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Abstract: Non-additive entropy measures are important for many applications. We study Havrda and Charvat entropy for record values
and have shown that this characterizes the underlying distribution function uniquely. Also the non-additive entropy of record values has
been derived in case of some specific distributions. Furtherwe propose a generalized residual entropy measure for record value.
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1 Introduction

SupposeX1, X2, · · · , Xn be a sequence of independent and
identically distributed (i.i.d.) random variables with a
common absolutely continuous distribution function (cdf)
F , probability density function (pdf)f , and survival
functionF = 1−F . An observationXj will be called an
upper record valueif its value exceeds that of all previous
observations. ThusXj is an upper record ifXj > Xi for
every i < j. An analogous definition can be given for a
lower record value. LetR( j) denote the time (index) at
which the jth record value is observed. Since the first
observation is always a record value, we have

R(1) = 1, · · · ,R(J+1) = min
{

i : Xi > XR( j)
}

,

where R(0) is defined to be 0. The sequence of upper
record values can thus be defined by
U j = XR( j), j = 1,2,3, · · · Let D( j) = R( j + 1)− R( j)
denote the inter-record time between thejth record value
and ( j + 1)th record value, and let thejth record value
XR( j) be denoted byXj for simplicity. Then the probability
density function of thejth record valueXj is given by

gXj (x) =
{− ln(1−F(x))} j−1 f (x)

Γ ( j)
, x> 0 (1)

The survival function is

ḠXj (x)=
n−1

∑
j=0

{− ln(1−F(x))} j F̄(x)
Γ ( j)

=
Γ (n ;− logF̄(x))

Γ (n)
,

(2)

whereΓ (a;x), the incomplete gamma function, is defined
as

Γ (a;x) =
∫ ∞

x
xa−1e−xdx, x, a> 0,

refer to, David and Nagaraja (2003, p.32).

Records can be viewed as order statistics from a sample
whose size is determined by the values and the order of
occurrence of the observations. In reliability theory, order
statistics and record values are used for statistical
modeling. The(n−m+ 1)th order statistics in a sample
of size n represents the life length of an′m out of n′

system. Record values are used in shock models and
minimal repair systems, refer to Kamps (1994). Record
values arise naturally in problems such as industrial stress
testing, meteorological analysis, hydrology, sporting and
athletic events, and economics, refer to Arnold et al.
(1998), Nevzorov (2001) and Ahsanullah (2004). Several
authors have studied the characterization of distribution
functionF based on the properties of order statistics and
record values, refer to Nagaraja and Nevzorov (1997),
Raqab and Awad (2000), and Balakrishnan and Stepanov
(2004).

The idea of information-theoretic entropy was first
introduced by Shannon (1948) and later by Weiner (1949)
in Cybernetics. LetX be an absolutely continuous random
variable which denotes the lifetime of a device or, a
system with probability density functionf (x). Then the
average amount of uncertainty associated with the random
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variableX, as given by Shannon entropy (1948) is

H(X) =−
∫ ∞

0
f (x) log f (x)dx . (3)

The measure (3) is additive in nature in the sense that for
two independent random variablesX andY

H(X ∗Y) = H(X)+H(Y) ,

where X ∗ Y denotes the joint random variable. In
literature many authors have generalized Shannon entropy
(3) in different ways. A well-known parametric extension
of the Shannon entropy measure was defined by Havrda
and Charvat (1967) as

Hα(X) =
1

1−α

{

∫ ∞

0
f α (x)dx−1

}

, α 6= 1, α > 0 . (4)

Although entropy measure (4) was first introduced by
Havrda and Charvat (1967) in the context of cybernetics
theory, it was Tsallis (1988) who exploited its
non-extensive features and placed it in a physical setting.
Hence entropy measure (4) is also known as Tsallis
entropy (1988). Clearly asα → 1, (4) reduces to (3). This
entropy is similar to Shannon entropy except for its
non-additive nature, that is

H(X ∗Y) = H(X)+H(Y)+ (1−α)H(X)H(Y).

