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Abstract: Non-additive entropy measures are important for many egiins. We study Havrda and Charvat entropy for recordeglu
and have shown that this characterizes the underlyinglalision function uniquely. Also the non-additive entrogyrecord values has
been derived in case of some specific distributions. Furtlegpropose a generalized residual entropy measure fordreature.
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1 Introduction wherel” (a;x), the incomplete gamma function, is defined
as

SupposeXy, X, -+, Xy be a sequence of independent and _ ©

identically distributed (i.i.d.) random variables with a I (&;x) = /X X*eXdx x, a> 0,

common absolutely continuous distribution function (cdf)
F, probability density function (pdf)f, and survival referto, David and Nagaraja (2003, p.32).
functionF = 1—F. An observatiorX; will be called an
upper record valuéf its value exceeds that of all previous Records can be viewed as order statistics from a sample
observations. Thu¥; is an upper record iX; > X; for whose size is determined by the values and the order of
everyi < j. An analogous definition can be given for a occurrence of the observations. In reliability theory,erd
lower record value. LeR(j) denote the time (index) at statistics and record values are used for statistical
which the jth record value is observed. Since the first modeling. The(n — m+ 1)th order statistics in a sample
observation is always a record value, we have of size n represents the life length of am out of n
1. —minfi- X _ system. Record values are used in shock models and
RO)=1- RO+ 1) =min{i: X > XR“)} ’ minimal repair systems, refer to Kamps (1994). Record
where R(0) is defined to be 0. The sequence of uppervalues arise naturally in problems such as industrial stres
record values can thus Dbe defined by testing, meteorological analysis, hydrology, sporting an
Uj = Xr(j),i = 1,2,3,--- Let D(j) = R(j +1) — R(j) athletic events, and economics, refer to Arnold et al.
denote the inter-record time between fiftle record value  (1998), Nevzorov (2001) and Ahsanullah (2004). Several
and (j + 1)th record value, and let thgth record value authors have studied the characterization of distribution
Xr(j) be denoted b¥; for simplicity. Then the probability ~ functionF based on the properties of order statistics and
density function of thgth record value; is given by record values, refer to Nagaraja and Nevzorov (1997),
. Ragab and Awad (2000), and Balakrishnan and Stepanov
{~In(1-Fx)}

(2004).
r(j)

) o The idea of information-theoretic entropy was first
The survival function is introduced by Shannon (1948) and later by Weiner (1949)

B n-1 = . — in Cybernetics. LeX be an absolutely continuous random

Gy, (X) = Z{){_In(l_F(,X))} FO9 _I'(n;—logF(x) ., variable which denotes the lifetime of a device or, a

: = r(i) r(n system with probability density functiof(x). Then the

(2) average amount of uncertainty associated with the random

ax; (X) = ;x>0 (1)

* Corresponding author e-mailikas.iitr82@yahoo.co.in

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090350

1542 NS 2 V. Kumar, H. C. Taneja: Non-Additive Entropy Measure and étdcdvalues

variableX, as given by Shannon entropy (1948) is 2.1 Exponentiated Exponential Distribution
H(X) = _/m f(x)log f (x)dx. (3) A random variableX is said to have the exponentiated
0 exponential distribution denoted by~ EE(y, 9), if its

, o i probability density function (pdf) and cumulative
The measure (3) is additive in nature in the sense that fopjistribution function (cdf) are given by

two independent random variabl¥sandY

f(x) = yOexp—0x) {1—exg—0x) "1, x>0 (5

H(X*Y) =H(X)+H(Y), (x) = yBexp(—0x) { Xp(—6x)} X (5)
. . and

where X Y denotes the joint random variable. In

literature many authors have generalized Shannon entropy F(x)={1—exp—6x)}", y>0,6>0, (6)

(3) in different ways. A well-known parametric extension

of the Shannon entropy measure was defined by Havrdgespectively. In particular foy = 1, (5) is the exponential

and Charvat (1967) as distribution.

