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Abstract: Gravitational search algorithm (GSA) is a recent population based metaheuristics algorithm. It has a good ability to perform
a wide exploration and a deep exploitation, however it becomes inactive when the premature convergence happens and loses its ability
to explore new solutions in the search space. In order to avoid this problem, we propose in this paper a new hybrid gravitational search
algorithm with a Lévy flight operator. The proposed algorithm is called Hybrid Gravitational Search with Lévy Flight (HGSLF). When
the distance between two masses become very close and both ofthem are not a best solution in the population, the Lévy flight operator
is applied on one of them to increase the diversity of the algorithm and avoid trapping in local minima. The general performance
of the proposed HGSLF algorithm is tested on 13 unconstrained (7 uni-model problems and 6 multi-model problems), 8 constrained
optimization problems and compared against 8 different algorithms. The numerical results show that the proposed HGSLFalgorithm
can solve unconstrained, constrained optimization problems in reasonable time and faster than standard GSA and other comparative
algorithms.

Keywords: Gravitational search algorithm, Lévy flight, unconstrained optimization problems, constrained optimization problems,
numerical function optimization

1 Introduction

Gravitational search algorithm (GSA) is a nature inspired
algorithm which is based on the law of gravity and mass
interactions [1]. GSA was proposed by Rashedi et al. [1]
in order to solve global optimization problems. GSA is a
population based metaheuristics algorithm, the solution in
the population is called agent or searcher agent which
interact with each other through the gravity force [1]. The
performance of each agent (solution) in the population is
measured by their masses.

Although GSA and other metaheuristics algorithms
such as Ant Colony Optimization (ACO) [2], Particle
Swarm Optimization (PSO) [3], Artificial Bee Colony [4],
Firefly algorithm [5], Bacterial foraging [6], Bat
algorithm [7], Wolf search [8], Bee Colony Optimization
(BCO) [9], Cat swarm [10], Fish swarm/school [11], etc,
have been applied to solve global optimization problems,
they suffer from slow convergence. Due to the powerful
performance of the GSA and its ability to balance
between exploration and exploitation, many researchers
have applied it in their works such as Yazdani et al. [12]
proposed Niche GSA (NGSA) algorithm to find multiple

solutions in multimodal problems. In NGSA, the main
swarm of masses is divided into smaller sub-swarms and
three strategies (K-nearest neighbors (K-NN), an elitism
strategy and modification of active gravitational mass
formulation) are applied to preserve sub-swarms.
Doraghinejad et al [13] improved the performance of the
standard GSA to solve unimodel optimization problems
by inserting a black hole operator in GSA and assuming
some of the heavy objects are stars in a gravitational
system. In Soleimanpour et al. work [14], the state of a
mass is presented by wave function instead of position
and velocity to find the optimum result for unimodel and
multimodel functions. Zhang et al. [15] improved the
convergence speed and antibody diversity to raise
diversity of agent to avoid falling into local optimum
solution. Wang and Li [16] improved the performance of
the standard gravitational search algorithm by introducing
three boundary conditions for solving unconstrained
optimization. Sombra et al [17] applied change in alpha
parameter throughout the iterations to achieve better
convergence than the standard GSA. Hatamloue et al.
[18] incorporated a k-mean algorithm in generating the
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initial population for GSA to increase the convergence
speed of the GSA algorithm.

The aim of this paper is to propose a new hybrid
gravitational search algorithm with Lévy flight operator to
increase the exploration ability of the standard
gravitational search algorithm and avoid the premature
convergence and the stagnation in order to solve global
optimization problems. The proposed algorithm is called
Hybrid Gravitational Search with Lévy Flight (HGSLF).
The Lévy flight is applied when the distance between two
masses become very close and non of them is a best
solution in the population. Invoking the Lévy flight
operator can accelerate the search and increase the
diversity of the algorithm and avoid trapping in local
minima.

The rest of the paper is organized as follow. The
definition of the unconstrained and constrained
optimization problems is presented in Section2, In
Section3, we describe in details the standard gravitational
search algorithm. The proposed HGSLF algorithm is
presented in details in Section4, In Section 5, we
reported the experimental results and finally, the
conclusion makes up Section6.

2 Definition of the problems

In this section and its subsections, we present the
definitions of the unconstrained and constrained
optimizations problems as follow.

