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Abstract: This is a review article, to show the consistency of delay differential equations with biological systems with memory,
in which we present a class of mathematical models with time-lags in immunology, physiology, epidemiology and cell growth. We
also incorporate optimal control parameters into a delay model to describe the interactions of the tumour cells and immune response
cells with external therapy. We then study parameter estimations and sensitivity analysis with delay differential equations. Sensitivity
analysis is an important tool for understanding a particular model, which is considered as an issue of stability with respect to structural
perturbations in the model. We introduce a variational method to evaluate sensitivity of the state variables to small perturbations in the
initial conditions and parameters appear in the model. The presented numerical simulations show the consistency of delay differential
equations with biological systems with memory. The displayed results may bridge the gap between the mathematics reserach and its
applications in biology and medicine.
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1 Introduction

Mathematical modelling with delay differential equations
(DDEs) is widely used for analysis and predictions in
various areas of the life sciences, e.g., population
dynamics, epidemiology, immunology, physiology, neural
networks. The time delays in these models take into
account a dependence of the present state of the modelled
system on its past history. The delay can be related to the
duration of certain hidden processes like the stages of the
life cycle, the time between infection of a cell and the
production of new viruses, the duration of the infectious
period, the immune period and so on.

An Initial Value Problem (IVP) takes the form:

y′(t) = f (y(t), t), where y(t0) = y0 (1)

where y ∈ RN. We see that, at timet, the system is
completely defined by the state of the system,y(t), at time
t. (In other words, everything is instantaneously known.)
Much work has been done in developing efficient
techniques for solving these types of problem. However,
in real life, things are rarely so instantaneous; There is

usually a propagation delay before the effects are felt.
This situation can be modelled using a DDE

y′(t) = f (y(t),y(t−τ1),y(t−τ2), . . . ,y(t−τd), t), t ≥ t0
(2)

where all of the delay terms,τi , are assumed to be none
negative functions of the current timet. τi could be
constant, or variable as functions oft or even the statey.
Because of these delay terms it is no longer sufficient to
supply an initial value, at timet = t0, to completely define
the problem. Instead, it is necessary to define the history
of the state vector,y(t), sufficiently far enough back in
time from t0 to ensure that all of the delayed state terms,
y(t − τi), are always well defined. Thus, it is necessary to
supply an initial state profile of the form:

y(t) = ψ(t), t0− τmax≤ t < t0, andy(t0) = y0. (3)

It should be noted thatψ(t0−) need not be the same asy0.
This immediately introduces the possibility of a
discontinuity in the state,y(t). We refer to [1,2,3,4,5,6,4,
7,8,9], and references therein, for the scope of DDEs in
bioscience and related issues.
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In the present paper, we show how delay differential
equations have, prospectively, more interesting dynamics
than equations that lack memory effects; in consequence
they provide potentially more flexible tools for modelling
biological systems with memory. This paper is organized
as follows: Section 2 displays the role of delay differential
models in dynamic diseases. Section 3 provides a delay
differential model for tumour-immune response and
control with chemo–immunotherapy. Section 4 introduces
a general approach of least squares approach for
parameter estimations with DDEs. Section 5 introduces a
variational approach to investigate the sensitivity of the
models to minor changes in the parameters, with
applications with cell bacterial growth of Tetrahymena
pyriformis. Section 7 presents some available software for
DDEs.

2 Delay Models in Dynamic Diseases

In many applications in the life sciences, a delay is
introduced when there are some hidden variables and
processes which are not well understood but are known to
cause a time-lag [10]. Thus, the delays or lags may in fact
represent a reaction chain or a transport process, gestation
times, incubation periods, transport delays, or can simply
lump complicated biological processes together,
accounting only for the time required for these processes
to occur. A well-known example is Cheyne-Stokes
respiration (or periodic breathing), discovered in the 19th
century: some people show, under constant conditions,
periodic oscillations of breathing frequency [11]. This
strange phenomenon is apparently due to a delay caused
by cardiac insufficiency in the physiological circuit
controlling the carbon dioxide level in the blood. Delays
also occur naturally in the chemostat (a laboratory device
for controlling the supply of nutrients to a growing
population [12]). We shall see in this section that the
mathematical properties of DDEs justify such
approximations.

2.1 Immunology

The Immune System (IS) is a complex network of cells
and signals that have evolved to respond to the presence
of pathogens (such as bacteria, virus and fungi) and
protect the body from cancer cells. IS basically works by
keeping track of all substances normally found in the
body. Any new substance in the body that the IS does not
recognize raises an alarm, causing the IS to attack it.
Substances that cause an IS response are called
”antigens”. The IS can lead to destruction of anything
containing antigens, such as pathogens or cancer cells.
Pathogens have substances on their outer surfaces such as
certain proteins that are not normally found in the human
body. The IS sees these foreign substances as antigens.

Cancer cells are also different from normal cells in the
body and they have unusual substances on their outer
surfaces. However, the IS is much better at recognizing
and attacking pathogens (harmful germs) than cancer
cells. This is due to the fact that pathogens are very
different from normal human cells and are often easily
seen as foreign, but cancer cells and normal cells have
fewer clear differences. This leads us to the fact that the
IS may not always recognize cancer cells as foreign.

However, the response of an immune system cannot
be represented correctly without the hereditary
phenomena being taken into account: cell division,
differentiation, etc. (the time needed for immune cells to
divide, mature, or die). Therefore, delay differential
equations have a particularly important role to play in
understanding the dynamics and tracking viral infections
and immune populations over time. Recently, many
mathematical models for virus dynamics [13,14,15]
explicitly consider delay terms to represent the needed
time between the infection of a cell and the production of
new viruses of HIV (Human Immunodeficiency Virus) in
infected patients.

