
*Corresponding author e-mail: analyst_mohamed@yahoo.com
 © 2015 NSP

 Natural Sciences Publishing Cor.

 Appl. Math. Inf. Sci. Lett. 3, No. 2, 83-91 (2015) 83

http://dx.doi.org/10.12785/amisl/030206

An Improved Flower Pollination Algorithm for Ratios Optimization Problems

Mohamed Abdel-Baset 1,* and Ibrahim M. Hezam 2.

1 Department of Operations Research, faculty of Computers and Informatics, Zagazig University, El-Zera Square, Zagazig, Sharqiyah, Egypt.
2 Department of computer, Faculty of Education, Ibb University, Ibb city, Yemen.

Received: 21 Feb. 2015, Revised: 22 Mar. 2015, Accepted: 24 Mar. 2015.

Published online: 1 May 2015.

Abstract: Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper,

a new method is developed based on the Flower Pollination Algorithm combined with Chaos Theory (IFPCH) to solve Ratios

Optimization Problems (ROPs). The proposed algorithm is tested using several ROP benchmark. The test aims to prove the capability of

the IFPCH to solve any type of ROPs. The solution results employing the IFPCH algorithm are compared with a number of exact and

metaheuristic solution methods used for handling ROPs. Numerical examples are given to show the feasibility, effectiveness, and

robustness of the proposed algorithm. The results obtained using IFPCH revealed the superiority of the proposed technique among others

in computational time.

Keywords: Flower Pollination Algorithm; Nature-Inspired Algorithm; Optimization; Chaos; Ratios Optimization Problems.

1 Introduction

The general ratios optimization problems ROP mathematical

model [1] is:

  

 

 

 

 

1

1

min/ max (,...,)

, 0

0, 1,..., ;

0, 1,..., ;

, 1,.., .

0, 1,.., .





 

  
 
 

    
 

    

 


p

i
n

ii

k

n
j

l u
i i i

i

f x
z x x

g x

subject to x S x

h x k K

S x R m x j J

x x x i n

g x i p

 (1)

Where    ,i if x g x , are supposed to be continuous

functions, S is compact.

Ratios optimization problems of the form (1) arises reality

whenever rates such as the ratios (profit/revenue),

(profit/time), (-waste of raw material/quantity of used raw

material), are to be maximized often these problems are

linear or at least concave-convex fractional programming.

Ratios optimization problems(fractional programming) is a

nonlinear programming method that has known increasing

exposure recently and its importance, in solving concrete

problems, is steadily increasing. Furthermore, nonlinear

optimization models describe practical problems much

better than the linear optimization, with many assumptions,

does. The fractional programming problems are particularly

useful in the solution of economic problems in which

different activities use certain resources in different

proportions. While the objective is to optimize a certain

indicator, usually the most favorable return on allocation

ratio subject to the constraint imposed on the availability of

resources. It also has a number of important practical

applications in manufacturing, administration,

transportation, data mining, etc.

The methods to solve ratios optimization problems can be

broadly classified into exact (traditional) and heuristics

approaches. Some examples of traditional approaches is that

of ([2] who introduced the parametric approach, [3]solved

the linear fractional programming problems by converting

FPP into an equivalent linear programming problem and

solved it using already existing standard algorithms for LPP,

[4–7] reviewed some of the methods that treated solving the

FPP as the primal and dual simplex algorithm. The

crisscross, which is based on pivoting, within an infinite

number of iterations, either solves the problem or indicates

that the problem is infeasible or unbounded. The interior

point method, as well as Dinkelbach algorithms both reduces

the solution of the LFP problem to the solution of a sequence

of LP problems. Isbell Marlow method, Martos’ Algorithm,

Cambini–Martein’s Algorithm, Bitran and Novae’s Method,

Swarup’s Method, Harvey M. Wagner and John S. C. Yuan,

 Applied Mathematics & Information Sciences Letters
 An International Journal

mailto:analyst_mohamed@yahoo.com
http://dx.doi.org/10.12785/amisl/030206

84 M. Abdel-Baset, I. Hezam: An Improved Flower Pollination …

© 2015 NSP

Natural Sciences Publishing Cor.

Hasan, B.M., and Acharjee, S., developed a new method for

solving FLPP based on the idea of solving a sequence of

auxiliary problems so that the solutions of the auxiliary

problems converge to the solution of the FPP.Moreover,

there are many recent approaches employing traditional

mathematical methods for solving the ratios optimization

FPP such as: [8–10].

