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Abstract: This paper deals with a scalar response conditioned by aifmat random variable. The main goal is to estimate
nonparametrically Kernel type estimator for the condiilbimazard function. Finally, asymptotic properties of taésimator are stated
bias the exact expression involved in the leading termsefjtradratic error and we investigate the asymptotic notynaflithe kernel
conditional hazard function estimator.
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1 Introduction

The estimated hazard rate, because of the variety of itslppesgpplications, is an important issue in statistics sftbpic

can (and should) be approached from several angles degeolithe complexity of the problem: presence of censoring
in the observed sample (for example, common phenomenon dicaiepplications), presence of dependence between
the observed variables (for example, common phenomenagppilications such as seismic or econometric) or presence
of explanatory variables. Many techniques have been sludigne literature to deal with these situations but all aedy

with random explanatory variables real and multidimenaion

Technical advances in collection and data storage can haxve often statistical functional: curves, images, tahles,
The data are modeled as realizations of a random variabitegtaklues in an abstract space of infinite dimension, and the
scientific community was naturally interested in recentrgd¢lae development of statistical tools capable of handtimg
type of sample.

Thus, estimating a hazard rate in the presence of functiexhnatory variable is a topical issue. In this context,
the first results were obtained by Ferratyal. [9]. They studied the almost complete convergence of a kestiehator
of the conditional hazard function assuming i.i.d obséovest and the case of observations mixing for complete dada an
censored.

In the case where the data is incomplete, Lemdani and Oulli{$4], they give the asymptotic mean integrated
squared error and the mean squared error for the kernelastiof the hazard rate from truncated and censored data.

Recently, Djebbourt al. [5] studied the mean squared convergence rate and are prevagytimptotic normality for
functional mixing data case of this estimate.

The estimators that we define are based on the techniquesdlation kernel. The study of functions (the hazard
function and the conditional hazard function) is of obvidngerest in many scientific fields (biology, medicine,
reliability, seismology, econometrics, ...), and manyhaus have studied the construction of nonparametric estimaf
hazard function. One of the most common techniques for oacti#tg estimators of the hazard function (respectivedy th
hazard function conditional) is to study a quotient of thagity estimator (respectively the conditional density)l am
estimator ofS (respectively the conditional survival function). Theield by Patilet al. [17] presented an overview of
estimation techniques. The non-parametric methods bas#ukeddeas of convolution kernel, which are known for their
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good behavior problems in density estimation (conditiarahot), and are widely used in nonparametric estimation of
hazard function.

A wide range of literature in this area is provided by theréitare reviews of Singpurwalla and WorZf)], Hassankt
al.[12], Izenman 3], Gefeller and Michels11] and Pascu and Vaduva€).

Advances in data collection processes have the immediaitgeqoience of the opportunity for statisticians to have
more and more observations of functional variables. Theksvof Ramsay and Silvermand§] and Ferraty and Vieu
[8] offer a wide range of statistical methodologies, parameir not, recently developed to treat various problems of
estimation are carried out in functional random variabiesyith values in an infinite dimensional space) and/or ramdo
variables real. In this context Arfil] is study the almost sure convergence of the kernel typenasdr of the hazard
function is shown undep-mixing condition with censored data over a sequence of @mingets which increasesk.

The objective of this paper is to study a model in which thedittonal random explanatory variabh¢ is not
necessarily real or multi-dimensional but only supposduktavith values in an abstract spagesemi-normed.

As with any problem of nonparametric estimation, the dinmem®f the space# plays an important role in the
properties of concentration of the varialleThus, when this dimension is not necessarily finite, théabdity functions
defined by small balls

@(h) =P(X € B(xh) =P (X € {X € Z,|[x=x| <h}), (1)

intervene directly in the asymptotic behavior of any estonanonparametric functional (see Ferratyal. [7]). The
asymptotic results that we present later in this article @mvergence in mean square of the conditional hazard fumctio
will not escape this rule.

