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Abstract: In this study, we present the exact solution of the option pricing problems based on the fractional Black-Scholes equation
by using a modified homotopy perturbation method (MHPM). Thenew method is a combination of two well-established mathematical
methods, namely, the homotopy perturbation method (HPM) and the separation of variables method. The proposed method isintroduced
an efficient tool for solving Black-Scholes equation of frctional order. The results show that this scheme is accurate and efficient.
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1 Introduction

A financial derivative is an instrument whose price
depends on, or is derived from, the value of another asset
[1]. Often, this underlying asset is a stock. The concept of
financial derivatives is not new. In 1973, Fischer Black
and Myron Scholes [2] derived the famous theoretical
valuation formula for options. The main conceptual idea
of Black and Scholes lie in the construction of a riskless
portfolio taking positions in bonds (cash), option and the
underlying stock. The Black-Scholes model (BS) for
pricing stock options has been applied to many different
commodities and payoff structures. The Black-Scholes
model for value of an option is described by the equation

∂V
∂ t

+
1
2

σ2x2 ∂ 2V
∂x2 + r(t)x

∂V
∂x

− r(t)V = 0,

(x, t) ∈ R+× (0,T ),
(1)

whereV (x, t) is the European option price at asset pricex
and at timet, T is the maturity,r(t) is the risk free interest
rate and σ(x, t) represents the volatility function of
underlying asset. It is well-known that problem (1) has a
closed-form solution obtained for the price of a European
call or European put option after several changes of
variables and solving certain related diffusion equations

[1]. We denoted the payoff functionsc(x, t) andp(x, t) for
the European call and put options, respectively. Thus

c(x, t) = max(x−E,0) , p(x, t) = max(E − x,0),

whereE is the exercise price. The Black-Scholes equation
has been increasingly attracting interest over the last two
decades since it provides effectively the values of options.
But the classical Black-Scholes equation was established
under some strict assumptions. Therefore, some improved
models have been proposed to weaken these assumptions,
such as stochastic interest model [3], Jump-diffusion
model [4], stochastic volatility model [5], and models
with transactions costs [6,7]. With the discovery of the
fractal structure for financial market, the fractional
Black-Scholes models [8,9,10,11] are derived by
replacing the standard Brownian motion involved in the
classical model with fractional Brownian motion. Option
pricing in fractional Black-Scholes markets was proposed
in [12,13,14].
Fractional differential equations are increasingly used to
model problems in acoustics and thermal systems,
rheology and mechanical systems, signal processing and
systems identification, control and robotics and other
areas of applications (see [15,16]). The interdisciplinary
applications show the importance and necessity of
fractional calculus. Some promising approximate

∗ Corresponding author e-mail:m ranjbar@azaruniv.edu

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/msl/050211


182 M. A. Mohebbi Ghandehari, M. Ranjbar: Using homo-separation of variables for pricing...

analytical solutions are proposed, such as handle these
problems such as Backlunds transformation [17], Hirotas
bilinear method [18,19], the tanh method [20], the
Laplace transform method, and the Mellin transform
method [21], Differential transform method [22] and
homotopy perturbation method [23]. Lately, the fractional
differential equations have been solved with converting it
into an NLP problem [24,25].
The standard homotopy analysis method (HAM), which
was proposed by Liao in his Ph.D. thesis, is the most
effective and convenient one for both linear and nonlinear
equations. Different from perturbation techniques; the
(HAM) doesnt depend upon any small or large parameter.
This method has been successfully applied to solve many
types of nonlinear [26,27,28] differential equations.
(HAM) is different from all analytical methods; it
provides us with a simple way to adjust and control the
convergence region of the series solution by introducing
the auxiliary para- meter h and the auxiliary function. In
fact, it is the auxiliary parameter h that provides us, for
the first time, a simple way to ensure the convergence of
the series solution. Due to this reason, it seems reasonable
to rename h the convergence-control parameter. It should
be emphasized that, without the use of the
convergence-parameter, one had to assume that the
homotopy series is convergent. However, with the use of
the convergence-parameter h, such an assumption is
unnecessary; because it seems that one can always choose
a proper value of h to obtain convergent homotopy-series
solution. Since then, the homotopy analysis method has
been developing greatly and more generalized zeroth-
order deformation Equations are suggested by Liao [26,
27]. The homotopy perturbation method (HPM) is a series
expansion method used in the solution of nonlinear partial
differential equations. The HPM was introduced by
Ji-Huan He in 1998 [30]. In general is proved the
homotopy perturbation method (HPM) is a special case of
the homotopy analysis method (HAM) by Sajid and et al
[29]. The HPM is a universal approach which can be used
to solve both fractional ordinary differential equations as
well as fractional partial differential equations. Various
combinations of the methods mentioned previously have
been proposed recently to solve fractional partial
differential equations. Examples of such combination
methods are the Homotopy Analysis Transform Method,
the homotopy perturbation Sumudu transform method,
Laplace homotopy perturbation method, the Variational
Homotopy Perturbation Method and the Homotopy
Perturbation Transformation Method. Recently, Karbalaie
et al. [31] found the exact solution of one-dimensional
FPDEs by using truncated versions of modified HPM.
Therefore, by getting inspiration of the ideas, methods,
and tools of previous works, the novel approach called the
homo-separation of variables method is developed and
utilized to find the exact solutions of systems of FPDE.
The similar idea can be found in [32,33]. This new
approach is constructed by a smart combination of HPM
and the separation of variables method. By using this