In general, the non-additive measures of entropy find
justifications in many biological and chemical
phenomena. Some properties and applications of
non-additive entropy measure (4) have been studied by
Tsallis (1998, 2002) and, Tsallis and Brigatti (2004).
Baratpour et al. (2007, 2008) obtained results for the
Shannon entropy and Renyi entropy of the order statistics
and record values.
In this communication we study results for the record
values based on the non-additive entropy measure (4).
The paper is organized as follows. A general expression
for the entropy measure (4) of a record value distribution
is derived in Section 2. The entropies of record values
associated with the uniform, exponential, weibull, pareto,
finite range and gamma are presented in Section 3. In an
attempt to establish a coherence between the entropies of
the parent and the corresponding record value
distributions, Section 4 is devoted to a characterization
result. Generalized residual entropy of record values has
been studied in Section 5.

2 Generalized Entropy for Different
Univariate distribution

In this section, we derive generalized entropy measure (4)
for some specific univariate continuous distributions.

2.1 Exponentiated Exponential Distribution

A random variableX is said to have the exponentiated
exponential distribution denoted byX ∼ EE(γ, θ ), if its
probability density function (pdf) and cumulative
distribution function (cdf) are given by

f (x) = γθ exp(−θx){1−exp(−θx)}γ−1 , x> 0 (5)

and

F(x) = {1−exp(−θx)}γ , γ > 0, θ > 0, (6)

respectively. In particular forγ = 1, (5) is the exponential
distribution.

The exponentiated exponential distribution introduced by
Gupta and Kundu (1999) has some interesting physical
interpretations. Consider a parallel system consisting ofγ
components, the system works, only when at least one of
the γ-components works. If the lifetime distributions of
the components are independent identically distributed
(i.i.d.) exponential random variables, then the lifetime
distribution of the system is defined as (6).

Entropy of a random variableX is a measure of its
uncertainty. LetX ∼ EE(γ, θ ); we derive explicit form
for the generalized entropy measure (4) forX. For the pdf
given by (5),

∫ ∞
0 f α(x)dx= (γθ )α ∫ ∞

0 exp(−θαx){1−exp(−θx)}αγ−α dx.
(7)

On substitutingy= exp(−θx), (7) reduces to

γα θ α−1∫ 1
0 yα−1{1− y}αγ−α dy= γα θ α−1B(α;αγ −α +1).

So (4) takes the form

Hα(X) =
1

1−α
{

γα θ α−1B(α;αγ −α +1)−1
}

. (8)

If γ = 1, then (8) reduces toHα(X) = 1
1−α

{

θ α−1

α −1
}

,

the entropy measure (4) for exponential distribution.

Table 1 gives the non-additive Havrda and Charvat
entropy measure (1967) for some specific probability
distributions.

3 Generalized Entropy of Record Value
Obtained for Specific Distributions

We will use the probability integral transformation of the
random variableU = F(x), where the distribution ofU is
the standard uniform distribution. The probability integral
transformation provides the following useful
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Table 1: yyyyyy
Distribution Density functionf (x) EntropyHα (X)

Uniform 1
(b−a) ; x∈ [a,b] 1

(1−α)

{

(b−a)1−α −1
}

Exponential θe−θx ; x> 0, θ > 0 1
(1−α)

{

θ α−1

α −1
}

Pareto θβ θ

x(θ+1) ; x≥ β > 0, θ > 0 1
(1−α)

[

θ α

[αθ+α−1]β α−1 −1
]

Finite Range a
b(1− x

b)
a−1 ;0≤ x≤ b, a> 1 1

(1−α)

{

aα b1−α

(1+(a−1)α) −1
}

Beta xa−1(1−x)b−1

β (a,b) ; 0≤ x≤ 1, a, b> 0 1
(1−α)

[

β (α(a−1)+1,α(b−1)+1)
β α (a,b) −1

]