A few studies in recent years used heuristics approaches to

solve ratios optimization problems. [11] presented a genetic

algorithm based method to solve the linear fractional

programming problems. A set of solution point are generated

using random numbers, feasibility of each solution point is

verified, and the fitness value for all the feasible solution

points are obtained. Among the feasible solution points, the

best solution point is found out and then replaces the worst

solution point. A pair wise solution points are used for

crossover and a new set of solution points is obtained. These

steps are repeated for a certain number of generations and

the best solution for the given problem is obtained. [12]

developed a genetic algorithm for the class of bi-level

problems in which both level objective functions are linear

fractional and the common constraint region is a bounded

polyhedron. [1] proposed algorithm for the sum-of-ratios

problems based harmony search algorithm. [13] developed

neural networks for nonlinear fractional programming

problem. The research proposed a new projection neural

network model. It’s theoretically guaranteed to solve

variational inequality problems. The multiobjective

minimax nonlinear fractional programming was defined and

its optimality is derived by using its Lagrangian duality. The

equilibrium points of the proposed neural network model are

found to correspond to the Karush Kuhn Trcker point

associated with the nonlinear fractional programming

problem. [14] presented a neural network method for solving

a class of linear fractional optimization problems with linear

equality constraints. The proposed neural network model

have the following two properties. First, it is demonstrated

that the set of optima to the problems coincides with the set

of equilibria of the neural network models which means the

proposed model is complete. Second, it is also shown that

the model globally converges to an exact optimal solution

for any starting point from the feasible region. [15] Used

particle swarm optimization algorithm for solving fractional

programming problems.[16–19] introduced solution for

integer fractional programming problem and complex

variable fractional programming problems based swarm

intelligence under uncertainty.

Flower pollination is an intriguing process in the natural

world. Its evolutionary characteristics can be used to design

new optimization algorithms. The algorithm obtained good

results were dealing with lower-dimensional optimization

problems, but may become problematic for higher-

dimensional problems because of its tendency to converge

very fast initially. This paper introduced an improved Flower

pollination algorithm by integrating it with chaos to improve

the reliability of the global optimality, also enhances the

quality of the results.

This paper is organized as follows: after introduction, the

original Flower pollination algorithm is briefly introduced.

In section 3, the proposed algorithm is described, while the

results are discussed in section 4. Finally, conclusions are

presented in section 5.

2 The Original Flower Pollination Algorithm

Flower Pollination Algorithm (FPA) was founded by

Yang in the year 2012. Inspired by the flow pollination

process of flowering plants are the following rules:

Rule 1: Biotic and cross-pollination can be considered as a

process of global pollination process, and pollen-

carrying pollinators move in a way that obeys Le'vy

flights.

Rule 2: For local pollination, a biotic and self-pollination

are used.

Rule 3: Pollinators such as insects can develop flower

constancy, which is equivalent to a reproduction

probability that is proportional to the similarity of

two flowers involved.

Rule 4: The interaction or switching of local pollination

and global pollination can be controlled by a switch

probability p[0,1], with a slight bias toward local

pollination .

In order to formulate updating formulas, we have to

convert the aforementioned rules into updating equations.

For example, in the global pollination step, flower pollen

gametes are carried by pollinators such as insects, and pollen

can travel over a long distance because insects can often fly

and move in a much longer range[20].Therefore, Rule 1 and

flower constancy can be represented mathematically as:

))((1 BxLxx t

i

t

i

t

i   (2)

Where
t

ix is the pollen i or solution vector xi at iteration t,

and B is the current best solution found among all solutions

at the current generation/iteration. Here γ is a scaling factor

to control the step size. In addition, L(λ) is the parameter that

corresponds to the strength of the pollination, which

essentially is also the step size. Since insects may move over

a long distance with various distance steps, we can use a

Le'vy flight to imitate this characteristic efficiently. That is,

we draw L > 0 from a Levy distribution:

)0(,

1)2/sin()(
~ 01





SS

S
L




 (3)

Here, Γ(λ) is the standard gamma function, and this

distribution is valid for large steps s > 0.

