) (6)
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thus leading to the uncertainty relation:

(7)

The variance is given in terms of annihilation and
creation operators expectation values by

(AX)?) = % %(2Re<ab2>+2<ﬁ1ﬁ2>+<ﬁa+ﬁb >)—(R(—:‘(<e‘15>))2

(A% = % %(2<nanb> —2Re < (820%) > + < fla+flp >) + (Im(< &b >))*
(8)

The model possesse¥-quadrature frequency sum

squeezing if th&s-factor defined by

(AY)?)—05<C >
05<C>

S(m) = (9)

has negative values.
In this case we note that frequency sum squeezin

persists for a considerable for different valuesflt
should be noted that the phenomenon of squeezing fo

this particular quadrature variances depends only on the

value ofq.

Coeo e e b by

I

04 0.6 08
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Fig. 2. The phenomenon of squeezing for the first quadrature Y
and different values af where the solid curve fay= 1, the dash
curve forq =5 and the dot curve fa= 10

To illustrate our discussion we have plotted figures (2)
for = 1,5 and 10. Fig. (2) display the squeezing in the
quadratures,(m), where no squeezing can be seen in the
region close tan ~ 0, however the amount of squeezing
starts to occur when the variabiedevelops. However, it

2.2 The correlation function

We devote the present section to consider an example of
the nonclassical effects that is the phenomenon of
sub-Poissonian distribution. This phenomenon can be
measured by photon detectors based on photoelectric
effect. The importance of the study comes up as a result
of several applications, e.g. quantum nondemolition
measurement, which can be generated in semiconductor
lasers [19] and in the microwave region using masers
operating in the microscopic regim2g. It is well known

that, sub-Poissonian statistics is characterized by ttte fa
that the variance of the photon numkéAf; (t))?) is less
than the average photon numb@T(t)a(t)> = (fi(t)).

This can be expressed by means of the normalized
second-order correlation functio24] as follows.

<EaZaq|ﬁZ(ﬁZ_ 1)'57Z7q> V
<EaZaq|ﬁZ|5367q>2 ’

(2

g7 (m) =

z=ab (10)

gzlvhere

q(q—1)(1—n?)2 4 2qm?(1—n?) +2m4

[€.¢.alfa(fa—1)|§.4,q) =

(1-mP)2
(&.¢,dMal€,¢,0) = q—1+ m—— i mz) 11
and
R 2m’
<EaZaq|nb(nb_1)|E757q> = (1_”‘2)2
R 113
(§,4,dfp|€,¢,0) = D (12)

05

00 02 04 0.6

Fig. 3: The correlation functiorg(f)(Z) against the parameter

and for the first mode whemg= 1 for (solid curve),q = 2 for (
dot curve) andj = 10 for (dash curve).

is observed that frequency sum squeezing is absent in the

quadratureS,(m). In general for large values of the
parameter, the amount of squeezing in the quadratur
S (m) increases as observed in Fig. (2).

e The functlongZ (m) given by (0) for the modez
serves as a measure of the deviation from the Poissonian
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distribution that corresponds to coherent states with With  the  s-parameterized  quasi-probability
gf)(m) — 1 g&z)(m) < 1(> 1), the distribution is called gistribution functions (QDF) for the two-mode case given
sub (super)-Poissonian,gﬁz)(m) = 2 the distribution is y
called thermal and wherg&z)(m) > 2 it is called  F(B.B.9) = ()2 [C(ALA2,9) expA; B+ A B — Aui — AoBs)d?A1 %A,
super-thermal. (14)