2.1 Unconstrained optimization problems

Mathematically, the optimization is the minimization or
maximization of a function of one or more variables
subject to constrains on its variables. By using the
following Equation:

min
l≤x≤u

f (x) (1)

–x = (x1,x2, ...,xn) - a vector ofvariablesor function
parameters;

–f - the objective functionthat is to be minimized or
maximized; a function ofx;

–l = (l1, l2, ..., ln) andu= (u1,u2, ...,un) - thelower and
upper boundsof the definition domain forx;

–c - a set of functions ofx that represent theconstraints;

2.2 Constrained optimization problems

The constrained optimization problems and constraint
handling is one of the most challenging in many
applications. A general form of a constrained
optimization is defined as follows:

Minimize f (x), x= (x1,x2, · · · ,xn)
T , (2)

Subject to

gi(x)≤ 0, i = 1, · · · ,m
h j(x) = 0, j = 1, · · · , l
xl ≤ xi ≤ xu

Where f (x) is the objective function,x is the vector ofn
variables,gi(x) ≤ 0 are inequality constraints,h j(x) = 0
are equality constraints,xl ,xu are variables bounds. There
are differen techniques to handel constraints in many
optimization algorithms, these techniques are classified
by Michalewicz [19] as follows:

–Penalty function technique.
–Rejection of infeasible solutions technique.
–Repair algorithms technique.
–Specialized operators technique.
–Behavior memory technique.

In this paper, we used the penalty function technique to
solve constrained optimization problems.

3 Overview of gravitational search algorithm

In the following steps, we will give an overview of the
main concepts and structure of the gravitational search
algorithm as follow.

–Main concepts
Gravitational search algorithm (GSA) is a population
search algorithm proposed by Rashedi et al. in 2009
[1]. The GSA is based on the low of gravity and mass
interactions. The solutions in the GSA population are
called agents, these agents interact with each other
through the gravity force. The performance of each
agent in the population is measured by its mass. Each
agent is considered as object and all objects move
towards other objects with heavier mass due to the
gravity force. This step represents a global
movements (exploration step) of the object, while the
agent with a heavy mass moves slowly, which
represents the exploitation step of the algorithm. The
best solution is the solution with the heavier mass.

–Gravitational constant G
The gravitational constantG at iterationt is computed
as follows.

G(t) = G0e−αt/T (3)

WhereG0 andα are initialized in the beginning of the
search, and their values will be reduced during the
search.T is the total number of iterations.

–The gravity low
The objects masses are obeying the low of gravity as
shown in Equation4 and the low of motion as shown
in Equation5

F = G
M1M2

R2 (4)
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Equation 4 represents the Newton law of gravity,
whereF is a magnitude of the gravitational force,G is
gravitational constant,M1 is the mass of the first
object,M2 is the mass of the second object andR is
the distance between the two objectsM1, M2.
According to the Newton’s second low, when a force
F is applied to an object, the object moves with
accelerationa depending on the applied force and the
object massM as shown in Equation5.

a=
F
M

(5)

–Acceleration of agents
There are three kind of masses, active gravitational
massMa, passive gravitational massMp and inertial
massMi . The gravitational forceFi j that acts on mass
i by massj is defined by:

Fi j = G
Ma j ×Mpi

R2 (6)

WhereMa j, Mpi are the active and passive masses of
objects j, i, respectively. The acceleration of object
(agent)i is computed as follows.

ai =
Fi j

Mii
(7)

WhereMii is inertia mass of agenti.
–Agent velocity and positionsDuring the search, the
agents update their velocities and positions as shown
in Equations8, 9, respectively.

Vi(t +1) = randi ×Vi(t)+ai(t). (8)

Xi(t +1) = randi ×Vi(t)+ai(t). (9)

3.1 Gravitational search algorithm

In this subsection, we present the main structure of the
standard gravitational search algorithm as shown in
Algorithm 1.

The main steps of the GSA can be summarized as
follows.

–Step 1. The algorithm starts by setting the initial
values of gravitational constantG0, α, ε and the
iteration countert.

–Step 2.The initial population is generated randomly
and consists ofN agents, the position of each agent is
defined by:

Xi(t) = (x1
i (t),x

2
i (t), . . . ,x

d
i (t), . . . ,x

n
i (t)), i = 1,2, . . . ,N,

Wherexd
i presents the position of the agenti in thedth

dimension.
–Step 3. The following steps are repeated until
termination criteria satisfied

–Step 3.1.All agents in the population are evaluated and
the best, worst agents are assigned.