Then, to model the local pollination, both Rule 2 and Rule 3

can be represented as:

 Appl. Math. Inf. Sci. Lett. 3, No. 2, 83-91 (2015) / http://www.naturalspublishing.com/Journals.asp 85

© 2015 NSP

 Natural Sciences Publishing Cor.

)(1 t

k

t

j

t

i

t

i xxUxx 
 (4)

Where
t

jx and
t

kx are pollen from different flowers of the

same plant species. This essentially imitates the flower

constancy in a limited neighborhood. Mathematically, if
t

jx

and
t

kx comes from the same species or selected from the

same population, this equivalently becomes a local random

walk if we draw U from a uniform distribution in [0,

1].Though Flower pollination activities can occur at all

scales, both local and global, adjacent flower patches or

flowers in the not-so-far-away neighborhood are more likely

to be pollinated by local flower pollen than those faraway. In

order to imitate this, we can effectively use the switch

probability like in Rule 4 or the proximity probability p to

switch between common global pollination to intensive local

pollination. To begin with, we can use a naive value of p =

0.5as an initially value. A preliminary parametric showed

that p = 0.8 might work better for most applications[20].

Flower pollination algorithm

Define Objective functionf (x), x = (x1, x2, ..., xd)

Initialize a population of n flowers/pollen gametes with

random solutions

Find the best solution Bin the initial population

Define a switch probability p ∈ [0, 1]

Define a stopping criterion (either a fixed number of

generations/iterations or accuracy)

while (t <MaxGeneration)

for i = 1 : n (all n flowers in the population)

if rand <p,

Draw a (d-dimensional) step vector L which obeys a

L´evy distribution

Global pollination via)(1 t

i

t

i

t

i xBLxx 

else

Draw U from a uniform distribution in [0,1]

Do local pollination via)(1 t

k

t

j

t

i

t

i xxUxx 

end if

Evaluate new solutions

If new solutions are better, update them in the

population

end for

Find the current best solution B

end while

Output the best solution found

Fig. 1 Pseudo code of the Flower pollination algorithm.

3 The Proposed Algorithm (IFPCH) for Solving

Ratios Optimization Problems

Generating random sequences with a longer period and

good consistency is very important for easily simulating

complex phenomena, sampling, numerical analysis, decision

making and especially in heuristic optimization[21]. Its

quality determines the reduction of storage and computation

time to achieve a desired accuracy[22]. Chaos is a

deterministic, random-like process found in nonlinear,

dynamical system, which is non-period, non-converging and

bounded. Moreover, it depends on its initial condition and

parameters[23–28]. Applications of chaos in several

disciplines including operations research, physics,

engineering, economics, biology, philosophy and computer

science[29–32].

Recently chaos has been extended to various

optimization areas because it can more easily escape from

local minima and improve global convergence in

comparison with other stochastic optimization algorithms

[33], [34], [30], [35], [36]. Using chaotic sequences in flower

pollination algorithm can be helpful to improve the

reliability of the global optimality, and they enhance the

quality of the results.

3.1 Chaotic maps

At random-based optimization algorithms, the methods

using chaotic variables instead of random variables are

called chaotic optimization algorithms (COA) [22]. In these

algorithms, due to the non-repetition and ergodicity of chaos,

it can carry out overall searches at higher speeds than

stochastic searches that depend on probabilities [37–40],

[36]. To achieve this issue, herein one-dimensional, non-

invertible maps are utilized to generate chaotic sets. We will

illustrate some of well-known one-dimensional maps as:

3.1.1 Logistic map

The Logistic map is defined by:

 𝑌𝑛+1 = 𝜇𝑌𝑛(1 − 𝑌𝑛)𝑌(0,1) 0 <  ≤ 4 (5)

3.1.2 The Sine map

The Sine map is written as the following equation:

 𝑌𝑛+1 =
𝜇

4
sin(𝜋𝑌𝑛) 𝑌𝜖(0,1) 0 < 𝜇 ≤ 4 (6)

3.1.3 Iterative chaotic map

The iterative chaotic map with infinite collapses is

described as:

𝑌𝑛+1 = sin (

𝜇𝜋

𝑌𝑛

) 𝜇 ∈ (0,1) (7)

3.1.4 Circle map

The Circle map is expressed as:

 𝑌𝑛+1

= 𝑌𝑛 + 𝛼 − (
𝛽

2𝜋
) sin(2𝜋𝑌𝑛) 𝑚𝑜𝑑 1

(8)

http://www.naturalspublishing.com/Journals.asp

86 M. Abdel-Baset, I. Hezam: An Improved Flower Pollination …

© 2015 NSP

Natural Sciences Publishing Cor.