The simple mathematical model of immune response
employed by Marchuk [16] describes the interaction of
viruses,V(t); antibodies,F(t); plasma cells,C(t); and the
relative characteristic of the affected organ,m(t), of a
person infected by a viral disease. This model is
formulated as a system of four nonlinear DDEs:

V ′(t)=
(
p1− p2F(t)

)
V(t),

C′(t)=ξ (m)p3F(t − τ)V(t − τ)− p5
(
C(t)−C∗),

F ′(t)=p4
(
C(t)−F(t)

)
− p8F(t)V(t),

m′(t)=p6V(t)− p7m(t),

(4)

with t ≥ 0 andξ (m) is defined by

ξ (m) =

{
1 i f m≤ 0.1,
(1−m)10

9 i f 0.1≤ m≤ 1.

The first equationdescribes the change in the number of
antigen in an organizm (it is a Volterra-Lotka like
predator-prey equation). Thesecond equationdescribes
the creation of new plasma cells with time-lag due to
infection (in the absence of infection, the second term
creates an equilibrium atC(t) = C∗). The third equation
models the balance of the number of antibody reacting
with antigens: the generation of antibodies from plasma
cells is described byp4C(t) and their decrease due to
aging is described by(−p4F(t)) and binding with
antigens by(−p8F(t)V(t)). The relative characteristic
m(t) of damaging organizm is given by thefourth
equationof which the first term expresses the degree of
damage to an organ and the second term describes the
recuperation due to the recovery activity of the organizm.
Finally, the definition ofξ (m) expresses the fact that the
creation of plasma cells slows down when the organizm is
damaged by the viral infection.

The model (4) has been used to study the relationships
between the pathogen and the host immune system
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Fig. 1: Numerical simulations of model (4) for τ = 0.5 and
p1 = 2, p2 = 0.8, p3 = 104, p4 = 0.17, p5 = 0.5, p6 = 10, p7 =
0.12 and p8 = 8.

parameters determining the stability of various steady
states. It can also be used to underly the basic types of
infectious disease dynamics: subclinical, acute with
recovery, chronic and lethal, or predicting the results of
external manipulations with the immune system. In other
words, this model allows us, by changing the coefficients
p1, p2 . . . , p8, to model all sorts of behaviour of stable
health, unstable health, acute form of a disease, chronic
form etc. (see Marchuk [16]). One of the stationary
solutions of (4), that describes the healthy state of an
organizm, is

V(t) = 0, C(t) =C∗, F(t) = F∗ =C∗, andm(t) = 0.

FIGURES1 & 2 show the solutions of the model (4) (with
different parameters) forτ = 0.5, with initial values:

V(0) = 0.5×10−6, C(0) = 1, F(0) = 1 andm(0) = 0;

and with initial functions:

V(t) = max(0,10−6+ t), F(t) = 1, t ≤ 0.

It may also be noted, from the graphs, that there is either
a complete recovery, as inFIGURE 1, or periodic outbreak
of the disease, as shown inFIGURE 2 .

Marchuk and his associates [16] developed a
hierarchy of immune response models of increasing
complexity to account for the various details of defence
responses to pathogens. The delays are used in the
functional terms describing the proliferation and
differentiation of lymphocytes, and represent the time
needed for cells to divide, mature (i.e., express certain
genes), or to die. Whereas the basic model of an
infectious disease has only one time-lag, more
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Fig. 2: Simulations of model (4) with the same parameters
of Figure 1 except for p6 = 300. The graphs illustrate the
periodic outbreak of the disease.

sophisticated mathematical models for viral-bacterial
infections in lungs, or T-cell division incorporate about
ten delays; see [17]. Another example of generic time-lag
equations in immunology is provided by Mohleret al.
[18] who developed compartmental models for
lymphocyte migration. The delays represent the time that
cells reside in a particular compartment, or the transit
times through compartments, or the duration of
inter-compartmental transfer.

Mathematical modeling of tumour-immune
interactions is also very complex and has a long history
e.g. [19,20,21,22,23,24,25]. Kuznetsovet al. [26] model
the interactions of cytotoxic T lymphocyte (CTL)
response and the growth of an immunogenic tumour. In
recent contributions of [27,28,29,30], the authors take
into account the penetration of the tumour cells by the
effector cells, which simultaneously causes the
inactivation of effector cells. [31] consider the effects of
time delay on the two-dimensional system which
represents the basic model of the immune response. They
study variations of the stability of the fixed points due to
time delay and the possibility for the occurrence of the
chaotic solutions. Forys and Kolev [32] propose and study
the role of time delay in solid avascular tumour growth.
They study a delay model in terms of a reaction-diffusion
equation and mass conservation law. Two main processes
are taken into account i.e. proliferation and apoptosis.
Yafia [33] analyzed an interaction between the
proliferating and quiescent cells tumour with a single
delay. He showed the occurrence of Hopf bifurcation as
the delay crosses some critical value [34,35,36,37].

We just consider a very simple delayed
tumour-immune competition model, without treatments
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[38]

dE(t)
dt

= σ +ωE(t− τ)T(t − τ)− δ Ē(t),

dT(t)
dt

= ᾱ(1− β̄ T̄(t))T(t)−nE(t)T(t),

(5)

with given initial functions

E(t) = ψ1(t), T(t) = ψ2(t), t ∈ [−τ,0), E(0),T(0)> 0.
(6)

It is easy to show that ifω > 0, andαδ > σ , then the

system (5)-(6) has two steady states:E0 ≡ (
σ
δ
,0)

(tumour-free steady state) andE+ ≡ (E∗,T∗) (endemic

steady state), where E∗ =
−α(β δ −ω)+

√
∆

2ω
,

T∗ =
−α(β δ +ω)−

√
∆

2αβ ω
with

∆ := α2(β δ −ω)2+4αβ σω > 0.

Theorem 1.Under the condition that (i)ω > 0 and (ii)
αδ > σ , then the steady stateE0 is a asymptotically
stable for all τ ≥ 0. However the steady stateE+ is
asymptotically stable whenτ = 0 under the same
conditions and (iii)β be close enough to0.

The delay timeτ plays an important role in stability of the
system (5), (6).