_ 1 ®ca _ The exponentiated exponential distribution introduced by
Ha(X) = 1-a {/o F(dx 1}’ a7l a>0.(4) Gupta and Kundu (1999) has some interesting physical
interpretations. Consider a parallel system consisting of
Although entropy measure (4) was first introduced bycomponents, the system works, only when at least one of
Havrda and Charvat (1967) in the context of cyberneticsthe y-components works. If the lifetime distributions of
theory, it was Tsallis (1988) who exploited its the components are independent identically distributed
non-extensive features and placed it in a physical setting(i.i.d.) exponential random variables, then the lifetime
Hence entropy measure (4) is also known as Tsallisdistribution of the system is defined as (6).
entropy (1988). Clearly as — 1, (4) reduces to (3). This
entropy is similar to Shannon entropy except for its Entropy of a random variablX is a measure of its

non-additive nature, that is uncertainty. LetX ~ EE(y, 0); we derive explicit form
for the generalized entropy measure (4) XorFor the pdf
H(X*Y)=H(X)+H()+(1—-oa)HX)H(Y). given by (5),

In general, the non-additive measures of entropy find[s’ f%(x)dx= (y8)% [y exp(—0ax) {1 —exp(—6x)}“Y " dx
justifications in  many biological and chemical (7
phenomena. Some properties and applications ofon substituting/ = exp(—6x), (7) reduces to
non-additive entropy measure (4) have been studied by

Tsallis (1998, 2002) and, Tsallis and Brigatti (2004). y@99-t [+ya=1{1—y}®¥ "% dy= 9 1B(a;ay—a +1).
Baratpour et al. (2007, 2008) obtained results for the

Shannon entropy and Renyi entropy of the order statisticsSo (4) takes the form

and record values. 1

In this communication we study results for the record _ a—1R(r- 1y _

values based on the non-additive entropy measure (4). Ha(X) l1-a {y"e Blasay—a+1) 1}' ®)
The paper is organized as follows. A general expression -

for the entropy measure (4) of a record value distributionIf y = 1, then (8) reduces tblg(X) = ﬁ ——1¢,

is derived in Section 2. The entropies of record valuesye eniropy measure (4) for exponential distribution.
associated with the uniform, exponential, weibull, pareto

finite range and gamma are presented in Section 3. In aRzpe 1 gives the non-additive Havrda and Charvat
attempt to establish a coherence between the entropies %ﬁtropy measure (1967) for some specific probability
the parent and the corresponding record valueyisiributions.

distributions, Section 4 is devoted to a characterization

result. Generalized residual entropy of record values has

been studied in Section 5.

3 Generalized Entropy of Record Value

2 Generalized Entropy for Different Obtained for Specific Distributions

Univariate distribution We will use the probability integral transformation of the
random variabl&) = F(x), where the distribution df) is

In this section, we derive generalized entropy measure (4)he standard uniform distribution. The probability intelgr

for some specific univariate continuous distributions. transformation  provides the following  useful
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Table 1: yyyyyy
Distribution Density functionf (x) EntropyHa( )
: T )=
Uniform B » XE[ab) o a) {(b— ?1 a1}
Exponential e ; x>0,0>0 ﬁ {GT - 1}
9 1 a
Pareto (9‘1“ i Xx>B>06>0 T-a) | @era—1BeT — 1}
Finite Range g1-%at;0<x<ba>1 (1%){% 1
XL(1-x)b1 1 Bla(a—1)+la(b-1)+1)
Beta @b 0<x<1lab>0 Ta) [ B”(a b) 1}
3(1-a)
Levy | (F)Y2 ke 7 x> p>0 ﬁ{(%) Sy 1>—1}
6 . 1 L 1
Folded Cramer e 0 X >0,6>0 Ta) {m — 1}

representation of the entropy measure (4) for the randon3.1 Uniform Distribution

variableX
1

Ha() =135

(9)

{/Olf<°’ D(FL(u)du— 1}

Next we prove the following result.
Lemma 31The entropy measure (4) of th® jecord value

Xj can be expressed as
Ha (X)) = e e ElTT HF - e )]~ gy,

(10)
where v~ I {(j —1)a + 1} and E is the expectation.

Proof Generalized entropy (4) of thg" record value is
defined as

Ha (X)) = ﬁ {/Om{ng (x)}%dx— 1}, a#1la>0.
Using (1), this can be rewritten as
) — ; “ CInE (i-1)a
HC{(XJ)_(:I__a){/—(])}a{\/0 { lnF(X)}J
FEOgdx—{r(j)}}

Substituting—INF(x) = u, and hencex = F1(1—e™Y),
we have

o) =gy 0

(11)
[N 1—e ")} du—{r(j)}°}
It can be rewritten as
L1 rl(j-Da+1]
=T
E[fYFY1-e)}] -1}

So, the result follows.