3.1.5 Chebyshev map

The family of Chebyshev map is written as the following

equation:

 𝑌𝑛+1 = cos(𝑘𝑐𝑜𝑠−1(𝑌𝑛)) 𝑌 ∈ (−1,1) (9)

3.1.6 Sinusoidal map

This map can be represented by:

 𝑌𝑛+1 = 𝜇𝑌𝑘
2sin (𝜋𝑌𝑛) (10)

3.1.7 Gauss map

The Gauss map is represented by:

𝑌𝑛+1 = {

0 𝑌𝑛 = 0
𝜇

𝑌𝑛

𝑚𝑜𝑑 1 𝑌𝑛 ≠ 0 (11)

3.1.8 Sinus map

Sinus map is formulated as follows:

 𝑌𝑛+1 = 2.3(𝑌𝑛)2 sin(𝜋𝑌𝑛) (12)

3.1.9 Dyadic map

Also known as the dyadic map, bit shift map, 2x mod 1

map, Bernoulli map, doubling map or saw tooth map.

Dyadic map can be formulated by a mod function:

𝑌𝑛+1 = 2𝑌𝑛𝑚𝑜𝑑 1 (13)

3.1.10 Singer map

Singer map can be written as:

 𝑌𝑛+1 = 𝜇(7.86𝑌𝑛 − 23.31𝑌𝑛
2 + 28.75𝑌𝑛

3

− 13.3𝑌𝑛
4)

(14)

 between 0.9 and 1.08

3.1.11 Tent map

This map can be defined by the following equation:

𝑌𝑛+1 = {

𝜇𝑌𝑛𝑌𝑛 < 0.5

𝜇(1 − 𝑌𝑛)𝑌𝑛 ≥ 0.5
 (15)

3.2 Handling Constraints

One of the well-known techniques of handling

constraints is using penalty function, which transforms

constrained problem into unconstrained ones, consisting of a

sum of the objective and the constraints weighted by

penalties. By using penalty function methods, the objectives

are inclined to guide the search toward the feasible solutions.

Hence, in this paper the corresponding objective function

used in is defined and described as:





K

n

ngxfxF
1

),0max()()(min 

Where 𝑓(𝑥) is the objective function for assignment

problem,  is the penalty coefficient and it is set to a value

of 1011 in this paper, 𝐾 is the number of constraints and gn

the constraints of the problem.

In the proposed chaotic flower pollination algorithm, we

used chaotic maps to tune the flower pollination algorithm

parameter and improve the performance [21], [22].

The steps of the proposed chaotic flower pollination

algorithm for solving ratios optimization problems are as

follows:

Step 1 define the objective function and initializes a

population then find the best solution B in the initial

population.

Step 2 Calculate p by the selected chaotic maps.

Step 3 If (rand <p) then global pollination via

))(()(1 BxLfxx t

i

t

i

t

i  

else do local pollination via selected chaotic map.

Step 4 Evaluate new solutions if better, update them in the

population.

Step 5 Find the current best solution B.

Step 6 Output the best solution found.

4 Numerical Results

Ten diverse problems were collected from literature[41],

[19] to demonstrate the efficiency and robustness of solving

FFPs. The obtained numerical results are compared to their

relevance found in references; some examples were also

solved using exact method f1and f3. Table 1shows they

attained the comparison result. In these problems, the initial

parameters are set at n= 50 and the number of iterations is

set to t = 1000, the selected chaotic map for all problems is

the logistic map, according to the following equation:

 𝑌𝑛+1 = 𝜇𝑌𝑛(1 − 𝑌𝑛) (16)

Clearly, 𝑌𝑛 [0,1] under the conditions that the

initial𝑌0 [0,1], where 𝑛 is the iteration number and𝜇 =
 4.The results of IFPCH algorithm are conducted from 50

independent runs for each problem. The comparison

between the results determined by the proposed approach

and the compared algorithms are reported in Table 1. The

results have demonstrated the superiority of the proposed

approach to finding the optimal solution.