Algorithm 1 The standard gravitational search algorithm
1: Set the initial values of gravitational constantG0, α andε.
2: Set the initial iterationt = 0.
3: for i = 1;i ≤ N do
4: Generate an initial populationXi(t) randomly, where

Xi(t) = (x1
i (t),x

2
i (t), . . . ,x

d
i (t), . . . ,x

n
i (t)).

5: end for
6: repeat
7: Evaluate the fitness functionf (Xi(t)) for each agent in the

populationX(t).
8: Assign the best, worst agent in the populationX(t).
9: Update the gravitational constantG as shown in Equation

3.
10: for i = 1;i ≤ N do
11: for j = i+1; j < N do
12: Calculate the force acting on agenti from agentj as

shown in Equation10.
13: Calculate the total force that act on agenti, as shown

in Equation11.
14: Calculate inertial massMi as shown in Equations12,

13 .
15: Calculate the acceleration of the agenti as shown in

Equation14
16: Update the velocity of agenti as shown in Equation

8.
17: Update the position of agenti as shown in Equation

9.
18: end for
19: end for
20: Sett = t +1.
21: until Termination criteria satisfied
22: Return the best solution

–Step 3.2.The gravitational constant is updated as
shown in Equation3

–Step 3.3.When agentj acts on agenti with force, at a
specific time (t) the force is calculated as following:

Fd
i j (t) = G(t)

Mpi(t)×Ma j(t)

Ri j (t)+ ε
(xd

j (t)− xd
i (t)) (10)

WhereMa j is the active gravitational mass of agentj,
Mpi is the passive gravitational mass of agenti, G(t) is
gravitational constant at timet

–Step 3.4.At iterationt, calculate the total force acting
on agenti as following:

Fd
i (t) = ∑

j∈Kbest, j 6=i

randjF
d
i j (t) (11)

Where Kbest is the set of firstK agents with the best
fitness value and biggest mass

–Step 3.5.Calculate the inertial mass as following:

mi(t) =
f it i −worst(t)

best(t)−worst(t)
(12)

Mi(t) =
mi(t)

∑N
j=1mj(t)

(13)
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–Step 3.6.The acceleration of agenti is calculated as
following:

ai(t) =
Fi(t)
Mii (t)

. (14)

–Step 3.7.The velocity and the position of agenti are
computed as shown in Equations8, 9

–Step 3.8. The iteration counter is increased until
termination criteria satisfied

–Step 4.The best optimal solution is produced.

3.2 Ĺevy flights

Recent studies show that the behavior of many animals
when searching for foods have the typical characteristics
of Levy Flights. [20], [23], [22] and [21]. Lévy flight [20]
is a random walk in which the step-lengths are distributed
according to a heavy-tailed probability distribution. After
a large number of steps, the distance from the origin of
the random walk tends to a stable distribution.

A new solution is generated randomly using a L ´evy
flight as follow.

xt+1
i = xt

i +α ⊕Lévy(λ ), (15)

Where⊕ denotes entry-wise multiplication,α is the
step size, and Lévy (λ ) is the Lévy distribution.

4 The proposed HGSLF algorithm

The main steps of the proposed HGSLF algorithm are
presented in Algorithm2. The HGSLF algorithm uses the
Lévy flight operator when the distance between two
neighboring solutions are too close to each other and both
of them are not the best global solution. We can
summarize the main steps of the proposed algorithm as
follow.

–Step 1.The proposed algorithm applies the standard
GSA algorithmline (1-19)

–Step 2.If the Euclidian distanceR between solutioni
and solution j is less thanξ , where ξ is a small
constant,i 6= j 6= g∗, g∗ is the global best solution,
then the Lévy flight operator is applied in one of them
in order to increase the exploration process in the
search space and avoid trapping in local minima.line
(20-23)

–Step 3. The overall processes are repeated till
termination criteria satisfied and the best obtained
solution is producedline (24-26)

5 Numerical experiments

In this section, we investigate the general performance of
the proposed HGSLF by testing it on 13 unconstrained

Algorithm 2 The proposed HGSLF algorithm
1: Set the initial values of gravitational constantG0, α andξ .
2: Set the initial iterationt = 0.
3: for i = 1;i ≤ N do
4: Generate an initial populationXi(t) randomly, where

Xi(t) = (x1
i (t),x

2
i (t), . . . ,x

d
i (t), . . . ,x

n
i (t)).

