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Abstract: Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, 

a new method is developed based on the Flower Pollination Algorithm combined with Chaos Theory (IFPCH) to solve Ratios 

Optimization Problems (ROPs). The proposed algorithm is tested using several ROP benchmark. The test aims to prove the capability of 

the IFPCH to solve any type of ROPs. The solution results employing the IFPCH algorithm are compared with a number of exact and 

metaheuristic solution methods used for handling ROPs. Numerical examples are given to show the feasibility, effectiveness, and 

robustness of the proposed algorithm. The results obtained using IFPCH revealed the superiority of the proposed technique among others 

in computational time.   

Keywords: Flower Pollination Algorithm; Nature-Inspired Algorithm; Optimization; Chaos; Ratios Optimization Problems. 

 
 
 

1 Introduction 

The general ratios optimization problems ROP mathematical 

model [1] is: 
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Where    ,i if x g x , are supposed to be continuous 

functions,  S is compact. 

Ratios optimization problems of the form (1) arises reality 

whenever rates such as the ratios (profit/revenue), 

(profit/time), (-waste of raw material/quantity of used raw 

material), are to be maximized often these problems are 

linear or at least concave-convex fractional programming. 

Ratios optimization problems(fractional programming) is a 

nonlinear programming method that has known increasing 

exposure recently and its importance, in solving concrete 

problems, is steadily increasing. Furthermore, nonlinear 

optimization models describe practical problems much 

better than the linear optimization, with many assumptions, 

does. The fractional programming problems are particularly 

useful in the solution of economic problems in which 

different activities use certain resources in different 

proportions. While the objective is to optimize a certain 

indicator, usually the most favorable return on allocation 

ratio subject to the constraint imposed on the availability of 

resources. It also has a number of important practical 

applications in manufacturing, administration, 

transportation, data mining, etc. 

The methods to solve ratios optimization problems can be 

broadly classified into exact (traditional) and heuristics 

approaches. Some examples of traditional approaches is that 

of ([2] who introduced the parametric approach, [3]solved 

the linear fractional programming problems by converting 

FPP into an equivalent linear programming problem and 

solved it using already existing standard algorithms for LPP, 

[4–7] reviewed some of the methods that treated solving the 

FPP as the primal and dual simplex algorithm.  The 

crisscross, which is based on pivoting, within an infinite 

number of iterations, either solves the problem or indicates 

that the problem is infeasible or unbounded. The interior 

point method, as well as Dinkelbach algorithms both reduces 

the solution of the LFP problem to the solution of a sequence 

of LP problems. Isbell Marlow method, Martos’ Algorithm, 

Cambini–Martein’s Algorithm, Bitran and Novae’s Method, 

Swarup’s Method, Harvey M. Wagner and John S. C. Yuan,   
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Hasan, B.M., and Acharjee, S., developed a new method for 

solving FLPP based on the idea of solving a sequence of 

auxiliary problems so that the solutions of the auxiliary 

problems converge to the solution of the FPP.Moreover, 

there are many recent approaches employing traditional 

mathematical methods for solving the ratios optimization 

FPP such as: [8–10]. 

A few studies in recent years used heuristics approaches to 

solve ratios optimization problems. [11] presented a genetic 

algorithm based method to solve the linear fractional 

programming problems. A set of solution point are generated 

using random numbers, feasibility of each solution point is 

verified, and the fitness value for all the feasible solution 

points are obtained. Among the feasible solution points, the 

best solution point is found out and then replaces the worst 

solution point. A pair wise solution points are used for 

crossover and a new set of solution points is obtained. These 

steps are repeated for a certain number of generations and 

the best solution for the given problem is obtained.  [12]  