Levy ( σ
2π )

1/2 1
(x−µ)3/2 e−

σ
2(x−µ) ; x> µ, µ > 0 1

(1−α)

{

(σ
2 )

3(1−α)
2 (α1− 3α

2

π1/2 )Γ ( 3α
2 −1)−1

}

Folded Cramer θ
(1+θx)2 ; x≥ 0, θ > 0 1

(1−α)

{

θ α−1

(2α−1) −1
}

representation of the entropy measure (4) for the random
variableX

Hα(X) =
1

1−α

{

∫ 1

0
f (α−1)(F−1(u)du−1

}

. (9)

Next we prove the following result.

Lemma 31The entropy measure (4) of the jth record value
Xj can be expressed as

Hα(Xj) =
Γ [( j−1)α+1]
{Γ ( j)}α (1−α)E[ f

α−1{F−1(1−e−v)}]− 1
(1−α) ,

(10)
where v∼ Γ {( j −1)α +1} and E is the expectation.

Proof Generalized entropy (4) of thejth record value is
defined as

Hα(Xj) =
1

1−α

{

∫ ∞

0
{gXj (x)}αdx−1

}

, α 6= 1, α > 0 .

Using (1), this can be rewritten as

Hα(Xj) =
1

(1−α){Γ ( j)}α {
∫ ∞

0
{− ln F̄(x)}( j−1)α

f α(x)dx−{Γ ( j)}α}

Substituting− ln F̄(x) = u, and hence,x = F−1(1−e−u),
we have

Hα(Xj) =
1

(1−α){Γ ( j)}α {
∫ ∞

0
u( j−1)αe−u

[

f α−1{F−1(1−e−u)}
]

du−{Γ ( j)}α}
(11)

It can be rewritten as

Hα(Xj) =
1

(1−α)
{Γ [( j −1)α +1]

{Γ ( j)}α

E[ f α−1{F−1(1−e−v)}]−1}.

So, the result follows.

3.1 Uniform Distribution

If a random variableX is uniformly distributed over
(a, b), a < b, then its density and distribution functions
are given respectively by

f (x) =
1

b−a
and F(x) =

x−a
b−a

, a< x< b.

We have

Hα(Xj) =
1

(1−α){Γ ( j)}α {
∫ ∞

0
u( j−1)αe−u f α−1(x)du

−{Γ ( j)}α}.

Thus generalized entropy (4) of thejth record value for
uniform distribution is given as

Hα(Xj)=
1

(1−α){Γ ( j)}α

{

∫ ∞
0 u( j−1)αe−udu
(b−a)α−1 −{Γ ( j)}α

}

,

which gives

Hα(Xj)=
1

(1−α){Γ ( j)}α

{

Γ {( j −1)α +1}
(b−a)α−1 −{Γ ( j)}α

}

.

The generalized entropy of the first record, that is,X1, is

Hα(X1) =
(b−a)1−α

1−α
− 1

1−α
. (12)

This is the entropy of the parent distribution for uniform
variate as indicated in Table 2.1. The entropy of the non-
trivial record, that is,X2, is given as

Hα(X2) =
1

(1−α)

{

Γ (α +1)
(b−a)α−1 −1

}

.

3.2 Exponential Distribution

Let X be a random variable having the exponential
distribution with pdf f (x) = θ{exp−(θx)}. Substituting

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1544 V. Kumar, H. C. Taneja: Non-Additive Entropy Measure and Record Values

− ln F̄(x) = u, hence,uθ = F−1(1−e−u) we have

f α−1{F−1(1−e−u)}=
[

f
( u

θ

)]α−1
= θ α−1e−u(α−1) .