All the experiments were performed on a Windows 7

Ultimate 64-bit operating system; processor Intel Core i5

760 running at 2.81 GHz; 4 GB of RAM and code was

implemented in MATLAB.

 Appl. Math. Inf. Sci. Lett. 3, No. 2, 83-91 (2015) / http://www.naturalspublishing.com/Journals.asp 87

© 2015 NSP

 Natural Sciences Publishing Cor.

4.1. Test problem 1

This problem is defined as:

1
4 2 10

: max
2 5

3 30

2 5; , 0

x y
f z

x y

subject to x y

x y x y

 


 

 

   

4.2. Test problem 2

The two-dimensional Schaffer 2 function defined as:

  
  

2 2
1 2

2
2 2
1 2

sin sin 0.5
0.5

1 0.001

100 100; 1,2i

x x

x x

x i

 


 

   

4.3. Test problem 3

This problem is defined as:

3
1

: min
2 3

0 1; 0 1

x y
f z

x y

subject to x y

 


 

   

4.4. Test problem 4

This problem is defined as:

2 2 0.5

4 2 2 0.5

8 7 2.33(9 4)
:max

20 12 2.33(3 2 4)

2 18

2 16; , 0

x y x y
f z

x y x xy y

subject to x y

x y x y

  


   

 

  

4.5. Test problem 5

The two-dimensional Schaffer 4 function defined as:

 
  

2 2
1 2

2
2 2
1 2

cos sin 0.5
0.5

1 0.001

100 100; 1,2i

x x

x x

x i

 


 

   

4.6. Test problem 6

This two-dimensional sine Envelope function defined as:

  

2 2 2
1 1

6 2
2 2

1 1

sin 0.5

: max 0.5

0.001 1

n i i

i i i

x x

f z

x x

 

 

     
    

 
 

  



100 100;  ix

4.7. Test problem 7

This problem is defined as:

2 0.5 1 2 1

7 1.5 2 1 1 2 1

2 2.8 7.5 0.1
:max

1 3 2 9 12

x y xy y x y y
f z

xy x y x xy y

 

  

     
 

    

1

1

2 3

2 4

3 5

3 2; 1 , 3

subject to x xy

x x y

x y x y





 

 

   

4.8. Test problem 8

This problem is defined as:

8
37 73 13 63 18 39

: max
13 13 13 13 26 13

5 3 3

1.5 3

, 0

x y x y
f z

x y x y

subject to x y

x

x y

   
 

   

 

 



4.9. Test problem 9

This problem is defined as:

9
2 2

: min
10 10

x y
f z

x y


 

 

2 2

2 2

x 3 0

x 8 14 0

2 6

3 8

1

1 3; 1 4

subject to y

y y

x y

x y

x y

x y

   

    

 

 

 

   

4.10. Test problem 10

This problem is defined as:

1.4 1.2 0.5 1.1

10
13 13 13 64 18 39 2 5 50 2 4 50

:max
37 73 13 13 26 13 5 5 50 5 4 50

2 5 10

5 3 3

1.5 3; , , 0

x y x y x y v x y v
f z

x y x y x y v y v

subject to x y v

x y

x x y v


                

          
               

  

 

  

http://www.naturalspublishing.com/Journals.asp

88 M. Abdel-Baset, I. Hezam: An Improved Flower Pollination …

© 2015 NSP

Natural Sciences Publishing Cor.

Table 1: Comparison results of the IFPCH with other methods.
Test

problem
Technique/Reference

Decision variable optimal

value

Objective function

value

1f
 (max)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Method”

IFPCH

(x*,y*)= (30,0)

(x*,y*)= (30,0)

(x*,y*)= (30,0)

z*=3.714286

z*=3.714286

z*= 3.7142857

2f
 (min)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Method”
IFPCH

none

none
(x*,y*)=(0.0056,0.0008)

none

none
z*=6.25E-016

3f
 (min)

C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”

[42] “Neural Network”

IFPCH

(x*,y*)= (0,0)
(x*,y*)= (0,0)

(x*,y*)=(0.5,3)

(x*,y*)= (0,0)

z*=0.333
z*=0.333

z*=4.5

z*=0.333

4f
(max)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Method”
[43] “Goal Setting and Approximation”

IFPCH

none

none

(x*,y*)=(7.229,0)
(x*,y*)= (1.0264,5.7391)