2 General notations and conditions

We consider a random paiK,Y) whereY is valued inR andX is valued in some semi-normed vector spaée || - ||)
which can be of infinite dimension. We will say thétis a functional random variable and we will use the abbrexat
frv. From a sample of independant pafb§,Y;), each having the same distribution @§Y), our aim is to study the
mean square convergence of the estimator of the conditi@zalrd function of a real random variable conditional on one
variable functional. The nonparametric estimate of fuorctelated with the conditional probability distributiccofd-cdf)

of Y givenX. Forx € .%, we assume that the regular version of the conditional foitihaof Y givenX exists denoted
by X and has a bounded density with respect to Lebesgue measn a¥enoted byf\. In the following (x,y) will

be a fixed point iR x .# andNy x . will denote a fixed neighborhood ¢%,y), .”& will be a fixed compact subset of
R, and we will use the notatioB(x,h) = {X € .Z /|X —x|| < h}. Our nonparametric models will be quite general in the
sense that we will just need the following simple assumpfioithe marginal distribution oX:

¢: F7xR—R

(X,y) — @(x,y) such as:

C3(Z xR) = 24 (. (2)
; vze N, gz € N and (0.9, T ) e i x o,

whereCL(x) is the set of continuously differentiable functions to sehGateaux oy (see TroutmanZ1] for this type of
differentiability), which the derivative operator of ordeat pointx is bounded on the unit bai(0, 1) the functional space
Z. Given i.i.d. observationéXy, Y1), ..., (X, Ya) of (X,Y), the kernel estimate of the conditional distributigi (x,y)

denotedX (x,y), is defined by:

_ZK(h;1||x—><a||)H(hg1(y—Yi))
FYX(va) ==

)

3 Kb h=Xi)

withe the conventiorg = 0. The functionK is kernel H is acfd andhg = hk n (resp.hy = hy ) is a sequence of positive
real numbers. Note that from this estimator, we derive amesor for the density conditional, denot@(x,y) defined
by

n

hglZK(h;ZlHX—Xi||)H/(hﬁ1(Y—Yi))

f%(xvy) = = n )

¥ Kt lx=X)
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whereH’ is kernel (is the derivative dfl). We then construct the conditional hazard functiorYdénowing X = x as
follows:

Fxy _ Fxy
VXeZ, WeR  K(xy) = — 52— = L 3)
WOV = TR ) o)
The main objective is to study the the nonparametric esﬁﬁf};(b(, y) of K (x,y).
Furthermore, the estimatb{ (x,y) can we written as

~

N(XY) )

=X _ Q( (Xa y) _ f 3
1- FY>< (Xa y) fD (X - /g\N (X7 y)

he (%.y)

where
o) = ey, K XKD Kat) = Kt X,

A, P 1 : — A — 4
On(Xy) == mi;K(hKl||X—X|J|)H(hH1(y—Y|))7
) =000 = e 3 Kb XIDH gty ),

whereH’ is the derivative ofH, when the explanatory variab¥eis valued in a space of eventually infinite dimension. We
give precise asymptotic evaluations of the quadratic eftiis estimator.

3 asymptotic properties

To establish the convergence in mean square of the estiﬁi%(bqy) to i (x,y) and the asymptotic normality of the kernel
conditional hazard function estimator, we introduce theWang assumptions, lelh; andb, be two positive numbers;
such that:

(H1) For allr > 0, the random variablg = r~1(x — X) is absolutely continuous relative in the measpreHis density

w(r,x,V) is strictly positive orB(0, 1) and can be written as:

W(r,x,v) = 9(r)g(x,v) + o(g(r)) for all v € B(0,1), (5)
where
(i) @is an increasing function with valuest.
(i) gis defined onZ x .7, with values inR™ where 0< /( )g(x,v)du(v) < 0.
B(0,1

(H2) The kerneK from R into R™ is a differentiable function supported @ 1]. Its derivativeK’ exists and is such that

there exist two constan@andC’ with —eo < C < K’(t) <C' <0for0<t <1.
(H3) H’ is a kernel bounded, integrable, positive, symmetric shah t

/H’(t)dt =1, /tZH’(t)dt <w, and / It|°2H/ (t)dt < oo,
R
X
whereH (x) = / H’(t)dt (see Ferraty and Viel8])
(H4) The bandwidting satisfies:

_ @th
he L0, vt [0.2] im Z((h:))

= By () and nhygk(hg) — o asn — c.