(13)
Thus generalized entropy (4) of thejth record value for
exponential distribution is given as

Hα(Xj) =
1

(1−α){Γ ( j)}α {
∫ ∞

0 u( j−1)αe−αudu
θ 1−α

−{Γ ( j)}α},

which gives

Hα(Xj) =
1

(1−α){Γ ( j)}α {Γ {( j −1)α +1}θ α−1

α( j−1)α+1

−{Γ ( j)}α}.
(14)

For j = 1, that is, the entropy of the first record, we have

Hα(X1) =
θ α−1

α(1−α)
− 1

1−α
.

This is the entropy of the parent distribution. The entropy
of the non-trivial record, that is,X2, is given as

Hα(X2) =
1

(1−α)

{

Γ (α +1)θ α−1

αα+1 −1

}

.

3.3 Pareto Distribution

Let X be a random variable having Pareto distribution with
pdf

f (x) =
θβ θ

xθ+1 , x≥ β > 0, θ > 0. (15)

Substituting− ln F̄(x) = u, we observe thatx = F−1(1−
e−u) = βe

u
θ and for computingHα(Xj), we have

f α−1{F−1(1−e−u)} =

(

θ
β

)α−1

e−u(α−1)(1+ 1
θ ) .

Thus generalized entropy (4) of thejth record value for
Pareto distribution is given as

Hα(Xj) =
1

(1−α){Γ ( j)}α {
(

θ
β

)α−1∫ ∞

0
u( j−1)α

e−(α+ α−1
θ )udu−{Γ ( j)}α},

which gives,

Hα(Xj) =
1

(1−α){Γ ( j)}α { Γ {( j −1)α +1}θ jα

β α−1[αθ +α −1]( j−1)α+1

−{Γ ( j)}α}.
(16)

Therefore,

Hα(X1) =
1

1−α

{

θ α

[αθ +α −1]β α−1 −1

}

,

the entropy for the parent distribution. The entropy for non
trivial recordX2 is given as

Hα(X2) =
1

1−α

{

Γ (α +1)θ 2α

β α−1[αθ +α −1]α+1 −1

}

. (17)

3.4 Finite Range Distribution

The pdf of the finite range distribution is given by

f (x) =
a
b

(

1− x
b

)a−1
, a > 1, 0≤ x≤ b. (18)

The survival function is

F̄(x) = 1−F(x) =
(

1− x
b

)a
.

Substituting− ln F̄(x) = u, we observe thatx = F−1(1−
e−u) = b(1−e−

u
a ) and for computingHα(Xj), we have

f α−1{F−1(1−e−u)}=
(a

b

)α−1
e−u(α−1)(1− 1

a ) (19)

Lemma 3.1 gives

Hα(Xj) =
1

(1−α){Γ ( j)}α { Γ {( j −1)α +1}a jα

bα−1[aα −α +1]( j−1)α+1

−{Γ ( j)}α}.
(20)

For j = 1, the entropy for parent distribution is

Hα(X1) =
1

1−α

{

θ α

[αθ +α −1]β α−1 −1

}

The entropy for non trivial recordX2 is given as

Hα(X2) =
1

1−α

{

Γ (α +1)a2α

bα−1[aα −α +1]α+1 −1

}

. (21)

3.5 Weibull Distribution

A non-negative random variableX is Weibull distributed,
if its pdf is

f (x) = λ βxβ−1exp
{

−λxβ
}

, λ , β > 0, x> 0

where λ and β are scale and shape parameters
respectively. The survival function is

F̄(x) = 1−F(x) = e−λ xβ
.
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Substituting− ln F̄(x) = u, we observe thatx = F−1(1−
e−u) = { u

λ }
1
β and for computingHα(Xj), we have

f α−1{F−1(1−e−u)}=
(

β λ
1
β
)α−1

{u}
(α−1)(β−1)

β e−u(α−1)

Lemma 3.1 gives

Hα(Xj) =
1

(1−α){Γ ( j)}α {

(

β λ
1
β
)α−1

Γ { jα − α−1
β }

{α} jα− α−1
β

−{Γ ( j)}α}.
(22)

For j = 1 the entropy for parent distribution is

Hα(X1) =
1

(1−α)











(

β λ
1
β
)α−1

Γ {α − α−1
β }

{α}α− α−1
β

−1











.