5: end for
6: repeat
7: Evaluate the fitness functionf (Xi(t)) for each agent in the

populationX(t).
8: Assign the best, worst agent in the populationX(t).
9: Update the gravitational constantG as shown in Equation

3.
10: for i = 1;i ≤ N do
11: for j = i+1; j < N do
12: Calculate the force acting on agenti from agentj as

shown in Equation10.
13: Calculate the total force that act on agenti, as shown

in Equation11.
14: Calculate inertial massMi as shown in Equations12,

13 .
15: Calculate the acceleration of the agenti as shown in

Equation14
16: Update the velocity of agenti as shown in Equation

8.
17: Update the position of agenti as shown in Equation

9.
18: Calculate the Euclidean distanceRi j between agent

i and agentj
19: if Ri j < ξ then
20: Update the position of agenti using Lévy flight

operator as shown in Equation15.
21: end if
22: end for
23: end for
24: Sett = t +1.
25: until Termination criteria satisfied
26: Return the best solution

and 8 constrained optimization problems and comparing
it against variant algorithms. HGSLF was programmed in
MATLAB, the results of the comparative algorithms are
taken from their original papers. In the following
subsections, the parameter setting of the proposed
algorithm with more details and the properties of the
applied test functions have been reported as follow. The
parameters of the HGSLF algorithm are reported with
their assigned values as shown in Table1. These values

Table 1: Parameter setting.
Parameters Definitions Values
N Population Size 50
G0 Gravitational constant 100
α Gravitational constant 20
ξ Threshold constant 10−3

Maxitr Maximum number of iterations 1000
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are based on the common setting in the literature of
determined through our preliminary numerical
experiments.

–Population size N. The population size is set to
N = 50, increasing this number will increase the
evaluation function values without any improvement
in the obtained results.

–Standard gravitational search algorithm
parameters G0, α. In the proposed algorithm, we
have applied the same standard gravitational search
algorithm parameters with their values, which are
reported in [1] where the gravitational constant
G0 = 100 andα = 20.

–Threshold constantξ The experimental tests show
that the best threshold constantξ value is set to 10−3.

–Maximum number of iterations Maxitr In order to
make a fair comparison between the proposed
algorithm and the other algorithms, We have applied
the same termination criterion which is the maximum
number of iterations is set to 1000.

5.1 Unconstrained test problems

The proposed algorithm is tested on 13 unconstrained
optimization functions (7 unimodel functions, 6
multimodel functions), which are listed in Tables2, 3,
respectively.

5.2 The efficiency of the proposed HGSLF
algorithm with unconstrained problems

In order to investigate the idea of combining the Lévy
flight operator in the proposed algorithm with the
standard gravitational search algorithm, we present the
general performance of the proposed algorithm and the
general performance of the standard gravitational search
algorithm by plotting the number of iterations (function
evaluations) versus the function values (mean errors) for
FunctionsF7, F8, F9 andF10 as shown in Figure1. In
Figure 1, the solid line represents the standard
gravitational search algorithm (SGSA) results, while the
dotted line represents the proposed HGSLF algorithm
results. Figure1 show that, the function values of the
proposed algorithm are rapidly decreases faster than the
function values of the standard gravitational search
algorithm. We can conclude from Figure1, that the
combination of the Lévy flight operator with he standard
gravitational search algorithm can accelerate the search
and avoid stagnation and trapping in local minima.

5.3 The general performance of the HGSLF
algorithm with unconstrained problems

The general performance of the proposed HGSLF
algorithm is shown in Figure2, by plotting the function

values (mean errors) versus the number of iterations
(function evaluations) for functionsF1, F2, F3, F5, F6 and
F12 (piked randomly). Figure2 shows that the function
values are rapidly decreases while the number of
iterations are slightly increases (few number of
iterations).

5.4 HGSLF and other algorithms for
unconstrained optimization problems

The proposed HGSLF algorithm is compared against 3
algorithms in order to investigate its performance with
unconstrained optimization problems. These algorithms
are reported as follow.