Theorem 2.Under the hypotheses thatω > 0, αδ > σ ,
and β be close enough to0, there existτn , n = 0,1, . . .
such that (i)E+ is asymptotically stable forτ < τ0 and
unstable forτ > τ0; (ii) System (5)-(6) undergoes a Hopf
bifurcation atE+ whenτ = τn, where

τn =
1
ν0

arccos
q(ν2

0 − r)−βsν2
0

s2ν2
0 +q2

+
2nπ
ν0

, (7)

and

ν2
0 =

1
2
(s2− p2+2r)+

1
2

√
(s2− p2+2r)2−4(r2−q2),

where p= δ +αβT∗, r = αβ δT∗, s= −ωT∗, and q=
αωT∗(1−2βT∗).

Numerical simulations of (5)-(6) are given in Figure3.
(For the proof of Theorem 1 & Theorem 2, I refer to [30,
39].)

2.2 Physiology

The great potential of simple DDEs for capturing
complex dynamics observed in physiological systems,
was shown in a series of related works by an der Heiden,
Mackeyet al. [40,11]. Delay differential equations were
used to model unstable patterns of(i) the human
respiratory system and regulation of blood concentration
of CO2 (periodic breathing and prediction of low- and
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Fig. 3: Numerical simulation of model (5), with σ = 0.1181,
ω = 0.01184, δ = 0.3747, α = 1.636, β = 0.002 with τ =
0.2, 0.4, 0.5, 1. The steady state (E∗,T∗) is table when τ <
τ0 := 0.3854= (the critical delay); and unstable when τ ≥ τ0
and a bifurcation of a periodic solution from (E∗,T∗) =
(1.5535, 25.2260) occurs.

large-amplitude oscillations),(ii) the production of blood
cells (periodic and chaotic regimes), and(iii ) hormone
regulation in the endocrine system (period-doubling
bifurcations and chaotic solutions); see [41].

The following model is concerned with the regulation
of hematopoiesis, the formation of blood cell elements in
the body. For example white and red blood cells, platelets
and so on are produced in the bone marrow from where
they enter the blood stream. When the level of oxygen in
the blood decreases this leads to a release of a substance
which in turn causes an increase in the release of the blood
elements from the marrow. There is thus a feedback from
the blood to the bone marrow.

As an illustrative example, let c(t) be the
concentration of cells (the population species) in the
circulating blood. We assume that the cells are lost (=die)
at a rate proportional to their concentration, that is like
γc(t), where the parameterγ has dimensions(day)−1.
After the reduction in cells in the blood stream there is
about a 6 day delay before the marrow release further
cells to replenish the deficiency (see [11]). We thus
assume that the fluxλ of cells into the blood stream
depends on the cell concentration at an earlier time,
namely,c(t − τ), whereτ is the delay. Such assumptions
suggest a model equation of the form

dc(t)
dt

= λc(t − τ)− γc(t).

Glass & Mackey [42] proposed a possible replacement in
the form of the non-linear delay differential equation

dc(t)
dt

=
λamc(t − τ)

am+ cm(t − τ)
− γc(t), t ≥ 0,

c(t) = α, t ≤ 0,
(8)

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 3, 1645-1658 (2015) /www.naturalspublishing.com/Journals.asp 1649

0 200 400 600 800 1000
0

0.5

1

1.5

Time

C
(t

)

0 100 200 300 400 500
0

0.5

1

1.5

C
(t

)

Fig. 4: (top) shows the numerical solution of (8) with
parameter values α = 0.1, γ = 0.1 days−1, λ = 0.2 days−1,
m = 10 and τ = 6 days; (bottom) shows the numerical
simulation with the same parameter values as in (a) except
an increase in the delay to τ = 20 days.

whereλ ,a,m,g,τ, andα are positive constants. Graphs
in FIGURE 4 show the numerical solutions of (8) for two
values of the delay timeτ.

2.3 Epidemiology

Epidemics have ever been a great concern of human kind,
since the impact of infectious diseases on human and
animal is enormous, both in terms of suffering and social
and economic consequences. This concern is now
increased, specially when new swine flu viruses H1N11

[43] and recently H5N1 have sparked a deadly outbreak
in some countries and spread into other parts of the world.
Mathematical modeling is an essential tool in studying a
diverse range of such diseases. The basic elements for the
description of infectious diseases have been considered
by three epidemiological classes:S(t) that measures the
susceptible2 portion of population,I(t) the infected3, and
R(t) the removed4 ones. It was natural to assume that the
number of newly infected people per time unit is

1 Influenza viruses are defined by two different protein
components, known as antigens, on the surface of the virus.
They are spike-like features called haemagglutinin (H) and
neuraminidase (N) components.

2 Susceptible: who are not yet infected
3 Infected: who are infected at timet and are able to spread the

disease by contact with susceptible
4 Removed: who have been infected and then removed from

the possibility of being infected again or spreading (Methods of
removal: isolation or immunization or recovery or death)

proportional to the productS(t)I(t). It was also assumed
that the number of newly removed persons is proportional
to the infected ones, and the total population is a constant
N = S + I + R (except death from the disease).
Kermack-McKendrick [44] thus arrived at theSIRmodel:

S′(t) =−βS(t)I(t), I ′(t) = βS(t)I(t)−αI(t), R′(t) = αI(t).
(9)

Here β is the number of contacts between an average
infective and the population per unit time (pairwise rate
of infection), andα is the fraction of the population
which leaves the inflective class (removal rate of
infectives). The qualitative analysis is displayed as
follows: If S(0)< α/β , thenI(t) is a decreasing function
which tends to 0, andS(t) is also decreasing and tends to
a constant level greater than 0. However, IfS(0) > α/β ,
S(t) is also decreasing and tends to a constant level
greater than 0, butI(t) will first increase in a time period
(0,T0), then decrease and tends to 0 afterT0.

Define a dimensionless quantityR0 = βS(0)/α, that
is a threshold quantity. If we introduce a small number of
infectivesI(0) into the a susceptible population, then an
epidemic will occur ifR0 > 1. As an example, the solution
(with all constants equal to one) of (9) (with initial values
S(0) = 5, I(0) = 0.1,R(0) = 0) is plotted inFIGURE5. We
note that an epidemic breaks out, and everybody finally
becomes “removed” and nothing further happens.