For β = 1, (22) reduces to (14), the entropy forjth record
of exponential distribution.

4 Characterization Problem

In this section, we show that the distribution functionF
can be uniquely specified up to a location change by the
equality of Tsallis entropy of record values. First we state
the following lemma, due to Goffman and Pedrick (1965).

Lemma 41A complete orthogonal system for the space
L2(0, ∞) is given by sequence of Laguerre function

φn(x) =
1
n!

e−
x
2 Ln(x), n≥ 0.

where Ln(x) is the Laguerre polynomial, defined as the
sum of coefficients of e−x in the nth derivative of xne−x,
that is

Ln(x) = ex dn

dxn (x
ne−x) =

n

∑
k=0

(−1)kn(n−1) · · ·(k+1)xk.

(23)
The completeness of Laguerre functions in L2(0, ∞) means
that if f ∈ L2(0, ∞) and

∫ ∞
0 f (x)e−

x
2 Ln(x)dx= 0, ∀n≥ 0,

then f is zero almost everywhere.

Theorem 41Let X and Y be two random variables with
pdfs f(x) and g(x) and absolutely continuous cdfs F(x)
and G(x) respectively, with E[log f (x)]2 < ∞ and
E[logg(x)]2 < ∞. Then F and G belong to the same
location family of distribution, if, and only if

Hα(Xj) = Hα(Yj) , ∀ j ≥ 1, (24)

where Xj and Yj are the jth upper records of X and Y
respectively.

Proof The necessary part is obvious. We only need to
prove the sufficiency part. Let

Hα(Xj) = Hα(Yj) , ∀ j ≥ 1.

We Know that

Hα(Xj) =
1

(1−α){Γ ( j)}α {
∫ ∞

0
{− ln F̄(x)}( j−1)α f α(x)dx

−{Γ ( j)}α}.
(25)

Substituting {− ln F̄(x)}α = u, and hence,

x= F−1
{

1−exp
(

−u
1
α
)}

, in (25) we get

Hα(Xj) =
1

(1−α){Γ ( j)}α {
∫ ∞

0
u j−1u

1
α −1e−(u)

1
α

f α−1{F−1(1−e−(u)
1
α
)}du−{Γ ( j)}α}.

Similarly, we get

Hα(Yj) =
1

(1−α){Γ ( j)}α {
∫ ∞

0
u j−1u

1
α −1e−(u)

1
α

gα−1{G−1(1−e−(u)
1
α
)}du−{Γ ( j)}α}.

If for two cdfsF andG, these differences coincide, we can
conclude that

∫ ∞

0
u

1
α −1e−(u)

1
α [ f α−1{F−1(1−e−(u)

1
α )}

−gα−1{G−1(1−e−(u)
1
α
)}]un−1Ln(u)du= 0,

(26)

for all n≥ 1, By (26), we can conclude that
∫ ∞

0
u

1
α −1e

u
2−(u)

1
α [ f α−1{F−1(1−e−(u)

1
α )}

−gα−1{G−1(1−e−(u)
1
α
)}]e− u

2 un−1Ln(u)du= 0,
(27)

for all n ≥ 1, whereLn(u) is Laguerre polynomial given
in Lemma 4.1. Using the assumptionE[log f (x)]2 < ∞
andE[logg(x)]2 < ∞, and Minkowski inequality, we can
conclude that

u
1
α −1e

u
2−(u)

1
α { f α−1{F−1(1−e−(u)

1
α
)}

−gα−1{G−1(1−e−(u)
1
α
)}} ∈ L2(0, 1).

Hence, by the completeness property of Lemma 4.1, we
conclude that

f (F−1(ν)) = g(G−1(ν)), ∀ ν ∈ (0,1).