(H5) { 31 < oo, £(X,Y) < T,¥(X,y) €. x Z&, and;
V(x1,%2) € N2, Y(y1,¥2) €SB, |T5(xa,y1) — 1 (%2, ¥2)| < Cx ([[x2 — Xa[PL + [y2 — y2/%2) .
3B > 0,RX(xy) < 1-B,V(xY) € F x ., and;
(H6) v N2, v P2 |RX —_RX < _ by —o|b2
(x1,%2) € NE, V(y1,Y2) € 2, [RF (X2, ¥1) — RS (X2,¥2)| < Cx ([Ix2 — X2||Pt + [y1 — y2[2) .
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3.1 Remarks on the assumptions

Remark 3.1. Assumption {) plays an important role in our methodology. It is known as @mallh) the "concentration
hypothesis acting on the distribution ¥f in infinite-dimensional spaces. This assumption is notliatesstrictive and
overcomes the problem of the non-existence of the prolalignsity function. In many examples, around zero the
small ball probabilityg(h) can be written approximately as the product of two indepanfiectionsy(z) and¢ (h) as
@(h) = Y(2)d(h) +o(¢ ().

This idea was adopted by Masr¥q who reformulated the Gasseral. [10] one. The increasing property gk(.)
implies that{/(.) is bounded and then integrable (all the mor&§0) is integrable).

Without the differentiability ofg(.), this assumption has been used by many authors whejes interpreted as a
probability density, whilgp (.) may be interpreted as a volume parameter. In the case ofdiimtensional spaces, that is
< =TRY, it can be seen thag(h) = C(d)h9y(x) 4 oh?), whereC(d) is the volume of the unit ball iiR9. Furthermore,
in infinite dimensions, there exist many examples fulfillthg decomposition mentioned above. We quote the following
(which can be found in Ferrasgt al. [6]):

1. g (h) =~ @(h)hY for somy > 0.
2. g(h) = (h)hYexp{C/hP} for somy > 0 andp > 0.
3.4u(h) ~ Y(h)/[Inh].

The functionB(.) which intervenes in Assumption (H4) is increasing for alefbh. Its pointwise limit3}(.) also
plays a determinant role. It intervenes in all asymptotiaperties, in particular in the asymptotic variance termthwi
simple algebra, it is possible to specify this function tws(u) := BJ(u) in the above examples by:

1. Bo(u)
2. Bo(u)
3. Bo(u)

u,
01(u) whered (.) is Dirac function,
Li0,1y(u).

The result concerns tHe*-consistency oﬁi} (X,Y).

Theorem 3.1. Under the hypothesis (H1)-(H6) andrf* (x,y) (resp.fy(x,y)) € C3(.Z x R) then

MSER (x.y) = E[ (R (xy) - 1 (x.y))]

2
= Ba(x,y) + % +o(h2) +o(hk) +0 (Wl(hm) ,
where
By — (B O0Y) — RECY)BE O y)) (B (x y) — ¥ (x ) BE () I
= 1 FE(xy) ’
with
2 x
i~ L2000 [
B (cy) — 02 <||v|\>Dfo<x, >Mg<x,v>du<v>
« Jon K(VDgovdu(y
Bﬁ(x,w—;“;iy(z”) H(t)dt,
B (xy) _ 801 <|\v||>DxFY (x.y)[Ma(x.v)du(v)
Ky oy KIVDgvdn(y)
and
X
oR(Xy) = (BfflzrlYlg?() (with B; = / (IvIDa(x,v)du(v), for, j =1, 2).
(@© 2015 NSP
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Proof. This proof is based on the decomposition

B Ry R(xy)
X X _ Y o Y
hY(va)_hY(Xay) - 1—|/:\YX(X,y) 1—FYX(X,y)
1 fFxy) =
= 1—|§$<(X,y) {(R((Xay)_ f\>(((XaY))+mw\?<(x,y)—F\?((x,y))}
1 = = ~
:aaﬁawaﬂmmw—mmmﬂ+®mw@%mw_guw)
1

PR gaocy) BN = K0 + Ry (1-Boxy) - (o0 —Gux) ) |- @
D )

whereDy means the derivative with respectto
Hence

Ry —Réeey)| < m{\mx,w— R 00y)| + R Oey) (REOey) = R0 ) |
=

which leads to a consta@t< co:
o R0y - ey |+ [RXey) — R ocy)
1-Rexy)

IR 0cy) = () | <

Then, Theorem 3.1 can be deduced from both lemmas above L@imad Lemma 3.Z.1.
Lemma 3.1. Under the hypothesis (H1)-(H6) andfif (x,y) € C3(.# x R) then:

2

2 g7 (%,y)
E[R00y) = K 00y)]| = Bl 0o + Bl () +

1
W(hl() +0(ha)+0(h}<)+0 <7) ,

nhH (p(hK)

where
(R503) (Jeoa) KE(IMDGOGV)AH(Y) ) [ HZ(E)cl

(Joo K(MDaGV)du) )

Lemma 3.2 Under the hypothesis (H1)-(H6) andrf* (x,y) € C3(.# x R) then:

o?(x,y) =

R 2
B[R c) - R x| = B O+ B G+ 2 o) o) +0 (s )

with
R 06y) (1= RE00Y) (Jaow KEVMDEO VH(Y))

; 2
(feroa K(IVINGXVdH(Y))
Remark 3.2. Observe that, the result of this lemmas Lemma 3.1 and LemEhae3mits to write

[Ean(xy) — ' (xy)] = 0(h&) + 0 (k).

OE(x,y) =

and N
[Efu(ey) = R0y)] = 0hg) + o ().

Proof of Lemma 3.1. According to the previous decomposition is demonstratea gparate calculation of both parties,
party bias and variance for part two quantities, as the sglerror can be expressed as

E[(Re0ey) — 0] = [B(Rhoew) - Boxw)] + var [Reocy)]

We define the quantitie (x) = K (h [ x— X)), H/ (y) = H'(hgX(y —Y))) foralli = 1,...,n.
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We will calculate both sides of this equation (party bias amdiance part) to arrive at the calculation of

2
E[R¥0oy) — R¥xy)]
We come at the following to writing:

~ ~ 2
£ _ Inxy) |, (¥ —Efo(x) (fD(X) _EfD(X)) X
Y (va) I = + . 2 Y (va)v
E fD (X E fD (X) (E fD (X))
from which we draw: N
Ef A A
Efg(X,y) = NXY) i SR

as )
A =Efu(y) (o)~ Efp(x)) =Cov(fulxy), o(x)) and A =E (fo() ~Efo(x))” R (xy).

Can be written as

Ry - Kxy) = ( EF(:(;) _ (% y)> (noey -E FN((I: :)3 )();D ()~ Efo(x)
D(X
(E0tn) (o E0d) (FD(X):EFD(ZX))ZFYX(X,yx )
(IE o (X)) (IE fo (X))

which implies
E[Rxy)] - R0y) = (EBE) Elfuiy) - Rxy)) - (Efox)2Cov(futxy), o))
~ -2 ~ ~ 2
—|—(EfD(X)) ]E(fD(X)—EfD(X)) i (x.y)

~ ~ . -2 . -2
= (ERe) B - K xy) - (ERK) A+ ((EbX) A
Now you need to write each of these terms and calculate thtegrals corresponding to them by a change of variable
of typez= (x—u)/h.
Regarding the term, as the kerneH’ is bounded and sindé is positive, we can boundeﬂ(x,y) by a constant
C> 0, asfX(x,y) <C/hy, hence

E[Rxy)] - R00y) = (ER0) Elfuty) - R o0y)) - (Efo(x))2Cov(futy). o))

~ -2 ~
+(Efor)) “Var (o) oY),

For the par dispersion we inspire techniques Sarda and Y&arjd Bosq Lecoutre] and by under expressiofi)

we find that
~ var [fuy)] _ [Efu(xy)] Cov|futey), o] R
Var {fY (x,y)} = — 5 —2 — 3 + Var (fD(x))
(Efor) (Efo0)

Finally, Lemma 3.1 is a consequence of Corollaries below.

Corollary 3.1. Under the conditions of Lemma 3.1 we have

Efn(x,y)
Efp(x)

(Efn(xy))? 1
(Il*:l;lo(x))4 e (nhH(P(hK)) '

X

— 1X(xy) = Bf, (x,y)h& + By (x,y)hk +0(hZ) + o(h).