developed a genetic algorithm for the class of bi-level 

problems in which both level objective functions are linear 

fractional and the common constraint region is a bounded 

polyhedron. [1] proposed algorithm for the sum-of-ratios 

problems based harmony search algorithm. [13] developed 

neural networks for nonlinear fractional programming 

problem. The research proposed a new projection neural 

network model. It’s theoretically guaranteed to solve 

variational inequality problems. The multiobjective 

minimax nonlinear fractional programming was defined and 

its optimality is derived by using its Lagrangian duality. The 

equilibrium points of the proposed neural network model are 

found to correspond to the Karush Kuhn Trcker point 

associated with the nonlinear fractional programming 

problem. [14] presented a neural network method for solving 

a class of linear fractional optimization problems with linear 

equality constraints. The proposed neural network model 

have the following two properties. First, it is demonstrated 

that the set of optima to the problems coincides with the set 

of equilibria of the neural network models which means the 

proposed model is complete. Second, it is also shown that 

the model globally converges to an exact optimal solution 

for any starting point from the feasible region. [15] Used 

particle swarm optimization algorithm for solving fractional 

programming problems.[16–19] introduced solution for 

integer fractional programming problem and complex 

variable fractional programming problems based swarm 

intelligence under uncertainty. 

Flower pollination is an intriguing process in the natural 

world. Its evolutionary characteristics can be used to design 

new optimization algorithms. The algorithm obtained good 

results were dealing with lower-dimensional optimization 

problems, but may become problematic for higher-

dimensional problems because of its tendency to converge 

very fast initially. This paper introduced an improved Flower 

pollination algorithm by integrating it with chaos to improve 

the reliability of the global optimality, also enhances the 

quality of the results. 

This paper is organized as follows: after introduction, the 

original Flower pollination algorithm is briefly introduced. 

In section 3, the proposed algorithm is described, while the 

results are discussed in section 4. Finally, conclusions are 

presented in section 5. 

2 The Original Flower Pollination Algorithm 

Flower Pollination Algorithm (FPA) was founded by 

Yang in the year 2012. Inspired by the flow pollination 

process of flowering plants are the following rules: 

Rule 1: Biotic and cross-pollination can be considered as a 

process of global pollination process, and pollen-

carrying pollinators move in a way that obeys Le'vy 

flights.  

Rule 2: For local pollination, a biotic and self-pollination 

are used. 

Rule 3: Pollinators such as insects can develop flower 

constancy, which is equivalent to a reproduction 

probability that is proportional to the similarity of 

two flowers involved. 

Rule 4: The interaction or switching of local pollination 

and global pollination can be controlled by a switch 

probability p[0,1], with a slight bias toward local 

pollination . 

In order to formulate updating formulas, we have to 

convert the aforementioned rules into updating equations. 

For example, in the global pollination step, flower pollen 

gametes are carried by pollinators such as insects, and pollen 

can travel over a long distance because insects can often fly 

and move in a much longer range[20].Therefore, Rule 1 and 

flower constancy can be represented mathematically as: 

 ))((1 BxLxx t

i
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i    (2) 

Where 
t

ix is the pollen i or solution vector xi at iteration t, 

and B is the current best solution found among all solutions 

at the current generation/iteration. Here γ is a scaling factor 

to control the step size. In addition, L(λ) is the parameter that 

corresponds to the strength of the pollination, which 

essentially is also the step size. Since insects may move over 

a long distance with various distance steps, we can use a 

Le'vy flight to imitate this characteristic efficiently. That is, 

we draw L > 0 from a Levy distribution: 
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Here, Γ(λ) is the standard gamma function, and this 

distribution is valid for large steps s > 0. 

Then, to model the local pollination, both Rule 2 and Rule 3 

can be represented as: 
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Where 
t

jx and 
t

kx are pollen from different flowers of the 

same plant species. This essentially imitates the flower 

constancy in a limited neighborhood. Mathematically, if 
t

jx

and 
t

kx comes from the same species or selected from the 

same population, this equivalently becomes a local random 

walk if we draw U from a uniform distribution in [0, 

1].Though Flower pollination activities can occur at all 

scales, both local and global, adjacent flower patches or 

flowers in the not-so-far-away neighborhood are more likely 

to be pollinated by local flower pollen than those faraway. In 

order to imitate this, we can effectively use the switch 

probability like in Rule 4 or the proximity probability p to 

switch between common global pollination to intensive local 

pollination. To begin with, we can use a naive value of p = 

0.5as an initially value. A preliminary parametric showed 

that p = 0.8 might work better for most applications[20]. 