(x*,y*)= (1.025,5.628)

none

none

z*=0.084
z*=0.3383

z*=0.3385

5f
(max)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Method”
IFPCH

none

none
(x*,y*)= (0,1.453)

none

none
z*=0.290012

6f
(max)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Method”
IFPCH

none

none
(x*,y*)= (0,0)

none

none
z*= 0

7f
(max)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Method”

[44] “Global Optimization”
IFPCH

none

none

(x*,y*)= (1,1)
(x*,y*)= (1,1)

none

none

z*=5.5167
z*=5.5167

8f
(max)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Metho
[45] “Global Optimization”

IFPCH

none

none
(x*,y*)=(3,4)

(x*,y*)= (3,4)

none

none
z*=5

z*=5

9f
 (min)

C.C. Transformation “Exact Method”

Dinkelbach algorithm “Exact Method”
[9] “Global Ooptimization”

IFPCH

none

none
(x*,y*)=(1,1.4142)

(x*,y*)=(1,1.4)

none

none
z*=0.48558

z*=0.486

10f
(max)

C.C. Transformation “Exact Method”
Dinkelbach algorithm “Exact Method”

[1] “HS"

IFPCH

none
none

(x*,y*,v*)=(1.5,1.5,1.1)

(x*,y*,v*)=(1.5,1.5,0)

none
none

z*=8.1207

z*=8.279

The numerical results obtained using the proposed algorithm

are compared to assorted exact methods and metaheuristic

techniques as shown in table 1. Four exact methods were

selected for solving the 10 benchmark functions and carrying

out the comparison. The four methods are C.C.

Transformation, Dinkelbach algorithm, Goal setting and

approximation and global optimization. Neural network and

harmony search are the other two metaheuristic intelligent

techniques incorporated in the compare test. The some

calculations are obtained out of the numerical solutions of all

the ten functions. The obtained optimization value the

proposed IFPCH algorithm managed to explore new solution

areas that benchmark problem results using exact methods

couldn’t reach that could be clearly noticed from f2 to f10 in

table (1).The optimization value results for the rest functions

indicates a better achievement for IFPCH algorithm.

Boldface figures in the table indicates the best result(s)

among the algorithms. Figures 2, 3 and 4. show that the

proposed IFPCH algorithm is able reach to global

optimization in f2,f5, and f6 though they have many local

optimizations.

Fig. 2: Two-dimensional Schaffer 2 function.

 Appl. Math. Inf. Sci. Lett. 3, No. 2, 83-91 (2015) / http://www.naturalspublishing.com/Journals.asp 89

© 2015 NSP

 Natural Sciences Publishing Cor.

Fig. 3: Two-dimensional Schaffer 4 function.

Fig. 4: Two-dimensional Sine Envelope function.

5 Conclusions

The paper presents a new approach to solve ROPs based on

Flower pollination algorithm with chaos. Ten-benchmark

problem were solved using the proposed algorithm and many

other previous approaches. The results employing the

proposed algorithm were compared with the other exact and

metaheuristic approach espreviously used for handling

ROPs. The algorithm proved their effectiveness, reliability

and competences in solving different ROP. The proposed

algorithm managed to successfully solve large-scale ROP

with an optimal solution at a finite point and an unbounded

constraint set. The features and capabilities of the proposed

algorithm was more evident when dealing with large-scale

problems and a solution is a regular space. The

computational results proved that IFPCH turned out to be

superior to other algorithms for all the accomplished tests

yielding a higher and much faster growing mean fitness at

less computational time.

References

[1] M. Jaberipour and E. Khorram, “Solving the sum-of-

ratios problems by a harmony search algorithm,”

Journal of computational and applied mathematics, vol.

234, pp. 733–742, (2010).

[2] H. Wolf, “A parametric method for solving the linear

fractional programming problem,” Operations

Research, vol. 33, pp. 835–841, (1985).

[3] A. Charnes and W. Cooper, “An explicit general

solution in linear fractional programming,” Naval

Research Logistics Quarterly, vol. 20, pp. 449–467,

(1973).

[4] T. B. Farag, “A Parametric Analysis on Multicriteria

Integer Fractional Decision-Making Problems,” Faculty

of Science, Helwan University, (2012).

[5] M. B. Hasan and S. Acharjee, “Solving LFP by

Converting it into a Single LP,” International Journal

of Operations Research, vol. 8, pp. 1–14, (2011).