Corollary 3.2. Under the conditions of Lemma 3.1 we have

" 1 laonKAMDIX VAR [ . 1
Var | fn(Xy)| = fy(xy) [ H“t)dt | +0 ——— | .
9]~ g (fé<o71>K(IIVI)g(XN)du(V))Z( freem) <o ama)
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Coroallary 3.3. Under the conditions of Lemma 3.1 we have

(1) [

B(0,1)

cov[[fuixy). B = E (v gtx vy + o

1 1 )
ng(h ) no(hg) )

Corollary 3.4. Under the conditions of Lemma 3.1 we have

Ja0m K2(IVIDa V) du(v) 1
ne(ny) e (nqo(h@) '

Var {fD( )}

Proof of Corollary 3.1 By definition ofﬁ\,(x, y) we have

Efn(xy) :nthth zE (Ki(x

o]

1
= WE(KKX) [E (H1(hg y—Y)/X))]) . (8)

for the calculation off (Hi(hfl(y—Y)/X)) considering the change of varialtle- h;*((y — z), we have

E (Hj(hgt(y—Y}) /X)) /H( ) m_/H X(y— hyt)dt.

Just develop the funcﬂoﬁY>< (x,y— hyt) in the neighborhood of, which is possible sinc& (x,.) being a function of
classC? iny, then, we can use the Taylor expansion of the funcffn

X (x,Y) N h2t% 921X (x,y)

2
ay 2 ayz + o(hH ) )

ROy —hut) = R (xy) —hut

which gives, under the assumption (H3)
2:2 32
EmUX%:f(yﬂj%Lzﬁ;ll/FH t)dt + o(h?).

We replace in equatior8) found

*fF (xy)

N 242
Efn(x,y) = E(Kﬂxﬂ%(xyn—+h%}-/}2HxndtE:(Kﬂxy_—égfL—>}-+oaﬁ). (9)

1
hn o(hk )

. y : . _ 0K (%)
To simplify the writing of this equation we s€f (.,y) = oy ,1 €{0,2}.

The functionyj ( y) defined on the functional spacg denotes the one or other of the two functigng-,y) = X (x,y)

2
SR ()
The kerneK is assumed compact support, then, fol @l{0,2} we have

B (a1 0,9) = EK (i x = XJ) 4 0= (R0 X).y) = [ KV (¢~ Py X Vu ().
The functiony (-,y) is of classC! in the neighborhood of, then

hi oy (Xa y) [V]

ox +o(hk),

LM (X_ hKVa y) = LM (X7 y) -
and we find that

B0 00Y) = 000y) [ KAV xv)du() e | K(IVI)

+o(he) | oy KOV X V) ),

éﬂL_ﬂmeKmNMMW)
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Therefore we have

~ 1
Efu(xy) = e gy [006) [ KMt x ) e [ k()

B [ena (i) [ (VWX )
)

—hk /B(O-,l) K(IIvH)Ww(m,x,v)du(v))} +o(h3) +o(hg),

anO(X y)[ ] (hK,X,V)d[J(V)

multiplying by g(x,v), adding and subtracting the two terms
~ 1 (X, y)[v
Rxy) = o toxy) [ KOt xau) e [ k() 225 Mg vyauc)
hu @(hk) B(0.1) B(01) ox

2uoley)Y [ Wihe.x.v)
e [ KV I (L g )y

2
3 [ena [ tuato [ Ko [ k() 225N gxau)
oumell e
“he [ K2 (hH(p(hK) - g% ) ()] +olHf -+ )
Thus
Bfu(cy) = peomstiolcy) [ K(Ivwthexduty ~h [ k() 2N gty

h2 , 1
# [ vt [ KON Wx )| + ol ).

On the other hand we have

~ o EKg 1
BTo00 = e = pihe) oo <MIMOKXVAHE) (10

by substituting in the formula fdE fn (X, y) it follows that
J ‘I—’o(X y)[v]

Ef(y) = YoxY)(Efo00) —he [ K(I) gxv)du(v)

B(01
h? ~
+ [en @) [(Efo<x>>w2<x,y>] +o(t?) +o(h).
Using the hypothesis (H1), equatiat0f can be expressed as

Bho00 = [ K(MDIvI) +o(1). (1)

Finally we arrive at

[ Kl T2 gy
/ K(IvDh(xv)du(v)
B(0,1)

(Ef0)E [ fNxy)| - Fxy) = -

2 X
+h7Ha faii”v] [ R @)ct+ o(h) + o). "
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Proof of Corollary 3.2. By definition ofﬂ\,(x, y) we have

Var (i) - WM iiVarm (OH! ()