If a random variableX is uniformly distributed over

(a, b), a< b, then its density and distribution functions
are given respectively by
1 X—a
f(x)_bT and F(x) = b_a’ a<x<h.
We have

Ha (X)) = m{/j ul—baeg v fa-1(x)du
—{r

Thus generalized entropy (4) of thj& record value for
uniform distribution is given as

N 1 JouU—beetdu g
H"“”‘(l—a){rm}a{ baet }
which gives

N 1 Hi-Ya+l}
)= g | e T}

The generalized entropy of the first record, thais,is

(b—a)t-@ B
1-a

1
l-a’

Hq (X1) = (12)

This is the entropy of the parent distribution for uniform
variate as indicated in Table 2.1. The entropy of the non-
trivial record, that isXy, is given as

- 1}.

a1

(1-a)
3.2 Exponential Distribution

MNa+1)
(b—a)o-1

Ho (X2) =

Let X be a random variable having the exponential
distribution with pdff(x) = 8{exp—(6x)}. Substituting
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—InF(x) =u, henced = F~1(1—e“) we have

a-1l7-—1/7 U\ u a—l_ a—1,-u(a—1)
fa-1(F-1(1 e)}_[f(e)} — 9o lg .
(13)
Thus generalized entropy (4) of thj& record value for
exponential distribution is given as

N 1 [y uli-bag-augy
)= T e
_{F(J)}a}v
which gives
N r{(j—a+1ye°-1
)= e qo e
—{r(}.
(14)

For j =1, that is, the entropy of the first record, we have

Al 1
a(l—a) 1-a

Hq (Xl) =

This is the entropy of the parent distribution. The entropy

of the non-trivial record, that iS5y, is given as

_1},

Hq (XZ) =

1 (r(a+1)6%?
(1—0){ aHt

3.3 Pareto Distribution

Let X be a random variable having Pareto distribution with

pdf
63°
fX) = g1

Substituting— InF(x) = u, we observe that = F—l(]__
eY) = Bed and for computingq (Xj), we have

x>B>0,6>0. (15)

a-1
fail{Fil(l—eiu)} _ <g) er(Gfl)(lJr%) )

Thus generalized entropy (4) of thj& record value for
Pareto distribution is given as

N T e Al oo (i-La
Ha (X)) = (1—0){F(J)}“{(B> S
e (ST udu— {1 (j)}°1,
which gives,
N 1 r{(j—va+136i@
M09 =@y (Be i s a 10
—{riny
(16)

Therefore,

1 69
Ha() =73 { [@6+a—1]pa-1t _1} ’

the entropy for the parent distribution. The entropy for non
trivial recordX; is given as

1

2a
Ha (%) — { MNa+16

B 1af+a— 1)1

T 1-a

1}. 17)

3.4 Finite Range Distribution

The pdf of the finite range distribution is given by

X

-1
f(X)=5(1—B)a ,a>1 0<x<b  (18)

The survival function is

_ “\a
FO)=1-F() = (1-2)".
Substituting—In F_(X) = u, we observe that = F—l(]_ —
e Y)=b(1—e a) and for computinga (X;), we have

e = () e e ao
Lemma 3.1 gives
L 1 r{(j—1a+1}a“
Ha (X)) = 1- a){r(j)}a{bafl[aa —a+1](-Da+l
—{rer.
(20)

For j = 1, the entropy for parent distribution is

1 67 1
1—a{[a6+a—1]ﬁ"l_ }

The entropy for non trivial recordd, is given as

Ho (X1) =

Ha (X2) = : {

T 1-a

ra+na22*
b?-1laa — a + 1]o+1

1}. (21)

3.5 Weibull Distribution

A non-negative random variab} is Weibull distributed,
if its pdfis

£(X) :Aﬁxﬁ—lexp{—Axﬁ}, A, B>0,x>0

where A and (B are scale and shape parameters
respectively. The survival function is

FX)=1-F(x) =e ™.
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Substituting— InF (x) = u, we observe that = F
el)=

_1(1 .
{%}% and for computindq (X;), we have

a-1 (a=1)(B-1)

{up #

—u(a—1)

FOLE-1(1 e U} = (BA%) e

Lemma 3.1 gives
1 a—-1 .
(Br%)" r{ia-egt)
{ay%

—{rm}}
(22)

1

Ha X)) = Ty ¢

For j = 1 the entropy for parent distribution is

1

Ha() =75y

For B = 1, (22) reduces to (14), the entropy fit record
of exponential distribution.