method, FPDE to be solved is changed into FODE. In this
paper, the MHPM is used to derive the exact solution of
European option pricing problems for the fractional
Black-Scholes model.

2 Preliminaries

Definition 2.1. The single parameter and the two
parameters variants of the Mittag-leffler function are
denoted byEα(z), andEα ,β (z) , respectively, which are
relevant for their connection with fractional calculus, and
are defined as,

Eα(z) =
∞

∑
n=0

zn

Γ (αn+1)
, α > 0, z ∈C.

Eα ,β (z) =
∞

∑
n=0

zn

Γ (αn+β )
α,β > 0, z ∈C.

Their k-th derivatives are

E(k)
α (z) =

dk

dzk
Eα(z)

∞

∑
n=0

(k+ n)!zn

n!Γ (αn+αk+1)
, k = 0,1, ...,

(2)

E(k)
α ,β (z) =

dk

dzk Eα ,β (z)
∞

∑
n=0

(k+ n)!zn

n!Γ (αn+αk+β )
, k = 0,1, ...,

(3)

other properties of the Mittag-leffler functions can be
found in [34].
Definition 2.2. A real functiony(t), t > 0, is said to be in
the spaceCµ , µ ∈ R if there exists a real numberp(> µ),
such thaty(t) = t py1(t), wherey1(t) ∈ C[0,∞], and it is
said to be in the spaceCm

µ iff y(m) ∈Cµ ,m ∈ N.

The Riemann-Liouville fractional integral and Caputo
derivative are defined as follows.
Definition 2.3. The Riemann-Liouville fractional integral
operator of orderα ≥ 0, of a functiony ∈ Cµ , µ ≥−1, is
defined as:

Jα y(t) =
1

Γ (α)

∫ t

0
(t − τ)α−1y(τ)dτ, α > 0, t > 0,

J0y(t) = y(t).

Some of the most important properties of operatorJα for
y ∈Cµ ,
µ ≥−1, α, β ≥ 0 andγ >−1, are as follows [35]:
1. Jα Jβ y(t) = J(α+β )y(t);
2. Jα Jβ y(t) = Jβ Jα y(t);

3. Jα tγ = Γ (γ+1)
Γ (α+γ+1) t

α+γ .

c© 2016 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.5, No. 2, 181-187 (2016) /www.naturalspublishing.com/Journals.asp 183

Definition 2.4. The Riemann-Liouville fractional
derivative ofy is defined as:

RLDα y(t) =
1

Γ (m−α)

dm

dtm

∫ t

0
(t − τ)m−α−1y(τ)dτ,

for m−1< α ≤ m, m ∈ N, t > 0, y ∈Cm
−1.

Definition 2.5. The fractional derivative ofy(t) in the
Caputo sense is defined as:

CDα y(t) = Jm−α Dmy(t)

=
1

Γ (m−α)

∫ t

0
(t − τ)m−α−1y(m)(τ)dτ,

for m−1< α ≤ m, m ∈ N, t > 0, y ∈ Cm
−1. Note that the

relation between Riemann-Liouville fractional integral
operator and modified Riemann-Liouville fractional
differential operator is given by fractional Leibnitz
formulation as follows

Jα
t Dα

t f (t) = D−α
t Dα

t f (t) = f (t)−
m−1

∑
k=0

tk

k!
f k(0),

m−1< α ≤ m.