- oY (KGO (0)
~ o7 EKLOHE) — (E(K OHE )
_ 1 sz o1 (((EK(X)H1(Y)) 2
~ by )T ( () ) |
By Corollary 3.1 and equatiorig) we have% = Eﬂ\,(x, y) = 0(1), and the fact that
H K

Var (fAN(XaY)) = WME(Kl(X)Hi(y))2+O (W}(hK)) -

Just now evaluate the quantiB(Ky (x)H] (y))2. Indeed, the proof is similar to the one used for previousemby

conditioningx and considering the usual change of varialfjes z)/hgl =t we obtain

E(Ki()H1(y))? = E (Ki()?E(H£(y) /X))

_ %u«: (Kl(x)2 / H2 (yh;HZ> fX(z>dz)
= %E (Kf(x)/H’Z(t)fx(y—th)dt>,

by a Taylor expansion of the order 1 fronwe show that fon large enough
06y — hut) = K (xy) + O(hn) = K (x,y) +0(1).
Hence
1 1
E(K(00H(1))2 = 1 [ HAOAE (KEOO R () +0 (m) -

The same way and with the same techniques used in the abayeop@orollary 3.1, we show that it suffices now to
estimate the amouifit(K; (X)H (y))2. Indeed, for a demonstration similar to the proof lemma,dnditioning byX and
considering the usual change of variabfe- z)/h;* = t we find that:

E(Klz(x) f\?((X,Y)) = EKZ(hE1|\x_X||) f(x— hK(hgl(X—X)),y)
- /B<o ., K2(|[vID) 5 (x— hkv, y)w(hi, X, V)d i (v)

= 0N xY) [ KO V)Au () + (i),

such that|v|| = h,zl||x— X]|, this allows us to conclude

B(00H)? = - [ W (o) |

o(hg)
B(0,1) ) ’

K2<||v|>g<x,v>du<v>)+o( o
The hypothesis (H3) implies that the kerkeis square summable, therefore

var (fu(xy)) = m [f%(x,w JLSCLT . K2<|v||>g<x,v>du<v>} +o (W ;(hK)> |
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Proof of Corollary 3.3. By definition of f (x,y) and fp (x) we obtain

cov (Tu(xy). o)) = Wl(wzcov(Kl(mHi(y),Kl(x))

= n(th(hk))z(]EKl( )H1 (y) — EK1 (X)H1 (Y)EK1 (X))

_ EKZ(QH(y) (EKl(X)Hi(Y)> < EK1(X) >
n(huo(h))?  \n(hyo(hk))? ) \n(hne(hg))? )

The proof of this Corollary is very similar to the one used@arollary 3.1. To do this, repladekl2 with Hi then using
(EK1(x)H1(y)) _ 6(1) and (EK1(x))

the fact that—_1. = olhe) = 01 we deduce that
Cov (Tt fo9) = s (R [ KEMa0cvidn() o oms ). 13)
.
Proof of Corollary 3.4. By definition of fp (x) we have
Var (5(9) = o (Var (k)
et ot " (o)
i ()

This allows us to complete the proof of Lemma 31L.

Proof of of Lemma 3.2. The calculation of the squared error of the conditionalriistion is with the same techniques
used in the previous Lemma 3.1 by a separate calculationmpésts: part bias and some variance for the two quantities,
as the squared error the conditional distribution can beessed as

E[(R¥0ey) - RE0ew)?] = [E(RA )~ REOey)] + var [RX ey

Finally, Lemma 3.2 can be deduced from following corollarie
Corollary 3.5. Under the hypotheses (H1)-(H6) we have

Egn(X,Y)

Al —RA(x,y) = Bf (x,y)h3 + BE (x,y)hk +0o(h) + o(hk ).
EfD(X)

Corollary 3.6. Under the hypotheses (H1)-(H6) we have

s K2([IvDg(x,v)du(v) X 2 1
ar g (cy)] = 20N (Rex) [r2en) +o (o).