 
Flower pollination algorithm 

Define Objective functionf (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution Bin the initial population 

Define a switch probability p ∈  [0, 1] 

Define a stopping criterion (either a fixed number of 

generations/iterations or accuracy) 

while (t <MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand <p, 

Draw a (d-dimensional) step vector L which obeys a 

L´evy distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx 
 

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via )(1 t

k

t

j

t

i

t

i xxUxx 
 

end if 

Evaluate new solutions 

If new solutions are better, update them in the 

population 

end for 

Find the current best solution B 

end while 

Output the best solution found 

Fig. 1 Pseudo code of the Flower pollination algorithm. 

3 The Proposed Algorithm (IFPCH) for Solving 

Ratios Optimization Problems 

Generating random sequences with a longer period and 

good consistency is very important for easily simulating 

complex phenomena, sampling, numerical analysis, decision 

making and especially in heuristic optimization[21]. Its 

quality determines the reduction of storage and computation 

time to achieve a desired accuracy[22]. Chaos is a 

deterministic, random-like process found in nonlinear, 

dynamical system, which is non-period, non-converging and 

bounded. Moreover, it depends on its initial condition and 

parameters[23–28]. Applications of chaos in several 

disciplines including operations research, physics, 

engineering, economics, biology, philosophy and computer 

science[29–32]. 

Recently chaos has been extended to various 

optimization areas because it can more easily escape from 

local minima and improve global convergence in 

comparison with other stochastic optimization algorithms 

[33], [34], [30], [35], [36]. Using chaotic sequences in flower 

pollination algorithm can be helpful to improve the 

reliability of the global optimality, and they enhance the 

quality of the results. 

3.1 Chaotic maps 

At random-based optimization algorithms, the methods 

using chaotic variables instead of random variables are 

called chaotic optimization algorithms (COA) [22]. In these 

algorithms, due to the non-repetition and ergodicity of chaos, 

it can carry out overall searches at higher speeds than 

stochastic searches that depend on probabilities [37–40], 

[36]. To achieve this issue, herein one-dimensional, non-

invertible maps are utilized to generate chaotic sets. We will 

illustrate some of well-known one-dimensional maps as: 

3.1.1 Logistic map 

The Logistic map is defined by: 

 𝑌𝑛+1 =  𝜇𝑌𝑛(1 − 𝑌𝑛)𝑌(0,1) 0 <  ≤  4 (5) 

3.1.2 The Sine map 

The Sine map is written as the following equation: 

 𝑌𝑛+1 =
𝜇

4
sin(𝜋𝑌𝑛) 𝑌𝜖(0,1) 0 < 𝜇 ≤ 4 (6) 

3.1.3 Iterative chaotic map  

The iterative chaotic map with infinite collapses is 

described as: 

 
𝑌𝑛+1 = sin (

𝜇𝜋

𝑌𝑛

) 𝜇 ∈ (0,1) (7) 

3.1.4 Circle map 

The Circle map is expressed as: 

 𝑌𝑛+1

= 𝑌𝑛 + 𝛼 − (
𝛽

2𝜋
) sin(2𝜋𝑌𝑛) 𝑚𝑜𝑑 1 

(8) 
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3.1.5 Chebyshev map 

The family of Chebyshev map is written as the following 

equation: 

 𝑌𝑛+1 = cos(𝑘𝑐𝑜𝑠−1(𝑌𝑛)) 𝑌 ∈ (−1,1) (9) 

3.1.6 Sinusoidal map 

This map can be represented by: 

 𝑌𝑛+1 = 𝜇𝑌𝑘
2sin (𝜋𝑌𝑛) (10) 

3.1.7 Gauss map 

The Gauss  map is represented by: 

 

𝑌𝑛+1 =  {

0                      𝑌𝑛 = 0
𝜇

𝑌𝑛

𝑚𝑜𝑑 1      𝑌𝑛 ≠ 0  (11) 

3.1.8 Sinus map 

Sinus map is formulated as follows: 

 𝑌𝑛+1 = 2.3(𝑌𝑛)2 sin(𝜋𝑌𝑛) (12) 

3.1.9 Dyadic map 

Also known as the dyadic map, bit shift map, 2x mod 1 

map, Bernoulli map, doubling map or saw tooth map. 