To prevent an epidemic, we reduceR0 =
βS(0)

α
, and

maximize the immunization by reducingI(0) and
transferringS(t) to R(t) (removed ones). Suppose thatp
percent of population is successfully immunized, then

S(0) is replaced by(1− p)S(0), thenp> 1− α
βS(0)

. (For

practical study to estimate the epidemiological
parameters, I refer to [45,43].)

From the above model, we note that the occurrence of
an epidemic depends solely on the number susceptibles,
the transmission rate, and recovery rate. In other words,
the initial number of infectives plays no role in whether or
not there is an epidemic. Other considerations, such as
vital dynamics (births and deaths), length of immunity,
the incubation period of the disease, and disease induced
mortality can all have large influences on the course of an
outbreak.

2.3.1 Development of SIR model (9)

The nonautonomous phenomenon occurs mainly due to
the seasonal variety, which makes the population behave
periodically [46,47]. To investigate this kind of
phenomenon, in the model, the coefficients should be
periodic functions, then the system is called periodic
system. Many communicable diseases have this
characteristic.

Assume that the immunized people become
susceptible again, say after timeτ1 (say, τ1 = 10) (see
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Fig. 5: The left banner shows the solution of the SIR model
(9) that illustrate the spread of an infection disease in a
population. However, the right banner shows the solution of
model (10) with time delays that displays periodic outbreak
of the disease.

[48,49]). If we also introduce an incubation period,τ2,
between exposure to infection and becoming infected
(say,τ2 = 1), we can arrive at the model

S′(t) = −βS(t)I(t− τ2)+ γI(t− τ1), t ≥ 0,
I ′(t) = βS(t)I(t− τ2)−αI(t), t ≥ 0,
R′(t) = αI(t)− γI(t− τ1), t ≥ 0.

(10)

The solutions of (10) are shown (with initial functions
[S(t), I(t),R(t)]T = [5,0.1,1]T for t ≤ 0) in FIGURE 5; we
note a periodic outbreak of the disease.

2.3.2 Development of model (10)

If the model allows for a loss of immunity that causes
recovered individuals to become susceptible again, we
may also consider the more general nonautonomous SIRS
epidemic model, with variable periodic coefficients, with

distributed delays

S′(t) =Λ(t)−β (t)S(t)
∫ ∞

0
k(τ)I(t − τ)dτ−

µ1(t)S(t)+ ξ (t)R(t),

I ′(t) =β (t)S(t)
∫ ∞

0
k(τ)I(t − τ)dτ − (µ2(t)+α(t))I(t),

R′(t) =α(t)I(t)− (µ3(t)+ ξ (t))R(t).

(11)

HereN(t) = S(t)+ I(t)+R(t) denotes the total number of
the population at timet. The functionΛ(t) is the growth
rate of the population; functionβ (t) is the daily contact
rate, that is the average number of contacts per day;
functionsµ1(t), µ2(t), andµ3(t) are the instantaneous pro
capita mortality rates of susceptible, infective and
recovered population, respectively; functionsα(t) and
ξ (t) are the instantaneous pro capita rates of leaving the
infection stage and removed stage, respectively.k(τ) is
the fraction of vector population in which the time taken
to become infectious isτ, is assumed to be a nonnegative
function on [0,∞) and satisfies

∫ ∞
0 k(τ)dτ = 1 and∫ ∞

0 τk(τ)dτ < ∞.
To analyze the dynamics of the models, numerical

methods are necessary, as analytical studies can only
provide limited results. We next introduce some reliable
computational techniques to solve numerically the
emerging delay differential models in biosciences.

3 Optimal Control with Delay Models

We mention here that there are many problems in
biosciences (such as epidemics, harvesting, chemostat,
treatment of diseases, physiological control, vaccination)
which can be addressed within an optimal control
framework for systems of DDEs [50,51,52,53]. However,
the amount of real experience that exists with optimal
control problems (OCPs) is still small.

The DDE (2) can be converted into an optimal control
problem by adding anm−dimensional control termu(t)

y′(t) = f (y(t),y(t − τ1),y(t − τ2), . . . ,y(t − τd),u(t), t)(12)

and a suitable objective functional (measure):J0(u)

Maximize J0(u) = Φ0(y(T))+
t f∫

0

F (y(t),y(t − τ1),y(t − τ2), . . . ,y(t − τd),u(t), t)dt,
(13)

and subject to control constrainta ≤ u(t) ≤ b, and state
constanty(t) ≤ c, wherea andb are the lower and upper
bounds. The integrand,F (:) is called the Lagrangian of
objective functional which is continuous in[0, t f ].
Additional equality or inequality constraint(s) can be
imposed in terms ofJi(u).

OCPs using DDEs were studied in connection with
immune responses to infections. In [54], delay model
with optimal control is used to describe the interactions
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between HIV, CD4+ T cells, and cell-mediated immune
response. Both the treatment and the intracellular delay
are incorporated into the model in order to improve
therapies to cure HIV infection. The optimal controls
represent the efficiency of drug treatment in inhibiting
viral production and preventing new infections.

A humoral immune response model was considered in
the paper [52] on determining optimal intravenous drug
delivery in AIDS patients. The objective was to find a
control strategy that minimizes the total drug
administered subject to the constraint that patient
recovers. In this paper, we present a delay differential
model with optimal control that describes the interactions
of the tumour cells and immune response cells with
external therapy. The optimal control variables are also
incorporated to identify the best treatment strategy and
block producing new tumour cells with minimum side
effects, by keeping the number of normal cells above 75%
of its carrying capacity. Assume thatE(t) represents
effector cells population, such as CD8+T cells andT(t) is
the tumour cells population. The authors in [38] provide a
competing model in terms a system of DDEs, in which
we add extra variables namely chemotherapy variable,
u(t), normal cells,N(t) and two control variablesv(t) and
w(t). We also assume a homogeneity of the tumour cells,
then the model takes the form

dE(t)
dt

= σ +
ρE(t − τ)T(t − τ)

η +T(t − τ)
− µE(t− τ)T(t − τ)−

δE(t)−a1(1−e−u)E(t)+w(t)s1,

dT(t)
dt

= r2T(t)(1−βT(t))−nE(t)T(t)−

c1N(t)T(t)−a2(1−e−u(t))T(t),

dN(t)
dt

= r3N(t)(1−β2N(t))− c2T(t)N(t)−

a3(1−e−u(t))N(t),

du(t)
dt

= v(t)−d1u(t).