Corollary 3.7. Under the hypotheses (H1)-(H6) we have

Cov [an (). 0] = o (RFx) [ KE(Ihatevidn(y) o

)
ng(hy ) no(hg) )

L.
Remark 3.3. Itis clear that, the results of Corollaries Corollary 3.2-8nd Corollary 3.6-3.7 allows to write

Var [ fo(x) — G (xy)| = (Wih@)
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3.2 Asymptotic normality

This section contains results on the asymptotic normafiﬁé(ﬁx, y).
Theorem 3.2. Assume that (H1)-(H6) hold, and if the following equatid {s verified, then we have for anyc <7,

nthﬂ((hK) 12 X X B 7 ©
(705()(7”) (hv(x,y) hy (x%,y) Bn(X,Y))—>e/V(0,1) as n— o,

where
o ={xe Z, §(xy)(L-R(xYy)) #0},

andZ means the convergence in distribution.
Evidently, if one imposes some additional assumptions erfuhctiong(-) and the bandwidth parametets (and
hy) our asymptotic normality can be improved by removing trestiermBn(x,y).

Corollary 3.8. Under the hypotheses of Theorem 4.1 and if the bandwidthnpeters ik andhy) and if the function

@ (hk) satisfies:
nlimc(hﬁ. +hi)v/ngx(hk) =0,

we have

nhn g (i) \ V2 o X G o
(Gﬁ(x,y) > (hY(x,y) hy(X,y))—></V(0,1) as n— oo,

Proof. Consider the decomposition

Rxy) —R(xy) = —

m (fN (va) —-E fN (Xay))
1

R ooy, 06 (EaGcy) — R Gxw) + (Efuey) - 1xy)

_ Ry) {
fo(X) —On(XY)
Therefore, Theorem 3.2 and Corollary 3.8 are a consequédn@nama 3.1, Lemma 3.2 and the following results.
Lemma 3.3. Under the hypotheses of Theorem 3.2

<M(h,<)>l/2 (ﬁ,(x,y) T [ﬁl(XJ)D — #(0,1).

1-Egu(0y) — (fo00 — Gn(x ) }- (15)

a?(x.y)

Lemma 3.4. Under the hypotheses of Theorem 3.2

Fo(X) — Gn(xy) — 1— RX(X,Y) in probability;

and 12

nh ¢ (k) o ~ - _

(W) (fD(X) —On(XY) — 1+E[9N(X7Y)]) =o0p(1).
.
Proof of Lemma 3.3. Define
: _ #(hk) , _
li(xy) = JheE[Ks ()] (Ai(x,y) —ElAi(x,y)]),
and .
Q= _le'i(x,y).
Thus

On = /P (futxy) ~E[fux )] )
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So, our claimed result is now
Qn — A (0,07 (x.Y)).

Therefore, we have
Var (Qn) = nhy ¢ (hk )Var (fN (x,y)—E {fN (x,y)D .

Now, we need to evaluate the varianceffx,y). For this we have for all £ i < n, 4i(x,y) = H/ (y)Ki(x), so we have

~ n n 1
Var(fn(xy)) = nhH]E K1 Z Z Aj(%Y)) = mvar (D1(%,Y)) -

Therefore

Var (81(xy)) < E (HZ(YKE(X) < E (KZE [HE(Y) X)) -
Now, by a change of variable in the following integral and ppplging (H3) and (H5), one gets

—u
B2 = [ 2 (P e
< hH/RH’Z(t)(fNy—th,X)— f(x.y)) dt + hy f@‘(x,y)/RH’z(t)dt
< B [ PR+ () [ 2@

— hy (0(1)+ £X(x,y) /R H/Z(t)dt). (16)

By means of {6) and the fact that, as— o, E (KZ(x)) — B2k(hk), one gets

Var (83(x) = Ba) (o(1)+ F(xy) [ HZ(0ct).

So, using (H4), we get

var (ay(xy)) = — P

T = Te™N N X 72
n(hHE[Kl(X)])Z ’ n(Bth (ﬂ((hK))zhH <0(1)+ fY (X7y)/RH (t)dt)

_ 1 BZfYX (va) 12
=0 (nhH@(hK)> + oo Ju O

Thus as — o we obtain
1 Bzf¢< (Xay) / 2
— Var (A1(x,y)) — ———2—2— [ H%(t)dt. 17
Finally, the proof of Lemma is completed by using restilf)( to get

B2 x

Var(Qn) — B2

> 1 xy/H’2 t)dt = o?(x,y).

0.

