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Abstract: This paper is concerned with the proof of the existence offldprcations in a mathematical model recently proposed in
[T. Chen, X. Li, and J. He, Abstract and Applied Analy8&l4, 456764 (2014)] for understanding the complex stochasth@aohics
phenomena of credit risk contagion in the financial markpecSically the model consists in an ordinary differentiglation with
time-delay. Moreover, by using the normal form theory antteemanifold argument, the stability, direction, and pérof bifurcating
periodic solutions are gained.
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1 Introduction Recently Chen et al. have proposed i1 a
time-delayed microscopic mathematical model of credit
Since the last century, the mathematical modeling ofrisk contagion in the financial market driven by correlated
complex phenomena emerging in nature and society ha&aussian white noises. Moreover the related time-delayed
attracted much attention. In particular the generalFokker-Planck model driven by correlated noises has
principles that are at the origin of the complexity in a been derived and a sensitivity analysis on the stationary
given system are not completely understood and theprobability distribution function of the dynamical system
treatment of a complex system strictly depends on theof credit risk contagion has been performed. According to
number of the components of the system and theif21], the deterministic part of the credit risk contagion
interactions . model with time-delay and correlated noises is described
Complex phenomena have been modeled in manyy the following delayed differential equation:
financial, economic and social systems, and nonlinear
dynamics involving Hopf bifurcation, chaos and fractals :
has been numerically and analitycally identified, see, N(t):AlN(t)+)‘2Nd(t)_“E)‘Zz[Nd(t)]za (1)
among others, paperg,B,4,5,6] and the references cited
therein. Moreover in order to take into account that mostwhereN(t) is the density of the credit activity population
of the phenomena arising in economics and also insubjected to the credit risk in the financial market,
biological systems at a certain time are strictly related toNg(t) := N(t — 1), being 1 the time-delay of credit risk
the behavior of the system at a previous time,contagionA; isthe contagion rate of credit risk related to
mathematical models with time delays have beendirect business relation, is the contagion rate of credit
proposed in the pertinent literature, s&e8[9,10,11,12, risk related to indirect business relatioky (< A1), U is
13,14,15,16,17]. The main effects of a time delay have referred to the Nelength scale€§ is the nonlinear
been the changing of the stability of the equilibrium resistance coefficient of the relationship network
(stable equilibrium becomes unstable), fluctuations, andcomprising credit activity participants in the financial
Hopf bifurcation, seel8,19,2Q]. market.
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Letting the time-delay and nonlinear resistanceWhent =0, we haven = — (A1+A2) < 0. Hence, the
coefficient to vary, the authors oR]] have numerically  null equilibrium of ), and so the positive equilibriui.
investigated and analyzed the model) (showing  of (1), is locally asymptotically stable.
numerically the existence of Hopf bifurcations and We choose now the time delay > 0 as the
chaotic behaviors of credit risk. Specifically they found bifurcation parameter. It is well known that the
that as the infectious scale of credit risk and the wavyequilibrium point is locally asymptotically stable if alié¢
frequency of credit risk contagion are increased, theroots of the characteristic equation have negative real
stability of the system of credit risk contagion is reduced, parts and unstable if at least one root has positive real
the dynamical system of credit risk contagion gives rise topart. We will examine now the localization of the roots of
chaotic phenomena, and the chaotic area increasehe transcendental equatiof).(First, note that) = 0 is
gradually with the increase in time-delay. The nonlinearnot a root of 4). Forw > 0, n =iw is a root of @) if and
resistance only influences the infectious scale and rangenly if _
of credit risk, which is reduced when the nonlinear iw—A1+ (201 +A2)e'“T = 0.
resistance coefficient increases.

This paper is concerned with the mathematical
analysis of the mathematical modd).(Specifically this W= (2A1+A2)sinwr, A1 = (2A1+ A2) coswrt, (5)
paper deals with the existence of nontrivial positive
steady states and the related asymptotic stabilitywhich leads taw? = (2)\1+)\2)2— )\12,

Moreover, the existence of the Hopf bifurcation o ) .
numerically shown in 21] is proved and, by using the Lemmal.The characteristic equatiof4) has a pair of
normal form theory and center manifold argument, thepurely imaginary roots\ = +iay at 7=1;j, where

explicit formulas which determine the stability, directjo
and period of bifurcating periodic solutions are obtained. = \/3)\12+/\22+4)\1)\2, (6)
It is worth stressing that, differently from2y], our

analysis is not restricted to the cade > A,. Therefore and

the analytical results contained in this paper also

generalize the numerical results obtained?] | Tj = 1 {tan‘l (@) +27TJ} . i=0,12,... (7