Before we go further let us point out that, in our We consider a phase space QDF for our states. To
examination for the case in whiah= 0, we find the two  begin the state4) will be written in the form
mode having the same behaviour, the correlation function "
g(zz)(m) represents thermal state as expected from 1E,2,9) = Z Bn(Z,&)|g+n,n), (15)
equation 12). It is to be observed that the sta#® for n=0
the first mode and for different values of the parameter
q=1,2,10, starts full sub-Poisson distribution for large Where
region consideration and the distribution increases Bn({,&) =4/1—|m2.n" (16)
gradually when the variablen develops and reach to . . -
Poissonian and super-Poissonian distribution see Fig. (3) At |slsclea:jthat, Qe Erobab[lltyhof gjnd'ng‘L.q prr:otons
Also we find that the function starts at® and & ~ nthe T mode, atl)n photons in the 2 mode in the state
respectively. This is because it looks as that we have théE,Z,q> IS given by
Fock state|é,,q) = |q,0) present in this case when

£:¢:@ = 10,0) presen P(n+0,n) = [Ba({, 1,) 2. (17)

m— 0 sogy’(m) = “g-as shown in 16]. We note that
the same behaviour can be seen on increasing thén what follows we consider the Wigner, and the
parametery, however there is one main difference. The Q-function and for this reason we have to evaluate the
difference is that the maximum values of the correlationintegral in equation ¥4) for s =0 and s = —1,
function on the start depends on the paramgteso for ~ respectively. This can be achieved if one manages to
large values ofq the function gga(m) starts almost Calculate the characteristic function. From equatid4) (
Poissonian. For a large value oh, the distribution @nd after minor algebra we have
reaches the thermal distribution as we get the limit

2 . . .
5" (m) = 2 as depicted in Fig. (3) fon > 1, Ol Ae,9) = exp{~ 252 (Mal+ 4] 55-0[Bn(C. ) PLsal Al Lol

18)
3 Quasiprobability distribution

F(B1.Bo.S) = (g ) expl 2B 5 57050 4 Ba(Z.E)P (") ()

It is well known that there are three quasiprobability () L BB L]

distribution functions:P-representation\v-Wigner, and (19)
Q-function [25]. These functions are regarded as  whereL(x) are the associated Laguerre polynomials
important tools to provide insight into the nonclassical given by

features of the radiation fields. In the meantime they have

advantages and disadvantages connected with their use. ae _ w (MHa\ (=1,
As a marked disadvantage the-function (which Ln(x) = ZO ner) 1 % (20)
describes a quantum state in terms of the probability that =

the system is in a given coherent state) is highly singular

or negative for quantum states with no classical ~Having obtained the parameterized characteristic
analogues. While the Wigner function may becomefunction, we are therefore in a position to discuss the
negative for some quantum states, but it has thergner,'andQ-functlon. This will be exhibited in the next
considerable advantage for squeezed states that igubsections

contour map out the variances in the field quadratures.

The Q-function is a positive-definite quasiprobability

distribution, but its simple relation to anti-normal opra 3.1 The Wigner function

products makes it difficult to interpret in terms of

conventional photon counting or squeezing measurement$o obtain the Wigner functiow (a,3) we inserts=0in
[26,27]. The s-parameterized characteristic function (CF) equation {9) we obtain

for the two-mode states is defined as follows

. W(BL,B2) = 2 expi—2(Ba+ B 5503 8 5o Ba(Z. €) (%) (§)
C(A1,A2,9) = Tr[pD(A1)D(A2)] eXp{§(|A1|2+ 122191, X (—2)1KL[2]B1[2] L2 B2
(13) (21)

(@© 2015 NSP
Natural Sciences Publishing Cor.



Quant. Inf. Rev3, No. 1, 9-15 (2015) ywww.naturalspublishing.com/Journals.asp %NSP} 13

a b 3.2 The Q-function
" Now if we sets= —1 in equation {9), then theQ-function
EeECCN !
Se=es has the form
!