(14)

The general goal is to keep the patient healthy while
killing the tumour. Since our model takes into account the
toxicity of the drug to all types of cells, our control
problem consists of determining the variablesv(t) and
w(t) that will maximize the amount of effector cells and
minimize the number of tumour cells and the cost of the
control with the constraint that we do not kill too many
normal cells. Therefore, our objective is to maximize the
functional (see [55])

J(v,w) =
∫ t f

0

(
E−T −

[
Bv

2
[v(t)]2+

Bw

2
[w(t)]2

])
dt,

(15)
where whereBu, Bw are, respectively, the weight factors
that describe the patient’s acceptance level of
chemotherapy and immunotherapy with a constraint

k(E,T,N,u,Eτ ,Tτ ,v) = N−0.75≥ 0, 0≤ t ≤ t f . (16)

We are seeking optimal control pair(v∗,w∗) such that

J(v∗,w∗) = max{J(v,w) : (v,w) ∈W}, (17)

whereW is the control set defined by

W ={(v,w) : (v,w) piecewise continuous, such that

0≤ v(t)≤ vmax< ∞, ;0≤ w(t)≤ wmax< ∞, ∀t ∈ [0, t f ]}.
(18)

The existence of optimal controlsv∗(t) andw∗(t) for this
model is guaranteed by standard results in Optimal
Control Theory [56]. Necessary conditions that the
controls must satisfy are derived via Pontryagins
Maximum Principle. The optimal control problem given
by expressions (14)-(18) is equivalent to that of
minimizing the HamiltonianH :

H (t,E,T,Eτ ,Tτ ,u,v,w,λ ) = E−T − Bv

2
[v(t)]2−

Bw

2
[w(t)]2+λ1

dE
dt

+λ2
dT
dt

+λ3
dN
dt

+λ4
du
dt

+ γk

(19)

andγ ≥ 0 with γ(t)k(t) = 0, where

γ =

{
1 if N(t)≤ 0.75,
0 otherwise

A standard application of Pontryagins Maximum
Principle [57] leads to the following result:

Theorem 3.There exists an optimal pair v∗(t) and w∗(t)
and corresponding solutions E∗, T∗, N∗ and u∗ and that
minimizes J(u(t),w(t)) over Ω . The explicit optimal
controls are connected to the existence of continuous
specific functionsλi for i = 1,2,3,4 satisfying the adjoint
system

λ ′
1(t) =−1+λ1(t)

[
δ +a1(1−e−u∗ )

]
+

λ2(t)nT∗+λ1(t + τ)χ[0,t f−τ]

[
µT∗− ρT∗

η +T∗

]
,

λ ′
2(t) = 1+λ2

[
−r2+2r2βT∗+nE∗+c1N∗+a2(1−e−u∗ )

]
+

λ3c2N∗+χ[0,t f −τ]λ1(t+ τ)
[

ρE∗T∗

(η +T∗)2 − ρE∗

η +T∗ +µE∗
]
,

λ ′
3(t) = λ2c1T∗−λ3

(
r3−2r3β2N∗−c2T∗−a3(1−e−u∗ )

)
− γ ,

λ ′
4(t) =−λ1(t)a1e

−u∗E∗+λ2(t)a2e−u∗T∗+λ3(t)a3e−u∗N∗+λ4(t)d1,

(20)

with transversality conditions

λi(t f ) = 0, i = {1,2,3,4} and χ[0,t f −τ] =

{
1 if t ∈ [0, t f − τ ],
0 otherwise.

(21)

Furthermore, the following properties hold

v∗ = min

(
vmax,

λ4

Bv

)
, w∗ = min

(
wmax,

λ1s1

Bw

)
. (22)

The numerical simulations leading to the
approximation of the optimal controls, are carried out
using forward and backward Euler methods. Starting with
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Fig. 6: Simulations of the tumour cells population of system
(14), before and after the imuno-chemotherapy treatments with
controls. It shows that the tumour cells population can be
eradicated in day 10.

an initial guess for the value of the controls on the time
interval [0, t f ], we solve the state system with controls
(14) using forward Euler. Next, the adjoint system is
solved using the solutions of the state system and the
transversality conditions (20) backward in time. It has
been shown from Figure6 that the tumour cells can be
eradicated at day 10. The numerical simulations show the
rationality of the model presented, which in some degree
meets the natural facts.

4 Parameter Estimation with DDEs

Consider even a predictive DDE model ofneutral type,
parameterized byp∈R

L which are estimated using a given
set of observations,

y′(t) = f(t,y(t),y(t − τ),y′(t − τ);p), t ∈ [0,T],

y(t) = ψ(t,p), y′(t) = φ(t,p), t ∈ [−τ,0].
(23)

In (23), the vector functionf is sufficiently smooth with
respect to each arguments;y(t) ∈R

M, y(t− τ) ∈R
M′

, p ∈
R

L, andτ ∈ R
L′ is positive constant lag, which may have

to be identified as a parameter (L′ ≤ L, M′ ≤ M). ψ(t) and
φ(t) are given continuous functions.

Suppose thatN observations,{t j ;Yi
j }N

j=1, have been
obtained. We are concerned with applying to these data a
system of NDDEs (23). The model-fitting problem is then
select a value or a set values forp for which the function
y(t; p̂) provides a ‘best’ fit, at argumentst = t j , to the
given set{Yi

j}N
j=1 (1 ≤ i ≤ M). The key part in fitting a

model to data is the formulation of the objective function
to be optimized that depends on the stochastic features of
the errors in the data [58].

There is a variety of methods for regression analysis
and interpretation of statistical properties of estimation
schemes [59,60]. The discussion here will be based on
the use ofweighted least squares(WLS) or a log-least
squares(LLS) approach for finding the best-fit parameter
values to observed data in the NDDE models. When
determining the best fit by the WLS process, we suppose
that the unknown parameter̂p is the value of p
minimizing the weighted objective function:

ΦW(p) =
M

∑
i=1

N

∑
j=1

[
yi(t j ,p)−Yi

j

]2
wi j , (24)

wherew j are the weights (possibly related to the accuracy
of the data points)5. Whenw j = 1, this is the method of
unweighted orordinary least squares(OLS).