As, d(F−1(ν))
dν = 1

f (F−1(ν)) . Therefore, we have

F−1
′
(ν) = G−1

′
(ν), ∀ ν ∈ (0,1)

or, F−1(ν) = G−1(ν)+ c,

wherec is a constant. This concludes the proof.
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5 Generalized Residual Entropy of Record
Values

In reliability theory and survival analysis,X usually
denotes a duration such as the lifetime of a component.
The residual lifetime of the system when it is still
operating at timet is (Xt = X − t|X > t) which has the

probability density f (x; t) = f (x)
F̄(t) , x ≥ t > 0, where

F̄(t) = 1 − F(t) > 0. Ebrahimi (1996) proposed the
entropy of the residual lifetimeXt as

H(X; t) =−
∫ ∞

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dt , t > 0. (28)

This measures the uncertainty of the residual lifetime of
the system when it is still operating at timet. The role of
residual entropy as a measure of uncertainty in order
statistics and record values has been studied by many
researchers, refer to, Zarezadeh and Asadi (2010),
Bartapour et al. (2007, 2008). The generalized residual
entropy of orderα is defined as

Hα(X; t) =
1

(1−α)

[∫ ∞
t f α (x)dx

F̄α(t)
−1

]

; α > 0, α 6= 1 .

(29)
For more details and application of this dynamic
information measure refer to Nanda and Paul (2005), and
Kumar and Taneja (2011). Obviously, whent = 0, (28)
and (29) reduce to information measures (3) and (4)
respectively.

Let X1,X2, · · ·Xn are i.i.d. random variables with an
absolutely continuous distributionF and density function
f , denoting the lifetime of n components. Then
Z = min(X1,X2, ...,Xn) represents the lifetime of the
system, whose components are connected in series. The
residual entropy measure (29) of the series system is
independent oft, whenXi ’s are exponentially variate. In
this context, we prove the following theorem.

Theorem 51If X1,X2, ...,Xn are independent random
variables having an exponential distribution with
parametersθi , i = 1,2, ...,n, then the residual entropy
(29), of the random variable Z= min(X1,X2, ...,Xn) is
independent of the parameters t.

Proof Since Z = min(X1,X2, ...,Xn), therefore the
cumulative distribution function (c.d.f.)Z is

FZ(z) = P(Z ≤ z) = 1−∏n
i=1 (exp(−θiz)) = 1−exp(−z∑n

i=1 θi) .

Survival function ofZ is

FZ(z) = 1−FZ(z) = exp

(

−z
n

∑
i=1

θi

)

.

Then its p.d.f. is given by

fZ(z) =
d
dz

FZ(z) =
n

∑
i=1

θi

[

exp

(

−z
n

∑
i=1

θi

)]

.

Substituting these values in (29) and simplify, we obtain

Hα(Z; t) =
1

1−α

(

∑n
i=1{θi}α−1

α
−1

)

,

which is independent oft.

Corollary 51If X1,X2, ...,Xn are independent and
identically distributed (i.i.d.) random variables, then :

Hα(Z; t) =
1

1−α

(

∑n
i=1{nθ}α−1

α
−1

)

.

The role of residual entropy as a measure of uncertainty
in order statistics and record value has been studied by
Zarezadeh and Asadi (2010). Next, we derive generalized
residual entropy of orderα for the jth upper record value.
Before the main result we state the following two lemmas
which are easy to prove.

Lemma 51Let U∗
j be the jth upper record value for a

sequence of observations from uniform distribution on
(0,1). Then

Hα(U
∗
j ; t) =

1
1−α

{

Γ [( j −1)α +1;− log(1− t)]
Γ α(n;− log(1− t))

−1

}

.

(30)

Proof For uniform distribution, using (29) we have

Hα(U
∗
j ; t) =

1
(1−α)

[ ∫ ∞
t gα

Xj
(x)dx

Ḡα
Xj
(t)

−1

]

; α > 0, α 6= 1 .

(31)
Putting values from (1) and (2) in (31), we get the desired
result (30).