–SGSA. SGSA is a standard gravitational search
algorithm [1]. The main parameters of SGSA is set as
follow. G0 is set to 100,α is set to 20

–PSO. PSO is a particle swarm optimization algorithm,
which is proposed by Kennedy and Eberhart in 1995
[3]. The parametersr1, r2 ∈ [0,1], c1 = c2 are positive
constants and equal to 2 and the inertia weightω is
decreasing linearly from 0.9 to 0.2.

–RGA. RGA is a real genetic algorithm, RGA uses a
roulette wheel selection and arithmetical crossover,
Gaussian mutation with crossover and mutation
probabilitiesPc, Pm equal to 0.3 and 0.1, respectively
as presented in [25].

5.4.1 Comparison between HGSLF and other algorithms
for unconstrained optimization problems.

The proposed HGSLF algorithm is applied on 13
unconstrained (7 uni-model and 6 multi-model)
optimization problems with 30 dimension and compared
against 3 algorithms. The average, median, best and
standard deviation (Std) are reported over 30 runs as
shown in Table4 for the uni-model problems and in Table
5 for the multi-model problems. In order to make a fair
comparison, the proposed algorithm applies the same
termination criterion in the other algorithms which is the
maximum number of iterationstmax is equal to 1000. In
Tables4, 5, the best results are reported inbold text. The
results in Tables4, 5 show that the proposed HGSLF
algorithm is better than the other algorithms in most
cases.

5.5 Constrained optimization problems

The second investigation of the proposed HGSLF
algorithm is to test it on 8 constrained optimization
problems and compare it against 6 algorithms. The tested
constrained functions are reported in Table6, while the
optimal value for each function in Table6 is reported in
Table7. The optimal values for functionsG1 andG3 are
not reported because they are unknown.
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Fig. 1: The efficiency of the proposed HGSLF algorithm with unconstrained problems
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Fig. 2: The general performance of the HGSLF algorithm with unconstrained problems
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Table 2: Unimodal test functions
Test function S fopt

F1(X) = ∑n
i=1 x2

i [−100,100]n 0

F2(X) = ∑n
i=1 | xi |+∏n

i=1 | xi | [10,10]n 0

F3(X) = ∑n
i=1

(

∑i
j=1 x j

)2
[−100,100]n 0

F4(X) = maxi | xi |, 1≤ i ≤ n [−100,100]n 0

F5(X) = ∑n−1
i=1 [100(xi+1−x2

i )
2+(xi −1)2] [−30,30]n 0

F6(X) = ∑n
i=1([xi +0.5])2 [−100,100]n 0

F7(X) = ∑n
i=1 ix4

i + random[0,1) [−1.28,1.28]n 0

Table 3: Multimodal test functions
Test function S fopt

F8(X) = ∑n
i=1−xisin(

√

| xi |) [−500,500]n −418.9829×n

F9(X) = ∑n
i=1[x

2
i −10cos(2πxi)+10] [−5.12,5.12]n 0

F10(X) =−20exp
(

−0.2
√

1
n ∑n

i=1 x2
i

)

−exp
( 1

n ∑n
i=1 cos(2πxi)

)

+20+e [−32,32]n 0

F11(X) = 1
4000∑n

i=1x2
i −∏n

i=1 cos
(

xi√
(i)

)

+1 [−600,600]n 0

F12(X) = π
n 10sin2(πy1)+∑m−1

i=1 (yi −1)2[1+10sin2(πyi+1)]+(yn−1)2 [−50,50]n 0
+∑m

i=1 u(xi ,10,100,4)

+yi = 1+ xi+1
4 ,u(xi ,a,k,m) =











k(xi −a)m xi > a

0 −a< xi < a

k(−xi −a)m xi <−a

F13(X) = {0.1sin2(3πx1)+∑n
i=1(xi −1)2[1+sin2(3πxi +1)] [−50,50]n 0

+(xn−1)2[1+sin2(2πxn)]}+∑n
i=1u(xi ,5,100,4)

5.5.1 The Penalty function technique

The penalty function technique is used to transform the
constrained optimization problems to unconstrained
optimization problem by penalizing the constraints and
forming a new objective function as follow:

f (x) =

{

f (x) if x∈ feasible region
f (x)+penalty(x) x 6∈ feasible region.

(16)

Where,

penalty(x) =

{

0 if no constraint is violated
1 otherwise.