If we adapt the LLS approach, the objective function
may take the form

ΦL(p) =
M

∑
i=1

N

∑
j=1

[
logyi(t j ,p)− logYi

j

]2
. (25)

The choice of LLS in model-fitting problem may decrease
the exponential nonlinearity of model predictions with
respect top. (It will be assumed thatyi(t j ,p) > 0.)
Another significant feature of the LLS approach is that
small relative changes in large data values can be unduly
weighted. For comparing between different formulae of
objective functions, we refer to Sheineret al. (1985). (The
optimum parameter̂p is taken to be the value such that
Φ(p̂) ≤ Φ(p), for all physically meaningful values ofp
andp̂.)

When the predictions are governed by models of the
form (23), then theleast squares(LS) approach (even for
models linear in their parameters) usually leads to a
nonlinear minimization problem, since the cost function
is no longer quadratic. Numerical algorithms for
nonlinear LS approach are generally iterative procedures
for searching the parameter estimates and require initial
starting values. An obvious difficulty is that there is the
possibility of the iterative scheme converging to a local

5 The choice of the valuesw j is best based on knowledge of
the relative precision of theY j .
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minimum, or not converging at all, rather than achieving
the desired global minimum. Thus, an appropriate choice
of the objective function is a significant factor in
determining the ease of solving the parameter estimation
problem [61].

Given a set of experimental data,{Yj}N
j=1, the

technique for finding the best-fit parameter values for a
given mathematical model and objective function consists
of the following steps: (i) Provide an initial guessp0 for
the parameter estimates; (ii ) Solve the model equations,
using Archi code [62] with the current values of the
parameters and calculate the corresponding objective
function Φ(p); (iii ) The parameter values are then
adjusted (by the minimization routine, for example
E04USF6 from NAG library; (iv) When no further
reduction in the valueΦ(p) is possible, the best fit
parameter values have been found; (v) Determine whether
the chosen set of parameter values is acceptable (and
meaningful) or unacceptable by comparing the objective
function value to a given criterion for the objective
function or the estimates [38].

Note thatΦ(p) can have several local minima and
that a good code and/or good starting initial parameter
values can be of great assistance, both in accelerating the
minimization process and finding the global minimum.
Local minimum can also be avoided by repeating the
iterative scheme for a variety of different initial estimates
of parameter vector. We should also draw attention to the
fact that, even if the right hand side of (23) and the initial
functions are smooth functions, a discontinuity in the first
time derivative of the solution appears at timet0 and is
propagated through the time. The higher derivatives
become smoother as time increases. Additional jumps can
arise due to discontinuities in the initial functions. These
discontinuities propagate into partial derivative ofΦ(p)
with respect topi , via solution valuesy(t,p). Thus, for
correct numerical parameter estimates in DDEs or
NDDEs attention should be paid to the position of the
jumps and the differentiability of state variable with
respect to the time-lagτ.

5 Sensitivity Analysis

Of considerable importance in assessing the model (23),
is the sensitivity of the model solutiony(t,p) to small
variations in the parameterp. For example, if it can be
observed that a particular parameterp j has no effect on
the solution, it may be possible to eliminate it, at some
stage, from the modelling process. In this Section, we

6 E04USF is designed to minimize an arbitrary smooth sum
of squares function subject to constraints (which may include
simple bounds on the variables, linear constraints and smooth
nonlinear constraints) using a sequential quadratic programming
(SQP) method.

provide the approach of variational of parameter to
evaluate the analysis of sensitivity for DDEs or NDDEs.

The variational approachis to derive, analytically,
general sensitivity coefficients for minor changes in the
parameters, time delays, and initial data in the model. Use
of this approach gives an expression for the sensitivity
functions in terms of the solution of an adjoint equation.
Variational approach has been used in Rihan (2003) to
investigate the qualitative behaviour of the solution of a
dynamic system of DDEs due to small variations in the
parameters occur in the model. Rihan (2010) extended the
approach to include a dynamic system described by a
system of NDDEs.

We desire to compute the sensitivity of the state
variable y(t,p) to small variations in the parameters
which occur in the NDDE (23). The familiar first-order
sensitivity functions for constant parametersα, are
defined by the partial derivativesSi j (t

∗) = ∂yi(t
∗)/∂α j ,

whereα j represent the parametersp j , the constant lagsτ
or the initial valuesy j(0). Then the total variation inyi(t)
due to small variations in the parametersα j is such that

δyi(t) = ∑
j

∂yi(t)
∂α j

δα j +O(|α|2). (26)

The functional derivative sensitivity coefficients, however,
when the parameters are functions of time such as the
initial function, are defined byβi j (t, t

∗) = ∂yi(t
∗)/∂α j (t)

(wheret < t∗). Then the total variation iny(t∗) due to any
perturbation inα(t) is denoted byδy(t∗), such that:

δyi(t
∗) =

∫ t∗

0

∂y(t∗)
∂α j (t)

δα j(t)dt, t < t∗. (27)

The functional derivative sensitivity density function
∂yi(t

∗)/∂α j(t) measures the sensitivity ofyi(t) at
locationt∗ to variation inα j(t) at any locationt < t∗.

For simplicity in equation (23), we write

f(t) = f(t,y(t),y(t− τ),y′(t − τ),p). (28a)

A∗(t) =
∂

∂y
f(t,y(t),y(t − τ),y′(t − τ),p). (28b)

B∗(t) =
∂

∂yτ
f(t,y(t),y(t − τ),y′(t − τ),p). (28c)

C∗(t) =
∂

∂y′τ
f(t,y(t),y(t − τ),y′(t − τ),p). (28d)

D∗(t) =
∂

∂p
f(t,y(t),y(t− τ),y′(t − τ),p). (28e)

Theorem 4.If W(t) is an n-dimensional adjoint function
which satisfies the differential equation

W′(t) =−A∗(t)TW(t)−B∗(t)TW(t + τ)+
C∗(t)TW′(t + τ), t ≤ t∗,

W(t) = W′(t) = 0, t > t∗;

W(t∗) = [0, . . . ,0,1ith,0. . . ,0]
T ,W′(t∗) = 0,

(29)
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Table 1: Parameter estimates for the growth model (31) that
best fits data of Figure 7.