Dyadic map can be formulated by a mod function: 

𝑌𝑛+1 = 2𝑌𝑛𝑚𝑜𝑑 1                                                              (13) 

3.1.10 Singer map 

Singer map can be written as: 

 𝑌𝑛+1 = 𝜇(7.86𝑌𝑛 − 23.31𝑌𝑛
2 + 28.75𝑌𝑛

3

− 13.3𝑌𝑛
4)  

(14) 

 between 0.9 and 1.08 

3.1.11 Tent map 

This map can be defined by the following equation: 

 
𝑌𝑛+1 = {

𝜇𝑌𝑛𝑌𝑛 < 0.5

𝜇(1 − 𝑌𝑛)𝑌𝑛 ≥ 0.5 
                    (15) 

3.2 Handling Constraints 

One of the well-known techniques of handling 

constraints is using penalty function, which transforms 

constrained problem into unconstrained ones, consisting of a 

sum of the objective and the constraints weighted by 

penalties. By using penalty function methods, the objectives 

are inclined to guide the search toward the feasible solutions. 

Hence, in this paper the corresponding objective function 

used in is defined and described as: 





K

n

ngxfxF
1

),0max()()(  min 
  

Where 𝑓(𝑥) is the objective function for assignment 

problem,  is the penalty coefficient and it is set to a value 

of 1011 in this paper, 𝐾 is the number of constraints and gn 

the constraints of the problem.  

In the proposed chaotic flower pollination algorithm, we 

used chaotic maps to tune the flower pollination algorithm 

parameter and improve the performance [21], [22].  

The steps of the proposed chaotic flower pollination 

algorithm for solving ratios optimization problems are as 

follows: 

Step 1 define the objective function and initializes a 

population then find the best solution B in the initial 

population. 

Step 2 Calculate p by the selected chaotic maps. 

Step 3 If (rand <p) then global pollination via 

))(()(1 BxLfxx t

i

t

i

t

i     

else do local pollination via selected chaotic map. 

Step 4 Evaluate new solutions if better, update them in the 

population. 

Step 5 Find the current best solution B. 

Step 6 Output the best solution found. 

4 Numerical Results 

Ten diverse problems were collected from literature[41], 

[19] to demonstrate the efficiency and robustness of solving 

FFPs. The obtained numerical results are compared to their 

relevance found in references; some examples were also 

solved using exact method f1and f3. Table 1shows they 

attained the comparison result. In these problems, the initial 

parameters are set at n= 50 and the number of iterations is 

set to t = 1000, the selected chaotic map for all problems is 

the logistic map, according to the following equation: 

 𝑌𝑛+1 =  𝜇𝑌𝑛(1 − 𝑌𝑛) (16) 

Clearly, 𝑌𝑛 [0,1] under the conditions that the 

initial𝑌0 [0,1], where 𝑛 is the iteration number and𝜇 =
 4.The results of IFPCH algorithm are conducted from 50 

independent runs for each problem. The comparison 

between the results determined by the proposed approach 

and the compared algorithms are reported in Table 1. The 

results have demonstrated the superiority of the proposed 

approach to finding the optimal solution. 

All the experiments were performed on a Windows 7 

Ultimate 64-bit operating system; processor Intel Core i5 

760 running at 2.81 GHz; 4 GB of RAM and code was 

implemented in MATLAB. 
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4.1. Test problem 1 

This problem is defined as: 
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4.6. Test problem 6 

This two-dimensional sine Envelope function defined as: 
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Table 1:  Comparison results of the IFPCH with other methods. 
Test 

problem 
Technique/Reference 

Decision variable optimal 

value 

Objective function 

value 

 

1f
  (max) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Method” 

IFPCH 

(x*,y*)= (30,0) 

(x*,y*)= (30,0) 

(x*,y*)= (30,0) 

z*=3.714286 

z*=3.714286 

z*= 3.7142857 

2f
   (min) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Method” 
IFPCH 

none 

none 
(x*,y*)=(0.0056,0.0008) 

none 

none 
z*=6.25E-016 

 

3f
  (min) 