Lemma 52Let Ū j be the jth upper record values for a
sequence of observations from standard exponential
distribution. Then

Hα(Ū j ; t)=
1

1−α

{

Γ [( j −1)α +1;t]
Γ α(n; t)

E{e−(α−1)Ut}−1

}

,

(32)
where Ut ∼ Γ {( j −1)α +1;t}
The proof follows on the same lines as in Lemma 5.1.
Now we state the main result.

Theorem 52Let Xn, n > 1 be a sequence of i.i.d.
continuous random variable from the distribution F(x)
with density function f(x) and the quantile function
F−1(.). Let Uj denote the jth upper record . Then the
dynamic generalized entropy (29) of jth upper record
value can be expressed as

Hα(Ū j ; t) =
1

1−α
{Γ [( j −1)α +1;− logF̄(t)]

Γ α(n;− logF̄(t))

E{ f α−1{F−1(1−e−Vz)}}−1},
(33)

where z=− logF̄(t) and Vz∼Γ {( j−1)α +1;− logF̄(t)}
and E is the expectation.
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Proof Dynamic generalized entropy (29) of thejth upper
record value is defined as

Hα(U j ; t) =
1

(1−α)

[∫ ∞
t gα

Xj
(x)dx

Ḡα
Xj
(t)

−1

]

; α > 0, α 6= 1

=
1

(1−α)

{

∫ ∞
t {− ln F̄(x)}( j−1)α f α (x)dx

Γ α{n;− logF̄(t)} −1

}

. (34)

Substituting− logF̄(x) = u and x = F−1(1− e−u), we
have

Hα(U j ; t) =

{

∫ ∞

− logF̄(t)
u( j−1)αe−u

×
[

f α−1{F−1(1−e−u)}
]

du
}

(1−α)(Γ α{n;− logF̄(t)}−1)

It can be rewritten as

Hα(Ū j ; t) =
1

1−α
{Γ [( j −1)α +1;− logF̄(t)]

Γ α(n;− logF̄(t))

E{ f α−1{F−1(1−e−Vz)}}−1}.

So, the result follows.

ExampleLet X have Weibull distribution with density

f (x) = λ βxβ−1exp
{

−λxβ
}

, λ , β > 0, x> 0

Here,x= F−1(1−e−u) = { u
λ }

1
β . Then we have

f α−1{F−1(1−e−u)}=
(

β λ
1
β
)α−1

{u}
(α−1)(β−1)

β e−u(α−1)

Therefore

Hα(Ū j ; t)=
1

1−α











β (α−1)λ
α−1

β Γ
[

jα − α−1
β ;λ tβ

]

Γ α{n;λ tβ}[α]
jα− α−1

β
−1











.

(35)
Remark 1 Forb= 2, (35) reduces to

Hα(Ū j ; t)=
1

(1−α)

{

{2
√

λ}α−1Γ { jα − α−1
2 ;λ t2}

Γ α{n;λ t2}{α}{ jα− α−1
2 }

−1

}

;

(36)
the residual entropy of thejth record value from a
Rayleigh distribution, that is,X ∼ Rayleigh(λ > 0).

Remark 2 Forb= 1, (35) reduces to

Hα(Ū j ; t) =
1

(1−α)

{

{λ}α−1Γ { jα −α +1;λ t}
Γ α{n;λ t}{α}{ jα−α+1} −1

}

;

(37)
the residual entropy of thejth record value from a
exponential distribution, that is,X ∼ exp(λ ).

6 Conclusion

Information theoretic measures of Shannon and Renyi
which are additive in nature have been studied by many
researchers for record values. It is of interest to study
non-additive entropy measures, which find applications in
many phenomena, for record values. We have seen that
Havrda and Charvat entropy measure for record values
characterize the underlying distribution function uniquely
except for the location. Also the concept generalized
residual entropy for record values has been studied which
can be explored further both theoretical interest and
application point of view.
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