Theorem 2.6. Consider the following n-term linear
fractional differential equation:

(anDβn
t + an −1Dβn−1

t + ...+ a0Dβ0
t )u(t) = f (t), (4)

with the constant initial condition:

u ji(0) = ci ji , i = 0,1, ...,n, ji = 1,2, ..., li, (5)

whereai, ci ji ∈ R, ni −1< βi < ni, ni ∈ N
⋃

{0} and

β0 < β1 < ... < βn−1 < n ≤ βn < n+1. (6)

Then, we see that the analytical general solution of Eq. (4)
is

u(t) =
∫ t

0
Gn(t − ς) f (ς)dt +

∞

∑
i=0

li−1

∑
ji=0

aici ji G
βi− ji−1
n (t),

(7)

whereGn(t) is the Green function and it is defined as

Gn(t) =
1
an

∞

∑
m=0

(−1)m

m!
× ∑

k0+k1+...+kn−2=m

(m;k0,k1, ...,kn−2)

×
n−2

∏
p=0

(
ap

an
)kp t(βn−βn−1)m+βn+∑n−2

j=0(βn−1−β j)k j−1

×E(m)

βn−βn−1,βn+∑n−2
j=0(βn−1−β j)k j−1

(−
an−1

an
Dβn−βn−1),

(8)

where

(m;k0,k1, ...,kn−2) =
m!

k0!k1!...kn−2!
(9)

and E(m)
(.),(.)

is the m-th derivative of the Mittag-Leffler
function. In a special case of the latter theorem, the
following relaxation-oscillation equation is solved:

Dα
t u(t)+Au(t) = f (t), t > 0,

ui(0) = bi, i = 1,2, ...,n−1,
(10)

wherebi are real constants andn−1< α ≤ n. By utilizing
theorem 2.6, we obtain the solution of Eq. (10) as follows:

∫ t

0
G2(t − ς) f (ς)dt +

n−1

∑
j=0

b jD
α− j−1
t G2(t), (11)

whereG2(t) = tα−1Eα ,α(−Atα). It is easy to see that if
0 < α ≤ 1; then the solution of Eq. (10) becomes as
follows:

u(t) =
∫ t

0
G2(t − ς) f (ς)dt + b0Dα−1

t G2(t). (12)

3 The Homo-Separation of Variables Method

The Homotopy Perturbation Method (HPM) is an especial
case of the standard homotopy analysis method (HAM).
The Homotopy Perturbation Method (HPM) is a
combination of the Homotopy technique and the classical
Perturbation Method. In this section, the algorithm of this
method is briefly illustrated. To achieve our goal, we
consider the nonlinear partial differential equation:

L(u)+N(u)− f (r) = 0, r ∈ Ω ,

B(u,
∂u
∂n

) = 0, r ∈ Γ ,
(13)

whereL is a linear operator, N is a nonlinear operator,B
is a boundary operator,Γ is the boundary of the domain
Ω , and f (r) is a known analytical function. By using the
homotopy perturbation technique, we construct a
homotopyv(r, p) : Ω × [0,1]→ R which satisfies:

H(v, p) = L(v)−L(u0)+ pL(u0)+ p[N(v)− f (r)] = 0,

0≤ p ≤ 1,
(14)

wherer ∈ Ω andu0 is an initial approximation for Eq. (13)
andp is an embedding parameter. When the value ofp is
changed fromp = 0 to p = 1, we can easily see that

H(v,0) = L(v)−L(u0) = 0, (15)

H(v,1) = L(v)+N(v)− f (r) = 0. (16)

This changing process is called deformation, and Eq. (15)
and (16) are called homotopic in field of topology. We can
assume that the solution of Eq. (14) can be expressed as a
power series in p, as given below

v =
∞

∑
i=0

pivi = v0+ pv1+ p2v2+ ..., (17)
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In case the p-parameter is considered as small, the best
approximation for the solution of Eq. (13) is:

u = lim
p→1

v =
∞

∑
i=0

vi = v0+ v1+ v2+ ..., (18)

Now we are able to apply the HPM to solve the class of
time fractional partial differential equations defined as
follows:

Dα
t u(x, t) = L(u(x, t))+N(u(x, t))+ f (x, t), (19)

subject to the initial conditionu(x,0) = g(x), and
0 < α ≤ 1 in Dα

t , which is identical to the Caputo
fractional derivative of orderα. According to the
homotopy perturbation technique (HPM), we can
construct the following homotopy