There are two kind of points in the search space of the
constrained optimization problems (COP), feasible points
which satisfy all constraints and unfeasible points which
violate at least one of the constraints. At the feasible

points, the penalty function value is equal to the value of
objective function, but at the infeasible points the penalty
function value is equal to a high value as shown in
Equation 16. In this paper, a non stationary penalty
function has been used, which the values of the penalty
function are dynamically changed during the search
process. A general form of the penalty function as defined
in [31] as follows:
F(x) = f (x)+h(k)H(x), x∈ S⊂ R

n, (17)
Where f (x) is the objective function,h(k) is a non
stationary (dynamically modified) penalty function,k is
the current iteration number andH(x) is a penalty factor,
which is calculated as follows:

H(x) =
m

∑
i=1

θ (qi(x))qi(x)
γ(qi (x)) (18)

Where qi(x) = max(0,gi(x)), i = 1, . . . ,m, gi are the
constrains of the problem,qi is a relative violated
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Table 4: Minimization results of benchmark functions in Table2 with n= 30 tmax= 1000
Test function SGSA PSO RGA HGSLF
F1 Average 2.12 E-17 0.0018 23.1310 1.35E-51

Median 2.08 E-17 0.0012 21.87 2.34E-72
Best 9.39 E-18 1.07 E-4 9.49 5.48E-75
Std 6.10 E-18 0.0020 12.14 2.24E-53

F2 Average 2.23 E-8 2.0016 1.0725 3.85E-45
Median 2.22 E-8 0.0019 1.1371 2.48E-48
Best 1.51 E-8 6.69 E-4 0.6557 8.79E-50
Std 3.65 E-9 4.2162 0.2666 5.48E-45

F3 Average 238.17 411.27 561.71 7.45E-49
Median 222.14 222.82 569.01 6.48E-56
Best 98.42 139.62 395.88 2.49E-63
Std 101.76 322.96 125.60 4.36E-62

F4 Average 3.42 E-9 8.1607 11.7803 7.25E-23
Median 3.12 E-9 7.4464 11.9402 1.58E-30
Best 2.15 E-9 5.5391 9.3608 7.94E-36
Std 9.33 E-10 2.4104 1.5762 1.86E-22

F5 Average 29.76 3.64 E+4 1.18 E+3 26.24
Median 26.06 1.79 E+3 1.04 E+3 28.45
Best 25.76 82.2979 544.9827 25.27
Std 18.89 4.61 E+4 548.0843 3.48

F6 Average 2.07E-17 0.0010 24.0129 5.78E-18
Median 2.08 E-17 6.63 E-4 24.5594 2.48E-18
Best 9.71E-18 6.05E-5 4.0495 2.75E-19
Std 6.54E-18 0.0011 10.1747 4.96E-18

F7 Average 0.0165 0.0433 0.0675 5.48E-7
Median 0.0146 0.0432 0.0635 1.78E-6
Best 0.0012 0.0331 0.0333 3.48E-9
Std 0.0103 0.0064 0.0287 5.78E-6

function of the constraints,θ (qi(x)) is the power of the
penalty function, the values of the functions
h(.), θ (.) andγ(.) are problem dependant. We applied the
same values, which are reported in [31].

The following values are used for the penalty function:

γ(qi(x)) =

{

1 if qi(x)< 1,
2 otherwise.

Where the assignment function was

θ (qi(x))) =



















10 if qi(x)< 0.001,
20 if 0.001≤ qi(x)< 0.1,
100 if 0.1≤ qi(x)< 1,
300 otherwise.

and the penalty valueh(t) = t ∗
√

t.

5.6 The general performance of the HGSLF
algorithm with constrained optimization
problems

The general performance of the proposed HGSLF
algorithm with constrained optimization problems is
shown in Figure3 by plotting the number of iterations
versus the function values for functionsG2, G4, G5, G6,
G7 and G8 (picked randomly). Figure3 show that
proposed HGSLF algorithm can obtain the global or near
global minimum in a reasonable time (a few number of
iterations).