C.C. Transformation “Exact Method” 
Dinkelbach algorithm “Exact Method” 

[42] “Neural Network” 

IFPCH 

(x*,y*)= (0,0) 
(x*,y*)= (0,0) 

(x*,y*)=(0.5,3) 

(x*,y*)= (0,0) 

z*=0.333 
z*=0.333 

z*=4.5 

z*=0.333 

4f
(max) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Method” 
[43] “Goal Setting and Approximation” 

IFPCH 

none 

none 

(x*,y*)=(7.229,0) 
(x*,y*)= (1.0264,5.7391) 

(x*,y*)= (1.025,5.628) 

none 

none 

z*=0.084 
z*=0.3383 

z*=0.3385 

5f
(max) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Method” 
IFPCH 

none 

none 
(x*,y*)= (0,1.453) 

none 

none 
z*=0.290012 

6f
(max) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Method” 
IFPCH 

none 

none 
(x*,y*)= (0,0) 

none 

none 
z*= 0 

7f
(max) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Method” 

[44] “Global Optimization” 
IFPCH 

none 

none 

(x*,y*)= (1,1) 
(x*,y*)= (1,1) 

none 

none 

z*=5.5167 
z*=5.5167 

8f
(max) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Metho 
[45] “Global Optimization” 

IFPCH 

none 

none 
(x*,y*)=(3,4) 

(x*,y*)= (3,4) 

none 

none 
z*=5 

z*=5 

9f
  (min) 

C.C. Transformation “Exact Method” 

Dinkelbach algorithm “Exact Method” 
[9] “Global Ooptimization” 

IFPCH 

none 

none 
(x*,y*)=(1,1.4142) 

(x*,y*)=(1,1.4) 

none 

none 
z*=0.48558 

z*=0.486 

10f
(max) 

C.C. Transformation “Exact Method” 
Dinkelbach algorithm “Exact Method” 

[1] “HS" 

IFPCH 

none 
none 

(x*,y*,v*)=(1.5,1.5,1.1) 

(x*,y*,v*)=(1.5,1.5,0) 

none 
none 

z*=8.1207 

z*=8.279 

The numerical results obtained using the proposed algorithm 

are compared to assorted exact methods and metaheuristic 

techniques as shown in table 1. Four exact methods were 

selected for solving the 10 benchmark functions and carrying 

out the comparison. The four methods are C.C. 

Transformation, Dinkelbach algorithm, Goal setting and 

approximation and global optimization. Neural network and 

harmony search are the other two metaheuristic intelligent 

techniques incorporated in the compare test. The some 

calculations are obtained out of the numerical solutions of all 

the ten functions. The obtained optimization value the 

proposed IFPCH algorithm managed to explore new solution 

areas that benchmark problem results using exact methods 

couldn’t reach that could be clearly noticed from f2 to f10 in 

table (1).The optimization value results for the rest functions 

indicates a better achievement for IFPCH algorithm. 

Boldface figures in the table indicates the best result(s) 

among the algorithms. Figures 2, 3 and 4. show that the 

proposed IFPCH algorithm is able reach to global 

optimization in f2,f5, and f6 though they have many local 

optimizations. 

 

Fig. 2: Two-dimensional Schaffer 2 function. 
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Fig. 3: Two-dimensional Schaffer 4 function. 

 

 

Fig. 4: Two-dimensional Sine Envelope function. 

5 Conclusions 

The paper presents a new approach to solve ROPs based on 

Flower pollination algorithm with chaos. Ten-benchmark 

problem were solved using the proposed algorithm and many 

other previous approaches. The results employing the 

proposed algorithm were compared with the other exact and 

metaheuristic approach espreviously used for handling 

ROPs. The algorithm proved their effectiveness, reliability 

and competences in solving different ROP. The proposed 

algorithm managed to successfully solve large-scale ROP 

with an optimal solution at a finite point and an unbounded 

constraint set. The features and capabilities of the proposed 

algorithm was more evident when dealing with large-scale 

problems and a solution is a regular space. The 

computational results proved that IFPCH turned out to be 

superior to other algorithms for all the accomplished tests 

yielding a higher and much faster growing mean fitness at 

less computational time.  
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