QB Bo) = (7)7 exsi— (1B + B2l 2703120 Tho Bl €)P ("1 (1)
X (=)L (B Lo )
(22)

1006
1004 0020
o 001t

Fig. 4 The Wigner function against Rej and Im(x) for fixed
values ofm=0.5. (a)gq=0, (b)-q=1, (c)g=2, (d)g=5

In order to visualize the behaviour of this function we
choose a subspace in whigh= ; = a say. In figure (4)
we have plotted the Wigner function agairfRe(a) and
Im(a) for fixed values ofm = 0.5. In the meantime we
examined the function for the cases in whigh= 0,1,2
and 5. When we consider the case in whigh- 0, the  gjg 5: TheQ- function againsRe(a) andim(a) for fixed values
function displays Gaussian shape with a symmetricalyt m— 05, (a)q=0, (b)-q=1, (c)q=3, (d)q=5
behaviour around the origin. In this case one can see a
sharp peak centered at the middle of the bases, see
Fig.(4a). As soon as we consider the value of the wherep,; € C, with |B1) and|B;) being the usual
g-parameter and takg= 1, the peak of the function gets coherent states. Since we have four variables associated
upside down and the nonclassical effect becomeswith the real and imaginary parts Bf and. Therefore,
pronounced. This is clear from Fig. (4b) where the we confine ourselves to a subspace determine@;by
negative values of the function are apparent. TheB2 = 3, [28]. In this subspace th@-function for the state

spreading of Wigner over the plane is shown @s (4) is expressed in the equivalent form
increases, this is seen for the case in whjeh2.

In this case the oscillatory behavior starts to appear 1 2
for large values of the-parameter. This indicates that the Q%Y) = Fexp[—Z(x +y?)]
function gets more sensitive to the variation in the "
g-parameter and this of course reflects the change from % Z Bn(Z, &)
Gaussian to non-Gaussian states; see Fig. (4c)q Fob S M5 (g+n)n!
the function displays the same shape, however, it changes
its direction downward and exhibits negative values, seevheref3 = x+iy.
Fig.(4d). This indicates that the nonclassical behaviour Since the maximization or minimization of the
appears only for the odd numbers of theparameter Q-function depends on the parametgrTherefore, our
while it disappears for even numbers. This means that thenain task is to examine the behaviour of @dunction
g-parameter plays a role of changing the nonclassicablue to the variation in thg-parameter. For this reason we
behaviour. plot Q(a) in figure (5) for different values of the

B2n+q 7 (23)
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g-parameter keeping all other parameters unchanged as
for the Wigner function case. For fixad = 0.5 and for
instance when we consider= 0, the function exhibits
Gaussian shape but with squeezing apparent on the
contours of the base where it is elliptically shaped, see
Fig.(5a). Forqg = 1, we note that the peak splits into two
peaks but they are joined near of the base, see Fig.(5b). 6087
More increase in the value gfleads to a split of the two S
peaks and a spread out of the bases. Each base has a
crescent like shape as shown clear for the cases in which
g= 3,5, see Fig.(4c,d). It is also noted that there is a very
slight difference between the heights of the peaks. This
means that there is a slight asymmetry in the function
shape which reflects the effect of the squeezing.

0.141

otof

L
06 v
) .

4 Phase properties
Fig. 6: The phase distributioR(0) againsto for fixedq= 3 and
We devote this section to discuss the phase distributionthe solid curve fom= 0.3, the dash curve fan= 0.5 and the
for the present state. For this reason it is convenient to usgot form=0.7.
the phase distribution formalism introduced by Barnett
and Pegg29,30. It is well known that the phase operator
is defined as the projection operator on a particular phase
state multiplied by the corresponding value of the phasethan that the case in whigh = 0.3. In the meantime, the
Therefore, for the present state one can cast thdunction P(8) for a large value of them-parameter the
Pegg-Barnett phases distribution functief®;, 8,) inthe  function P(6) increases its maximum as observed in
following form: Fig.(6). Itis to be noted that as — 1, the coherent phase
state is realized and we get a delta function distribution.