5.7 HGSLF and other algorithms

The proposed HGSLF algorithm is compared against 6
algorithms as follow.
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Table 5: Minimization results of benchmark functions in Table3 with n= 30 tmax= 1000
Test function SGSA PSO RGA HGSLF
F8 Average -2.82E+3 -9.88E+3 -1.2483E+4 -1.2569E4

Median -2.83E+3 -2.83E+3 -1.2496E+4 -1.2569E4
Best -3.67E+3 -1.0665E+4 -1.2523E+4 -1.2569E4
Std 404.55 512.22 53.2640 1.1E-4

F9 Average 15.52 55.1429 5.9020 5.48E-15
Median 15.91 55.6035 5.7165 1.48E-15
Best 8.95 35.3898 3.7858 0.00
Std 3.60 15.4611 1.1710 2.47E-15

F10 Average 3.55E-9 0.0090 2.1395 0.00
Median 3.53E-9 0.0066 2.1680 0.00
Best 2.74E-9 0.0031 1.3778 0.00
Std 3.75E-10 0.0076 0.4014 0.00

F11 Average 3.99 0.0101 1.1683 1.48E-16
Median 3.89 0.0081 1.1411 2.45E-16
Best 1.24 6.16E-4 1.0470 0.00
Std 1.42 0.0093 0.0795 2.43E-17

F12 Average 0.0524 0.2926 0.0510 6.48E-13
Median 1.86E-19 0.1140 0.0399 6.489E-15
Best 6.55E-20 6.87E-4 0.0110 6.78E-17
Std 0.1144 0.3164 0.0352 3.58E-17

F13 Average 2.90E-32 3.19E-18 0.0817 7.15E-32
Median 2.39E-32 2.24E-23 0.0325 9.14E-32
Best 5.99E-33 1.21E-31 2.52E-8 8.75E-33
Std 1.78E-32 8.33E-18 0.1074 5.48E-32

–SASP[24]. Simulated Annealing Simulation
Perturbation method is a hybridization of the
simulated annealing (SA) with the descent method, by
estimating the gradient using simultaneous
perturbation. The descent method is used to find a
local minimum and the simulated annealing is
executed in order to escape from the currently
discovered local minimum to a better one

–P. Shen et al [30]. proposed a new method in order to
solve a global optimization of signomial geometric
programming by employing an exponential variable
transform to the initial nonconvex problem (SGP),
then a linear relaxation is obtained based on the linear
lower bounding of the objective function and
constraints.

– M.J. Rijckaert et al [ 27]. proposed a new algorithm
to solve generalized geometric programming problems
(GGP).

–K. Ritter et al [ 28] proposed a stochastic method for
solving constrained global optimization problems by
using a penalty approach. The interesting properties
and a parallel implementation of the proposed
algorithm enable the treatment of problems with a
large number of variables.

–T.P. Runarsson et al [29]. present a new view on
penalty function methods in terms of the dominance
of penalty and objective functions.

–S. QU et al [26]. proposed an algorithm to solve the
global minimum of (GGP) problems by utilizing an
exponential variable transformation and the inherent
property of the exponential function and they applied
some techniques to reduce the initial nonlinear and
nonconvex (GGP) problem to a sequence of linear
programming problems.

5.7.1 Comparison between HGSLF and other algorithms
for constrained optimization problems

In order to investigate the efficiency of the proposed
algorithm, we compare it against 6 algorithms as shown
in Table 8. In Table 8, the name of the comparative
algorithms, optimal solution and the obtained value of the
comparative algorithms. The best obtained values are
reported inbold text. The proposed HGSLF algorithm
results are reported over 30 runs after 1000 iterations. The
reported results in Table8, show that the proposed
algorithm can obtain the optimal or near optimal solutions
better than the other algorithms in most cases.
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Table 6: Constrained optimization problems
Test function
G1 min G1(X) = 5x1+50000x−1

1 +46.2x2+72000x−1
1 +144000x−1

3 ,

S.t g(X) = 4x−1
1 +32x−1

2 +120x−1
3 ≤ 1,

1≤ x1,x2,x3 ≤ 220

G2 min G2(X) = 0.5x1x−1
2 −x1−5x−1

2 ,

S.t. g(X) = 0.01x2x−1
3 +0.01x2+0.0005x1x3 ≤ 1,

70≤ x1 ≤ 150, 1≤ x2 ≤ 30, 0.5≤ x3 ≤ 21.