H(v(x, t), p) = (1− p)[Dα
t (v(x, t))−Dα

t (u0(x, t))]+

p[Dα
t (v(x, t))−L(v(x, t))−N(v(x, t))− f (x, t)] = 0,

(20)

wherep ∈ [0,1] andu0(x, t) is an initial approximation of
the solution of Eq.(19) which also satisfies the initial
condition. By simplifying Eq. (20) we get

Dα
t (v(x, t)) = Dα

t (u0(x, t))+

p[Dα
t (u0(x, t))−L(v(x, t))−N(v(x, t))− f (x, t)],

(21)

where the embedding parameterp is considered to be
small and applied to the classical perturbation technique.
The next step is to use this homotopy parameterp to
expand the solution into the following form:

v(x, t) = v0(x, t)+ pv1(x, t)+ p2v2(x, t)+ ..., (22)

eventually, at p = 1, we will obtain the approximate
solution of Eq. (19). By substituting (22) into (21) and
equating the terms with identical powers ofp, a set of
equations is obtained as follows:

p0 : Dα
t (v0(x, t)) = Dα

t (u0(x, t)),

p1 : Dα
t (v1(x, t)) = Dα

t (v0(x, t))−L(v0(x, t))

−N(v0(x, t))− f (x, t),

(23)

.

.

.

Applying the operatorJα
t , which is the Riemann- Liouville

fractional integral of orderα ≥ 0, on both sides of all cases
of Eq.(24), the solution can be given by

v0(x, t) = u0(x, t),

v1(x, t) = Jα
t [Dα

t (v0(x, t))−L(v0(x, t))

−N(v0(x, t))− f (x, t)],

(24)

.

.

.

By utilizing the results in Eq. (24), and substituting them
into Eq. (22), we get an accuratenth approximation of the
exact solution as follows

un(x, t) = v0+ v1+ ...+ vn =
n

∑
i=0

vi. (25)

In Eq. (25), if there exists somevn = 0, n ≥ 1; then the
exact solution can be written in the following form

u(x, t) = v0+ v1+ ...+ vn−1 =
n−1

∑
i=0

vi. (26)

For simplicity, we assume thatv1(x, t) ≡ 0 in Eq. (26),
which means that the exact solution in Eq. (13) is
u(x, t) = v0(x, t), and solving Eq. (13), we obtain the
result

u0(x, t) = v0(x, t). (27)

Therefore, we haveu(x, t) = u0(x, t) = v0(x, t). Now we
can introduce the core of the work in this paper. At first,
we consider the initial approximation of Eq.(19) as follows

u0(x, t) = u(x,0)c1(t)+ u(x)c2(t), (28)

whereu(x,0) is the initial condition of Eq.(19), andu(x) =
∂u(x,0)

∂x . The task now is to find the termsc1(t) andc2(t) to
obtain the exact solution of the FPDE in (19). Sinceu(x, t)
satisfies the initial condition, we get

u(x,0) = v0(x,0) = u(x,0)c1(0)+u(x)c2(0) = g(x), (29)

therefore
c1(0) = 1, c2(0) = 0. (30)

On the other hand, we have

Dα
t (v1(x, t)) = Dα

t (u0(x, t))−L(v0(x, t))

−N(v0(x, t))− f (x, t)≡ 0.
(31)

By substituting Eq. (28) and (27) into Eq. (31), we obtain

u(x,0)Dα
t (c1(t))+ u(x)Dα

t (c2(t)) =

L(u(x,0)c1(t)+ u(x)c2(t))

+N(u(x,0)c1(t)+ u(x)c2(t))+ f (x, t).

(32)

In this case, the partial differential equation is changed
into an ODE, which simplifies the problem at hand. The
exact solution of the PDE is found when the target
unknowns c1(t) and c2(t) are computed; by utilizing
Eq.(32) and the initial conditions in Eq. (30).