ρ0 ρ1 τ ‖Error‖2
- 0.0518 0.1054 95.33 34.41

then the functional derivative sensitivity functions of
NDDEs (23) can be expressed by the formulae

∂yi(t∗)
∂y0

= W(0), (30a)

∂yi(t∗)
∂p

=
∫ t∗

0
WT(t)D∗(t)dt, t ≤ t∗, (30b)

∂yi(t∗)
∂τ

= −
∫ t∗−τ

−τ
WT(t + τ)

[
B∗(t + τ)y′(t)+

C∗(t + τ)y′′(t)
]
dt, (30c)

∂yi(t∗)
∂ψ(t)

= A∗(t + τ)W(t + τ), t ∈ [−τ,0). (30d)

Proof.See Rihan (2010).
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Fig. 7: The circles, Yi , represents the data for growth of
a population of Y0 = 50 of newborn cells of Tetrahymena
pyriformis. This data represents the multiplication of 25
cells in perfect division synchrony at first population
doubling. The line, y(t, p), shows the prediction of the
perfect model that based on the NDDE (31), with y(0) =
50, y(t) = 25 for t < 0, and best fit parameters given in
Table 1. The initially synchronized cell population becomes
desynchronized over time.

5.1 Application to cell growth problem

We apply the above analysis to fit a time-lag model to the
growth of a population of Tetrahymena pyriformis (where
the experimental data is given in the Figure7), and
evaluate its sensitivity functions.

The cells in the culture of Tetrahymena pyriformis
(displayed in Fig. 7) are initially homogeneous and
synchronized. This synchronized cell population becomes
desynchronized over time. The total observed population
as function of time of 50 cells which at timet = 0 are
newborn is shown in Fig.7. According to the above
analysis, we can model this growth by a parameterized
linear NDDE
y′(t) = ρ0y(t)+ρ1y(t − τ)+ρ2y

′(t − τ), t ≥ 0,

y(t) = ψ(t), y′(t) = ψ ′(t), t ∈ [−τ,0], y(0) = y0.
(31)

One possible meaning of the parameters of (31) is that
τ > 0 the average cell-division time;ρ0 < 0 the rate of
cell-death in culture; andρ1 the rate of commitment to
cell-division process; andρ2 is the gradual dispersal of
synchronization of cell-division (ρ2 = 2 implies pure
synchronization). We adopt the Log Least Squares
Approach (25) to fit model (31) to the observations given
in Figure 7 to estimate the unknown parameters. We
consider here a uniform initial functionψ(t) = 25 for
t ∈ [−τ,0), and initial valuey(0) = 50. The graph of
Figure 7 displays model prediction for the best fit
parameters given in Table1. Prescott (1959) [63]
measured thegeneration times7 of a population of
Tetrahymena pyriformiscells under uniform conditions.
The distribution of generation times in the cell population
was displayed for a subpopulation of new born cells at a
given time from thesynchronizedcell population, all of
age zero. The mean generation timeτ̃ was 111 min,
which is close to estimated value of the best fit,
τ = 96.33; see Table1.

We apply the analysis of Section 3 to find analytically

the sensitivity functions
∂y(t∗)
∂ψ(t)

&
∂y(t∗)

∂αi
(t ≤ t∗), where

α = [ρ0,ρ1,ρ2,y0]
T . In (31) α = [ρ0,ρ1,ρ2,y0,τ]T . The

adjoint equation for this case is

W′(t) =−ρ0W(t)−ρ1W(t + τ)+ρ2W
′(t + τ), t ≤ t∗,

W(t) = 0, t > t∗; W(t∗) = 1.
(32)

The analytical solution of the adjoint Eq (32) is as follows:

(i)0 < t∗ ≤ τ

W(t) = e−ρ0(t−t∗), t ≤ t∗, (33)

(ii)τ < t∗ ≤ 2τ

W(t) =

{
e−ρ0(t−t∗)−b(t − t∗+ τ)e−ρ0(t−t∗+τ), 0< t ≤ t∗− τ,

e−ρ0(t−t∗), t∗− τ < t ≤ t∗.
(34)

7 Generation time, that varies from cell to cell, is defined as
the age at which a cell divides, where age is time measured from
birth of a cell.
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Hereb= (ρ1+ρ0ρ2), W(t+τ) = 0 for t∗−τ < t ≤ t∗ and
W(t + τ) = e−ρ0(t−t∗+τ) for 0< t ≤ t∗− τ.

The solution of the NDDE (31), with an initial function
ψ(t) = ym (ψ ′(t) = 0), is

y(t) =





aeρ0t − ymξ , 0< t ≤ τ,
aeρ0t − [ymξ −ab(t− τ)+

ymξ 2]eρ0(t−τ)+ ymξ 2, τ < t ≤ 2τ,
(35)

wherea= (y0+ ymξ ), andξ =
ρ1

ρ0
.

Thus the functional derivative sensitivity density
function to the initial function, by using (30d), becomes:

(i)0 < t∗ ≤ τ
∂y(t∗)
∂ψ(t)

= ρ1W(t + τ) =
{

ρ1e−ρ0(t−t∗+τ), −τ < t ≤ t∗− τ,
0, t∗− τ < t ≤ 0.

(36)
(ii)τ < t∗ ≤ 2τ

∂y(t∗)
∂ψ(t)

=





ρ1e−ρ0(t−t∗+τ)−
ρ1b(t − t∗+2τ)e−ρ0(t−t∗+2τ),− τ < t ≤ t∗−2τ,

ρ1e−ρ0(t−t∗+τ),t∗−2τ < t ≤ 0.
(37)

While the sensitivity function ofy(t) to the initial
conditiony(0), that given by the formula (30a), is

∂y(t∗)
∂y(0)

=W(0)=

{
eρ0t∗ , 0< t∗ ≤ τ,

eρ0t∗ +b(t∗− τ)eρ0(t
∗−τ), τ < t∗ ≤ 2τ.