G3 min G3(X) = 168x1x2+3651.2x1x2x−1
3 −40000x−1

4 ,

S.t. g1(X) = 1.0425x1x−1
2 ≤ 1,

g2(X) = 0.00035x1x2 ≤ 1,
g3(X) = 1.25x−1

1 x4+41.63x−1
1 ,

40≤ x1 ≤ 44, 40≤ x2 ≤ 45, 60≤ x3 ≤ 70,0.1≤ x4 ≤ 1.4.

G4 max G4(X) =

(√
10

)10

∏10
i=10xi ,

S.t. h1(X) = ∑10
i=1x2

i −1= 0,
0≤ x≤ 1.

G5 min G5(X) = 5.3578547x2
3 +0.8356891x1x5+37.293239x1 −40792.141,

S.t.g1(X) = 85.334407+0.0056858x2x5+0.0006262x1x4−0.0022053x3x5−92≤ 0,
g2(X) =−85.334407−0.0056858x2x5−0.0006262x1x4+0.0022053x3x5 ≤ 0,
g3(X) = 80.51249+0.0071317x2x5+0.0029955x1x2+0.0021813x2

3 −110≤ 0,
g4(X) =−80.51249−0.0071317x2x5−0.0029955x1x2−0.0021813x2

3 −110≤ 0,
g5(X) = 9.300961+0.0047026x3x5+0.0012547x1x3+0.0019085x3x4−25≤ 0,
g6(X) =−9.300961−0.0047026x3x5−0.0012547x1x3−0.0019085x3x4+20≤ 0,
78≤ x1 ≤ 102, 33≤ x2 ≤ 45 and 27≤ xi ≤ 45 (i = 3;4;5).

G6 min G6(X) = 3x1+0.000001x3
1 +2x2+(0.000002/3)x3

2,
S.t. g1(X) =−x4+x3−0.55≤ 0,
g2(X) =−x3+x4−0.55≤ 0,
h3(X) = 1000sin(−x3−0.25)+1000sin(−x4 −0.25)+894.8−x1 = 0,
h4(X) = 1000sin(x3−0.25)+1000sin(x3 −x4−0.25)+894.8−x2 = 0,
h5(X) = 1000sin(x4−0.25)+1000sin(x4 −x3−0.25)+1294.8 = 0,
0≤ x1 ≤ 1200, 0≤ x2 ≤ 1200 −0.55≤ x3 ≤ 0.55and−0.55≤ x4 ≤ 0.55.

G7 min G7(X) = (x1−10)3+(x2−20)3,
S.t. g1(X) =−(x1−5)2− (x2−5)2+100≤ 0,
g2(X) = (x1−6)2+(x2−5)2−82.81≤ 0,
13≤ x1 ≤ 100, and 0≤ x2 ≤ 100.

G8 min G8(X) =
sin3(2πx1)sin(2πx2)

x3
1(x1+x2)

,

S.t. g1(X) = x2
1−x2+1≤ 0,

g2(X) = 1−x1+(x2−4)2 ≤ 0,
0≤ x1 ≤ 10, and0≤ x2 ≤ 10.

6 Conclusion

GSA has a powerful ability to balance between
exploration and exploitation operations during the search,
however it suffers from the premature convergence when
all solutions trapped in local minima and the algorithm
becomes unable to escape from stagnation. In this paper,
a new hybrid gravitational search algorithm and a Lévy

flight operator has peen proposed in order to overcome
the premature convergence problem in the standard GSA.
The proposed algorithm is called Hybrid Gravitational
Search with Lévy Flight algorithm (HGSLF). When two
masses (solutions) become very close to each other and
non of them is the best global solution in the population,
the Lévy flight is applied on one of them in order to

c© 2015 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett.4, No. 2, 71-83 (2015) /www.naturalspublishing.com/Journals.asp 81

Table 7: Function optimal values
Test function Optimal values
G1 -

G2 -147.6669538

G3 -

G4 -1.000

G5 -30665.539

G6 5126.498

G7 -6961.8138755

G8 -0.09582504
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Fig. 3: The general performance of the HGSLF algorithm with constrained optimization problems

increase the diversity of the algorithm and avoid trapping
in local minima. The proposed HGSLF algorithm is tested
on 13 unconstrained and 8 constrained optimization
problems and compared against 6 different algorithms.
The numerical results show that the proposed HGSLF
algorithm is a promising algorithm and more precise than
the standard GSA and the comparative algorithms.
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