4 Numerical Examples

In the section, we use our approach and investigate it’s
accuracy through the Option pricing models based on the
time-fractional differential equations.

c© 2016 NSP
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Example 4.1. Consider the following fractional
Black-Scholes option pricing equation [36]

∂ α u
∂ tα =

∂ 2u
∂x2 +(k−1)

∂u
∂x

− ku, (33)

where 0 < α ≤ 1, with initial condition
u(x,0) = max(ex −1,0).
Note that this system of equations contains just two
dimensionless parametersk = 2r

σ2 , where k represents the
balance between the rate of interests and the variability of
stock returns and the dimensionless time to expiryσ2T

2 ,

even though there are four dimensional parameters,E, T ,
σ2, andr, in the original statements of the problem.
To solve (33) by using the proposed homo-separation of
variables method, we choose the initial approximation as
follows:

u0(x, t) = u(x,0)c1(t)+ u(x)c2(t)

= max(ex −1,0)c1(t)+max(ex
,0)c2(t)

(34)

then

Dα
t (v1(x, t)) =Dα

t (max(ex −1,0)c1(t)+max(ex
,0)c2(t))

−max(ex
,0)c1(t)−max(ex

,0)c2(t)

(−k+1)(max(ex
,0)c1(t)+max(ex

,0)c2(t))

+ k(max(ex −1,0)c1(t)+max(ex
,0)c2(t))

≡ 0,
(35)

Dα
t (v1(x, t)) =Dα

t (max(ex −1,0)c1(t)+max(ex
,0)c2(t))

− kmax(ex
,0)c1(t)+ kmax(ex −1,0)c1(t)

≡ 0.
(36)

We obtain the fractional differential system
{

Dα
t c1(t)+ kc1(t) = 0,
c1(0) = 1, (37)

{

Dα
t c2(t)− kc1(t) = 0,
c2(0) = 0. (38)

Solving Eq. (37) and (38) by applying Eq. (12), we obtain

c1(t) = Eα(−ktα),

c2(t) = 1−Eα(−ktα),
(39)

and the exact solution is

u(x, t) = max(ex −1,0)Eα(−ktα)

+max(ex
,0)(1−Eα(−ktα)),

(40)

whereEα(z) is Mittag-Leffler function in one parameter.
The analytical solution of this problem is consistent with
the result obtained by Kumar and et al. [36]. For caseα =
1, we have

u(x, t) = max(ex −1,0)e−kt +max(ex
,0)(1− e−kt), (41)

which is an exact solution of the given classic
Black-Scholes equation.

Example 4.2. Consider the following generalized
fractional Black-Scholes equation as follows [37]:

∂ α u
∂ tα +0.08(2+ sin(x))2x2 ∂ 2u

∂x2 +0.06x
∂u
∂x

−0.06u= 0,

(42)
with 0 < α ≤ 1 and initial condition
u(x,0) = max(x−25e−0.06,0).
if we choose the initial approximation (28) for this
problem; then we obtainc1(t) = c2(t) ≡ 0. In this case,
we earn the trivial solutionu(x, t) ≡ 0. Therefore, we
choose the initial approximation as follows

u0(x, t) = u(x,0)c1(t)+ xu(x)c2(t)

= max(x−25e−0.06
,0)c1(t)+ xc2(t),

(43)

then

Dα
t (v1(x, t)) =Dα

t (max(x−25e−0.06
,0)c1(t)+ xc2(t))

+0.06x(c1(t)+ c2(t))

−0.06(max(x−25e−0.06
,0)c1(t)+ xc2(t))

≡ 0.
(44)

Now, we obtain the fractional differential system
{

Dα
t c1(t)−0.06c1(t) = 0,

c1(0) = 1, (45)

{

Dα
t c2(t)+0.06c1(t) = 0,

c2(0) = 0, (46)

Solving Eq. (45) and (46) by applying Eq. (12), we obtain

c1(t) = Eα(0.06tα),

c2(t) = 1−Eα(0.06tα),
(47)

and the exact solution is

u(x, t) = max(x−25e−0.06
,0)Eα(0.06tα)

+ x(1−Eα(0.06tα)),
(48)

which is the exact solution of the given fractional Black-
Scholes equation, for pricing the European option.
The exact solution of the given option pricing equation for
α = 1 is

u(x, t) = max(x−25e−0.06
,0)e0.06t + x(1− e0.06t). (49)

5 Conclusion

In this paper, we have proposed a new analytical method
based on the homotopy perturbation method (HPM) for
pricing European option of the fractional Black-Scholes
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model. This method is intuitive and very easy to
understand. new approach converts the fractional
Black-Scholes equation into a system of ordinary
differential equations (ODEs) and after that proceeds to
solve the resulting ODE. Finally, the resulting
homo-separation of variables method, which is analytical,
can be used to solve equations with fractional and integer
order with respect to time.
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