[6] M. Hosseinalifam, “A Fractional Programming

Approach for Choice-Based Network Revenue

Management,” UNIVERSITE DE MONTREAL,

(2009).

[7] I. Stancu-Minasian, Fractional programming: theory,

methods and applications, vol. 409. Kluwer academic

publishers Dordrecht, (1997).

[8] M. Dür, C. Khompatraporn, and Z. B. Zabinsky,

“Solving fractional problems with dynamic multistart

improving hit-and-run,” Annals of Operations

Research, vol. 156, pp. 25–44, (2007).

[9] H. Jiao, Z. Wang, and Y. Chen, “Global optimization

algorithm for sum of generalized polynomial ratios

problem,” Applied Mathematical Modelling, vol. 37, pp.

187–197, (2013).

[10] P. Shen, Y. Chen, and Y. Ma, “Solving sum of

quadratic ratios fractional programs via monotonic

function,” Applied Mathematics and Computation, vol.

212, pp. 234–244, (2009).

[11] A. Sameeullah, S. D. Devi, and B. Palaniappan,

“Genetic algorithm based method to solve linear

fractional programming problem,” Asian Journal of

Information Technology, vol. 7, pp. 83–86, (2008).

[12] H. I. Calvete, C. Galé, and P. M. Mateo, “A genetic

algorithm for solving linear fractional bilevel

problems,” Annals of Operations Research, vol. 166,

pp. 39–56, (2009).

[13] S. Bisoi, G. Devi, and A. Rath, “Neural Networks for

Nonlinear Fractional Programming,” International

Journal of Scientific & Engineering Research, Volume

2, Issue 12, December-2011, vol. 2, 12, pp. 1–5, (2011).

http://www.naturalspublishing.com/Journals.asp

90 M. Abdel-Baset, I. Hezam: An Improved Flower Pollination …

© 2015 NSP

Natural Sciences Publishing Cor.

[14] L. Xiao, “Neural Network Method for Solving Linear

Fractional Programming,” in Computational

Intelligence and Security (CIS), 2010 International

Conference on, pp. 37–41, (2010).

[15] A. Pal, S. Singh, and K. Deep, “Solution of fractional

programming problems using PSO algorithm,” in

Advance Computing Conference (IACC), 2013 IEEE

3rd International, pp. 1060–1064, (2013).

[16] I. M. Hezam and O. A. Raouf, “Employing Three

Swarm Intelligent Algorithms for Solving Integer

Fractional Programming Problems,” International

Journal of Scientific and Engineering Research

(IJSER), vol. 4, pp. 191–198, (2013).

[17] I. M. Hezam and O. A. Raouf, “Particle Swarm

Optimization Approach For Solving Complex Variable

Fractional Programming Problems,” International

Journal of Engineering, vol. 2, (2013).

[18] I. M. Hezam and M. M. H. Osama Abdel Raouf,

“Solving Fractional Programming Problems Using

Metaheuristic Algorithms Under Uncertainty,”

International Journal of Advanced Computing, vol. 46,

pp. 1261–1270, (2013).

[19] A.-R. Osama, A.-B. Mohamed and E.-h. Ibrahim, "A

Novel Hybrid Flower Pollination Algorithm with

Chaotic Harmony Search for Solving Sudoku Puzzles,"

International Journal of Engineering Trends and

Technology (IJETT), vol. 7, no. 3, pp. 126-132, January

(2014).

[20] X.-S. Yang, “Flower pollination algorithm for global

optimization,” in Unconventional Computation and

Natural Computation, Springer, pp. 240–249, (2012).

[21] L. M. Pecora and T. L. Carroll, “Synchronization in

chaotic systems,” Physical review letters, vol. 64, p.

821, (1990).

[22] D. Yang, G. Li, and G. Cheng, “On the efficiency of

chaos optimization algorithms for global optimization,”

Chaos, Solitons & Fractals, vol. 34, pp. 1366–1375,

(2007).

[23] B. Alatas, “Chaotic bee colony algorithms for global

numerical optimization,” Expert Systems with

Applications, vol. 37, pp. 5682–5687, (2010).

[24] A. Gandomi, X.-S. Yang, S. Talatahari, and A. Alavi,

“Firefly algorithm with chaos,” Communications in

Nonlinear Science and Numerical Simulation, vol. 18,

pp. 89–98, (2013).