P(61,62) = 472 Sm-0Bn(,&)Bin({, &) exp{i(n—m) (62 + 61)} .
(24)
In other word the phase distribution function can be
rewritten in the form

5 Conclusion

In the present paper we have introduced a new nonlinear
entangled pair coherent state under a particular choice of

1-m2) | = 2 the nonlinearity functions the resulting recurrence refat
p(e):(_iz) ZB(n)exp[inG] , —n<6<m is solved and a feasible state is considered. For a
am n=0 particular definition of the quadrature variances, the

(25) phenomenon of squeezing is observed where the amount

where 6 = 6, + 6; and the function is normalized of the squeezing depends on the values ofrthand g
according tof™, [ P(61,6,)d6:d6, = 1. As a result of parameters. In the meantime we have employed the
the correlation between the two modes we find that, theGlauber second order-correlation function to examine the
phase distribution will depend on the sum of the phases ohonclassical properties of the state. We have shown that
the two modes. In this context we have plotted in figuresthe nonclassical as well as the classical behaviour are
(6) the functionP; ,(6) against the anglé = 6, + 6, for apparent in both modes for different values of
a fixed value ofq = 3 but for different values of the However, the nonclassical effect is more pronounced in
parametem. the first mode while the classical behaviour is pronounced

Here, we restrict our discussion to the cases in whichin the first mode. We have also considered the
g= 3 andm = 0.3,0.5 and 07 where partial coherent quasiprobability distribution functions (the Wigner and
phase states result and the phase distribution show®-functions) where observation of nonclassical properties
one-peak structure. This peak is centere@ at 0 with a  is reported for the odd values of tlyggparameter. In the
symmetrical distribution around the central peak. Formeantime theQ-function displays Gaussian behaviour
m = 0.3, it is observed that the functioR(0) starts at and tends split up into two shapes@screases. Finally
P(—m) = 0.02 form= 0.3, 0.015 form= 0.5 and 005  we have examined the properties of the present state in
for m= 0.7, respectively, see Fig.(6). It is also noted thatterms of the phase distribution function introduced by
the value of the distribution function &t= 0 for the case Barnett and Pegg. In this case the function shown a
in whichm= 0.3, is smaller than that the casermof=0.7. symmetry peak around zero whatever the value ofnthe
As one can see the range of the peak in this case is wideandq parameters. However, as theparameter increases
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the maximum value of the function increases but without
breaking the symmetry.

Appendix:

Here we shall briefly derive the state given by equation
(4). To do so we use the equatias) (

&18 = (Habf (Ma) f (o) + v (Ra) f(Ro)aD" — V(84T (f(Ra+1))2+B'D ((f))2),

(26)
whereu = coslf ¢ andv = sint? {. Since the operatoab”
anda’a+ bb' commute, therefore we can introduce a new
state|@) which is simultaneously an eigenstates for both
operators. In this case we have

so that

¢lo).

(27)

Therefore we use equation26] and @7) then the

recurrence relation among the coefficieBtsis obtained
in the form

q
@) =3 Glg+n,n), aldy|@) =
n=0

p+/(n+1)( q+n+1)f(n+1) (q+n+1)Chs1

+v/n(q+n)f(n)f(g+n)Cy_1
—./uv((q+n+1)f2(q+n+1)+nf2( n))Ch = &Cn.
(28)
Choosing f(f) = L and using equations26) and

NG
(27), one can write the recurrence relation in the form

HChi1+VCho1—2,/uvCy = ECy

By using the transformation

v
:(H

(29)

Ch=(—)2S

The recurrence relation becomes
S1+S-1-BS%=0

ﬁ, now we introduce the solution on

S =Kk" andlk <1 (30)

from which the characteristic equation &f9j takes the
form,

Where =2+ —~—
the form

— Bk+1=0, (31)

as one can see the solution of equatid) (under the
condition|k| < 1is

B B
k== —4/(£)2-1
2 ( 2)
Whence we can write the new state in the form
o) =19,¢,¢)

(32)

£.2.6) = /1 |m? i}m“|q+mn>

wherem = ktanh(.
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