4 Characterization Problem

In this section, we show that the distribution functibn

can be uniquely specified up to a location change by the
equality of Tsallis entropy of record values. First we state
the following lemma, due to Goffman and Pedrick (1965).

Lemma 41A complete orthogonal system for the space

L2(0, =) is given by sequence of Laguerre function

1
He‘éLn(X), n>0.

¢h(x)
where Ly(X) is the Laguerre polynomial, defined as the
sum of coefficients of & in the nth derivative of e %,
thatis

n

&

Ln(X) = (x"e™) = i (—D*n(n—1)--- (k+ 1)x¥
k=0

(23)
The completeness of Laguerre functions4if0. «) means
that if f € Lp(0, ) and f5 f(x)e" 2Ln(x)dx= 0, ¥n >0,
then f is zero almost everywhere.

Theorem 4l et X and Y be two random variables with
pdfs f(x) and gx) and absolutely continuous cdfs>§
and Gx) respectively, with Hogf(x)]?> < « and
Ellogg(x)]? < «. Then F and G belong to the same
location family of distribution, if, and only if

where X and Y are the " upper records of X and Y
respectively.

Proof The necessary part is obvious. We only need to
prove the sufficiency part. Let

Ha (Xj) =Ha(Yj), Vj > 1.
We Know that

v Y nEpon Ve fa
Ha09) = gy e Uy (- InF 00307 19 0ax
—{r(
(25)
Substituting  {—InF(x)} = u, and hence,

X= F*l{l—exp(—u%) }, in (25) we get

1 11 (&
W{/ e
LU e O ydu {1 (j))).

Similarly, we get

g"*l{G* (1-e @) du—{r(j)}°).

If for two cdfsF andG, these differences coincide, we can
conclude that

Ha (X)) =

;
a

() (u)%

A e (et R
0 ) (26)
— g He Y (1—e W)U ta(u)du=0,
foralln> 1, By (26), we can conclude that
o0 1
/ U -led- W [fa-Lp-1(q _ o))
0
1
g HG H1-e W) e 2u" Ly (u)du=0,
(27)

for all n > 1, whereLy(u) is Laguerre polynomial given
in Lemma 4.1. Using the assumptid{log f (x)]? < o
andE[logg(x)]? < «, and Minkowski inequality, we can
conclude that

T s (A (R
—g" e 1-e ”)}} €L?(0, 1).

Hence, by the completeness property of Lemma 4.1, we
conclude that

f(F1(v)) =g(G1(v)), Vv e (0,1).

e2

As d(F&‘l,M) =ty Therefore, we have
FYw)=6"1(v),vve(01)
or, FX(v) = G L(v) +c,

wherec is a constant. This concludes the proof.
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5 Generalized Residual Entropy of Record
Values

In reliability theory and survival analysisX usually

Substituting these values in (29) and simplify, we obtain

L(Zalat )

Ha(Zi) =13 a

denotes a duration such as the lifetime of a component.

The residual lifetime of the system when it is still
operating at time is (X = X —t|X > t) which has the
probability density f(x;t) = % X >t > 0, where
F(t) = 1— F(t) > 0. Ebrahimi (1996) proposed the
entropy of the residual lifetimi; as

LGN {0

——log—=dt,t>0.

HXO == | Fo '

(28)

which is independent df

Corollary 511f  X1,Xp,...,X, are independent and
identically distributed (i.i.d.) random variables, then :

Loty

1-a a

Ho(Z;t) =

The role of residual entropy as a measure of uncertainty
in order statistics and record value has been studied by

This measures the uncertainty of the residual lifetime ofzZarezadeh and Asadi (2010). Next, we derive generalized

the system when it is still operating at tirheThe role of

residual entropy of ordex for the jth upper record value.

residual entropy as a measure of uncertainty in ordeBefore the main result we state the following two lemmas
statistics and record values has been studied by manyhich are easy to prove.

researchers, refer to, Zarezadeh and Asadi (2010
Bartapour et al. (2007, 2008). The generalized residua

entropy of orden is defined as

"emma 51Let Us be the §" upper record value for a
sequence of observations from uniform distribution on
(0,1). Then

1 * £ (x)dx

Ha(Xit) = = h Fagt)) “tfie=0azl L 1 (Tl(-Datliolgdot)
299 V7 1-a 74 (n;—log(1—1)) '

For more details and application of this dynamic (30)

information measure refer to Nanda and Paul (2005), an@roof For uniform distribution, using (29) we have

Kumar and Taneja (2011). Obviously, whenr- 0, (28)

and (29) reduce to information measures (3) and (4) i 1 ft°°g>°(’j (x)dx

respectively. Ha (Uf5t) = i—a) | orm ca>0 a#1.