[25] A. H. Gandomi, G. J. Yun, X.-S. Yang, and S.

Talatahari, “Chaos-enhanced accelerated particle

swarm optimization,” Communications in Nonlinear

Science and Numerical Simulation, vol. 18, pp. 327–

340, (2013).

[26] W. Gong and S. Wang, “Chaos ant colony optimization

and application,” in Internet Computing for Science and

Engineering (ICICSE), 2009 Fourth International

Conference on, pp. 301–303, (2009).

[27] J. Mingjun and T. Huanwen, “Application of chaos in

simulated annealing,” Chaos, Solitons & Fractals, vol.

21, pp. 933–941, (2004).

[28] L. dos Santos Coelho and V. C. Mariani, “Use of

chaotic sequences in a biologically inspired algorithm

for engineering design optimization,” Expert Systems

with Applications, vol. 34, pp. 1905–1913, (2008).

[29] O. Abdel-Raouf, M. Abdel-Baset, and I. El-Henawy,

“An Improved Chaotic Bat Algorithm for Solving

Integer Programming Problems,” International Journal

of Modern Education and Computer Science (IJMECS),

vol. 6, p. 18, (2014).

[30] D. He, C. He, L.-G. Jiang, H.-W. Zhu, and G.-R. Hu,

“Chaotic characteristics of a one-dimensional iterative

map with infinite collapses,” Circuits and Systems I:

Fundamental Theory and Applications, IEEE

Transactions on, vol. 48, pp. 900–906, (2001).

[31] R. C. Hilborn, Chaos and nonlinear dynamics, vol. 2.

Oxford University Press New York, (1994).

[32] M. S. Tavazoei and M. Haeri, “Comparison of different

one-dimensional maps as chaotic search pattern in chaos

optimization algorithms,” Applied Mathematics and

Computation, vol. 187, pp. 1076–1085, (2007).

[33] O. Abdel-Raouf, M. Abdel-Baset, and I. El-henawy,

“An Improved Flower Pollination Algorithm with

Chaos,” I.J. Education and Management Engineering,

vol. 2, pp. 1–8, (2014).

[34] A. Erramilli, R. Singh, and P. Pruthi, Modeling packet

traffic with chaotic maps. Citeseer, (1994).

[35] R. M. May and others, “Simple mathematical models

with very complicated dynamics,” Nature, vol. 261, pp.

459–467, (1976).

[36] A. Wolf, “Quantifying chaos with Lyapunov

exponents,” Chaos, pp. 273–290, (1986).

[37] R. Barton, “Chaos and fractals,” The Mathematics

Teacher, pp. 524–529, (1990).

[38] R. L. Devaney, “An introduction to chaotic dynamical

systems,” (2003).

[39] C. Letellier, Chaos in nature, vol. 81. World Scientific,

(2013).

[40] E. Ott, Chaos in dynamical systems. Cambridge

university press, (2002).

[41] O. A. Raouf, M. A. Baset, I. M. Elhenawy, “A New

Hybrid Flower Pollination Algorithm for Solving

Constrained Global Optimization Problems”,

 Appl. Math. Inf. Sci. Lett. 3, No. 2, 83-91 (2015) / http://www.naturalspublishing.com/Journals.asp 91

© 2015 NSP

 Natural Sciences Publishing Cor.

International Journal of Applied Operational Research

Vol. 4, No. 2, pp. 1-13, Spring (2014).

[42] Q.-J. Zhang and X. Q. Lu, “A Recurrent Neural

Network for Nonlinear Fractional Programming,”

Mathematical Problems in Engineering, vol. 2012,

(2012).

[43] Y. Z. Mehrjerdi, “Solving fractional programming

problem through fuzzy goal setting and approximation,”

Applied Soft Computing, vol. 11, pp. 1735–1742,

(2011).

[44] P. Shen, Y. Ma, and Y. Chen, “Global optimization

for the generalized polynomial sum of ratios problem,”

Journal of Global Optimization, vol. 50, pp. 439–455,

(2011).

[45] C.-F. Wang and P.-P. Shen, “A global optimization

algorithm for linear fractional programming,” Applied

Mathematics and Computation, vol. 204, pp. 281–287,

(2008).

http://www.naturalspublishing.com/Journals.asp