Proof of Lemma 3.4.
It is clear that, the result of Corollary 3.2, Corollary 3@daCorollary 3.6 permits us

E(Fo() — Gn(xy) - 1+ R (X)) — 0

and
Var (Fo(x) ~ Gu(xy) ~ 1+ (xy)) — 0
then
Fo(X) — G(xY) — L+ RX(x,y) =0
(@© 2015 NSP
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Moreover, the asymptotic variance ﬁf(x) —0On(Xy) givenin Remark 3.3 allows to obtain

nhy @ (k)
Oh(X,Y)?

By combining result with the fact that

var (fo(0y) — Gu(xy) — 1+ E(@u(xy)) — 0.

E(fo() ~gu(xy) ~ 1+E@(x)) = 0.

Finally, wee obtain the claimed resuli.

4 Remarques and Commentary

1. The hypothesis (H1) on the functional variallean be divided into two parts:

() The first part is rarely used in non-parametric statatitinctional, because it requires the introduction of a
reference measurement of the functional space. Howeviiisipaper the objective that we impose this condition.
In other words, it allows us to achieve a natural generatinadf the squared error obtained by Vie2?] in the
vector case.
The hypothesis (H1) is not very restrictive. Indeed, the fiest of this hypothesis is verified, when, for example
X is a diffusion process satisfying standard conditions [&aeg [4]).

(i) The second partq) is less restrictive than the following condition, givem &l (r,v) € R} x B(0, 1) (x fixed):

3C1,Co >0, 0<Cr(r)g(x,v) <w(r,x,v) < Coe(r)g(x,v),

which is a classic property in functional analysis. Noté thi@s assumption is used to describe the phenomenon
of concentration of the probability measure of the explanatariableX, since we have:

P(X € B(x,r)) = /B(O;l) W(r, % V)dp(v) = qo(r)/B(O | 9V +0(p(r)) > .

This is a simple asymptotic separation of variables. Thisddon is designed to be able to adapt traditional
techniques of the case if different multi functional, evérnhie reference measuge does not have the same
properties of the Lebesgue measure, such as translatiandanee and homogeneity.
In the case of finite dimension, the hypothesis (H1) is satisfihen the density of the explanatory variakles
of classC?! and strictly positive. Indeed, the densitydf=r—1(x— X) andw(r,x,v) = rPf(x—rv), wheref is the
density ofX andp dimension, therefore/(r,x,v) = rPf(x) +o(rP).
2. In this paper, we chose a condition of derivability as ooalgs to find an expression for the rate of convergence
explicitly, asymptotically exact and keeps the usual fofiine squared error (see VieRd]). However, if one proceeds
by a Lipschitz condition for example the conditional depsittype:

V(Y1,Y2) € SR X IR, V(X1,%2) € Ny x Ny,

|2 (y1) — F2(y2)| < Ax((d(x1,X2)?) + [y2— ¥2[%),

which is less restrictive than the conditio?),(we obtain a result for the conditional distribution anddiional
density respectively for example of type:

E[(RX(xy) — RG] = ot +hid) + 0 (—nqo(lhk)) ’
E[(R0y) — R oy)?] = o +hi) + 0 (WM) '

But such an expression (implicitly) the rate of convergewdkenot allow us to properly determine the smoothing
parameter. In other words, this condition of differentidpis a good compromise to obtain an explicit expressian fo
the rate of convergence. Note that this condition is oft&enan the case of finite dimension.

3. The dimensionality of the observations (resp. modelsedun the expression of the rate of convergence of the two
lemmas Lemma 3.1 and Lemma 3.2. We find the "dimensionaliti"ttee model in the way, while the
"dimensionality” of the variable in the functional dispens bias the property of concentration of the probability
measure of the functional variable which is closely reld@tethe topological structure of the functional space of the
explanatory variable. Ours asymptotique results higldighe importance of the concentration properties on small
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balls of the probability measure of the underlying functibmariable. This highlights the role of semi-metric the
quality of our estimate. A suitable choice of this parametiéaws us to an interesting solution to the problem of
curse of dimensionality. (se@]). Another argument has a dramatic effect in our estimatidnis is the smoothing
parametehk (resp.hy). The term of our rate of convergence, decomposed into twio peats: part bias proportional
to hk (resp.hy), and part dispersion inversely proportionahto (resp.hy)(¢@ is an increasing function depending on
thehk), makes this relatively easy choice minimizing the mairt pathis expression to determine this parameter.
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