X]
Let Xi,Xo,---X, are ii.d. random variables with an (31)

absolutely continuous distributidh and density function
f, denoting the lifetime ofn components. Then

Putting values from (1) and (2) in (31), we get the desired
result (30).

Z = min(Xy, X, ..., %) represents the lifetime of the Lemma52etU; be the " upper record values for a
system, whose components are connected in series. Th&quence of observations from standard exponential
residual entropy measure (29) of the series system iglistribution. Then

independent of, whenX;’s are exponentially variate. In
this context, we prove the following theorem.

Theorem 51f Xi,X,...,X, are independent random
variables having an exponential distribution with
parameters6,i = 1,2,....n, then the residual entropy
(29), of the random variable Z min(Xg, Xz,...,Xn) is
independent of the parameters t.

Proof Since Z = min(Xy, Xp,...,%n), therefore the
cumulative distribution function (c.d.f3 is

F2() =P(Z<2) =1-[Ly(exp(—62)) = 1—exp(-z3 L, 6).

Survival function ofZ is

Then its p.d.f. is given by

dizl‘z(z) = iia [exp(—zi;1

fz (Z) =

Ha (Ujit) = E{e (@) 1}t

(32)

1 (rl(i-YHa+1]
1—0{{ ran;t)

where Y~ {(j—1a+1;t}

The proof follows on the same lines as in Lemma 5.1.
Now we state the main result.

Theorem5Z4.et X, n > 1 be a sequence of iid.
continuous random variable from the distribution(
with density function @x) and the quantile function
F1(.). Let U; denote the % upper record . Then the
dynamic generalized entropy (29) of" jupper record
value can be expressed as

1 r[(j—1)a+1;—logF(t)]
1—a{ [a(n;—logF(t))

E{fHF(1-e )} -1},

Ha (Ujit) =

(33)

where z= —logF (t) and\y ~ I {(j —1)a +1;—logF (t)}
and E is the expectation.
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Proof Dynamic generalized entropy (29) of thi# upper
record value is defined as

i 9, (9 lx

1 {j;“’{—mf(x)}“1>°'fa(x)dx

1

Hqa (Uj5t) = i

—1];a>0,a7é1

- 1}. (34)

Substituting—logF (x) = u andx = F~1(1—e™Y), we

have
{/°° 3 u(j*l>ae*u
—logF(t)

X [fOLF 2 (1—e1)}] du}
(I—oa)(r{m—logF(t)} - 1)

(1-a) ro{n;—logF(t)}

Hq (Ujit) =

It can be rewritten as

1 I[(j—1a+1;—logF(t)]
1—a{ [a(n;—logF(t))
E{fHFY1-eV2)}} -1}

Hq (Ujt) =

So, the result follows.
Example Let X have Weibull distribution with density

F(x) :Aﬁxﬁflexp{—)\xﬁ}, A, B>0,x> 0

1
Herex=F~1(1—eY) ={{}#. Then we have

a-1 (@-1p-1
FHEa-e = (BAF) {up B eued
Therefore
_ 1 [3(“*1)/\%1/_ {ja—O’T—l;,\tB}
Ha(Ujat)zl_a jg_o-1 -1
I"’{n;)\tﬁ}[or]J B
(35)

Remark 1 Forb = 2, (35) reduces to

1 {{2\/A}“_1F{ja—"7‘1;)\t2} .

Ha(Ujit) = (1-a) ra{mat2}{a}tio-%*

(36)
the residual entropy of thgth record value from a
Rayleigh distribution, that is{ ~ RayleighA > 0).

Remark 2 Forb = 1, (35) reduces to

— 1 [tr{ia—a+ LAt

Ha(UJ,t) - (1_0) { ,—a{n;)\t}{a}{ja_a+1}
(37)

the residual entropy of thgth record value from a

exponential distribution, that i& ~ exp(A ).

6 Conclusion

Information theoretic measures of Shannon and Renyi
which are additive in nature have been studied by many
researchers for record values. It is of interest to study
non-additive entropy measures, which find applications in
many phenomena, for record values. We have seen that
Havrda and Charvat entropy measure for record values
characterize the underlying distribution function unilyue
except for the location. Also the concept generalized
residual entropy for record values has been studied which
can be explored further both theoretical interest and
application point of view.
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