(38)
The sensitivity function ofy(t) to the constant parameter

ρ0(≡
1
η
), by using (30b), takes the form:

∂y(t∗)
∂ρ0

=

∫ t∗

0
W(t)

∂F
∂ρ0

dt =
{
(at∗− ymξ η)eρ0t∗ + ymξ η , 0< t∗ ≤ τ,
I , τ < t∗ ≤ 2τ, (39)

where

I =
∫ t∗−τ

0
W(t)

∂F
∂ρ0

dt+
∫ t∗

t∗−τ
W(t)

∂F
∂ρ0

dt

= (at∗− ymξ η)eρ0t∗ −2ymξ 2η −
[
[ymξ −ab(t∗− τ)+ ymξ 2+aρ2−bymξ η ](t∗− τ)

−ymξ η −2ymξ 2η
]
eρ0(t

∗−τ)

(Similarly, we can deduce∂y(t∗)/∂ρ1 & ∂y(t∗)/∂ρ2.) By
using (30c), we obtain the sensitivity ofy(t) to small
perturbations in the time-lag parameterτ as:

∂y(t∗)
∂τ

=

−
∫ t∗−τ

−τ
W(t + τ)

[
∂ f(t + τ)

∂yτ
y′(t)+

∂ f(t + τ)
∂y′τ

y′′(t)
]

dt

=

{
0, 0< t∗ ≤ τ,

−ρ0ab(t∗− τ)eρ0(t
∗−τ), τ < t∗ ≤ 2τ,

(40)

  t*−τ −τ 

∂y(t*)/∂ψ(t) 

0 

0 τ 2τ 

0 τ 2τ 

2τ 0 

∂y(t*)/∂y(0) 

∂y(t*)/∂ρ
0
 

∂y(t*)/∂τ 

τ 

Fig. 8: Shows general sensitivity functions,
∂y(t∗)/∂ψ(t), ∂y(t∗)/∂y0, ∂y(t∗)/∂ρ0, and ∂y(t∗)/∂τ ,
for the NDDE (31).

with a= (y0+ ymξ ) andb= (ρ1+ρ0ρ2).
We notice from the formula (40) that, as expected,y(t)

is sensitive to a change inτ in the time intervalτ < t ≤ 2τ
and is insensitive to changes in the constant lagτ in the
time interval [0,τ]. The plots (see FIG. 8) have a kink
at t = τ due to the existence of the delay in the system.
We may also remark from Eq (35), that if y0 6= ym, then
∂y(ti)/∂τ has a jump atti = τ. Thereafter attention has to
be directed to the objective function whenτ is a parameter
to be estimated.

6 DDE Solvers and Available Softwares

From a modeller’s viewpoint, two historical periods in the
production of numerical codes for delay equations can be
distinguished. During the first period, a number of
experimental codes were developed by modellers or
numerical analysts. The second period can be
characterized by the availability of more sophisticated
DDE solvers. The major problems that the designers of
such codes try to accommodate are: automatic location or
tracking of the discontinuities in the solution or its
derivatives, efficient handling of any “stiffness” (if
possible), dense output requirements, control strategy for
the local and global error underlying the step-size
selection, the cost and consistency of interpolation
technique for evaluating delayed terms.

The earliest, simple, numerical methods for DDEs (2)
utilized theEuler or classical fourth-orderRK methods
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with a constant step-size, supplemented with linear
interpolation schemes for the retarded terms. Such
adaptations provided minimally effective means for
solving models numerically: they had no error control,
used fixed step-size, and had problems coping with
“stiffness”. Numerical analysts are now in a position to
cite published algorithms for the numerical solution of
DDEs. Several packages and software are available for
the numerical integration and/or the study of bifurcations
in delay differential equations. Here is a short list for
available software:

-Archi (Paul [62]) simulates a large class of functional
differential equations.

-DDE23 (Shampine, S. Thompson [64]) simulates
retarded differential equations with several fixed
discrete delays.

-RADAR5 (Guglielmi, Hairer [65]) simulates stiff
problems, including differential-algebraic and neutral
delay equations with constant or state-dependent
(eventually vanishing) delay.

-DKLAG6 (Thompson [66]) simulates retarded and
neutral differential equations with state dependent
delays.

-MIDDE (Rihan,et al. [67]) simulates stiff and
non-stiff delay differential equations & Volterra delay
integro-differential equations, using mono-implicit
RK methods.

–BIFDD (Hassard [68]) (Fortran 77) normal form
analysis of Hopf bifurcations of differential equations
with several fixed discrete delays.

–DDE-BIFTOOL (Engelborghs [69]) (MatLab) allows
computation and stability analysis of steady state
solutions, their fold and Hopf bifurcations and
periodic solutions of differential equations with
several fixed discrete delays.

For further study of some related issues to the numerical
treatments of DDEs, we refer to [6,70].

7 Concluding Remarks

In this paper, we provided a set of delay differential
equations in biosciences. Delay differential equations
exhibit much more complicated dynamics than ordinary
differential equations since a time delay could cause a
stable equilibrium to become unstable and cause the
populations to fluctuate. One requires realistic
mathematical models that should be quantitatively and
qualitatively consistent with the biological phenomena
and experimental data. We have seen that delay models of
real-phenomena have more interesting dynamics than
equations that lack memory-effects. The numerical results
show that the optimal treatment strategies reduce the
tumour cells load and increase the effector cells after few
days of therapy. The numerical simulations show the
rationality of the model presented, which in some degree
meets the natural facts.

Sensitivity functions clearly demonstrate the measure
of the importance of the input parameters. We have
remarked how these functions enable one to assess the
relevant time intervals for the identification of specific
parameters and enhance the understanding of the role
played by specific model parameters in describing
experimental data.

The literature on this subject is very broad and we
cannot quote many interesting papers, as an exhaustive
list of references is not possible in this short entry.
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