The contents of the present paper are organized as o M
follows: After this introduction, Section 2 is devoted to
the existence and stability analysis of steady-stat
equilibria of the mathematical model)(including also
the proof of the existence of Hopf bifurcations. Section 3

is concerned with the qualitative analysis of the  Letn(r)=v(r)+iw(T) be aroot of §) neart = T;

Separating the real and imaginary parts we have

Prooflf A = +iwy were not simple, then one would have
el—)\j_Tj +iwgTj = 0, leading to a contradiction. Finally,
the critical valueg; are derived fromg).

bifurcating periodic solutions. satisfying the conditions(tj) = 0 andw(Tj) = wy.
Lemma 2.The root of characteristic equatiof@) near T;
: TR o crosses the imaginary axis from the left to the rightras
2 Steac_iy state equilibria and stability continuously varies from a number less thanto one
analysis greater thant;.
Setting T = 0, the mathematical modell admits the ProofDifferentiating both sides of the characteristic
following unique positive equilibrium equation 4) with respect tar, and using4), we obtain
AL+ Ay dn _ (n—=Ayn
Then

Letx = Ng — N,, then Eq. {) can be rewritten as

o A

) vl('[J) — Re(d_n) — [_M

X = AX— (2A1 4+ A2) Xg — HEADG, @) dr /., 1+ (lwo—A1) T

2
whose linear part reads = %2 >0, (8)
(1= M)+ gt}
X = A1X— (2A1+ A2) X4, (3)  completing the proof.
The corresponding characteristic equation, obtained byProposition 1.If T € [0, Tp), all roots of (4) have negative
substitutingxk =€ 7, is real parts. IfT = 19, all roots of(4) excepiA = +iwp have
negative real parts. If € (1j,Tj41), for j=0,1,2,..., then
n—A1+2A1+2A)e " =0. (4)  (4) has2(j+ 1) roots with positive real parts.
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ProofThe conclusions are straightforward from the abovewherex, = x(t + 8), for 6 € [—1o,0]. Fory € C([0, 1g],R),

results.

Bearing all above in mind, the following theorem holds

true.

Theorem 1.Let ap and 1; be defined as ir{6) and (7),
respectively. Then the equilibrium.Nf (1) is locally
asymptotically stable for € [0,1p), and unstable for
T > Tp. Furthermore, Eg. (1) undergoes a Hopf
bifurcation at the positive equilibrium Nwhent = T1j,
i=0,12,..

3 Qualitative analysis of the bifurcating
periodic solutions

This section deals with analytical results on the diregtion

stability and period of the bifurcating periodic solutians

Eq. @). The analysis is based on the normal form theory

the adjoint operatoA* of A= A(0) is defined as follows:

dy(r)

. dr ’
dn(rau)UJ(_r)a r=0.

—Tp

r e (0,1,
A ()Y(r) =

For¢, € C([—T10,0],R), we consider the following inner
product:

<Y,p>=
OB~ [ [ @lr—0)dn(8,0p(r)ar

In order to determine the normal form of the operakor
we need to calculate the eigenveajdgresp.q*) of A (resp.
A") belonging to the eigenvaluey (resp.—iwy). By direct
calculation, it can be verified thg{9) = €<% andg*(s) =
De®sS where

and the center manifold theorem proposed by Hassard et 1

al. in [22].

Without loss of generality, we will investigate the

critical value T = 19 at which @) undergoes a Hopf
bifurcation from the null equilibrium. For notational
convenience we sa@t= 1o+ U, 4 € R. Thenu =0 is the
Hopf bifurcation value forZ%). Set

Lu(¢) =210(0) = (2A1+A2) ¢ (1),

and

¢ EC([_TO70]7R7

f(u,¢) = —pEAZP(—1)%

D= 1— (2A1 4 Ap) @970

Furthermore< g*,q >=1 and< g*,q >=0.
Forx solution of Eq. 9) at u = 0, we define

(t) =< q,% >

and
W(t,6) =x(8) — 2Re{z(t)q(0)} .
On the center manifold, we have

By the Riesz representation theorem, there exists AV(t.0) =W(z(t),z(t),0)

bounded variation functiom(8,u), 8 € [—10,0], such
that

b= [ dn@.me0), b eClw0R)

In fact, we can choose

= Wzo(e)§ +W11(9)ZZ_+W02(9)§ +---. (10)

wherez andz are local coordinates for the center manifold
in the direction ofg* andg®, respectively. Ther9) on the
center manifold is described by

2(t) = ianz(t) +07(0) fo(z,2), (11)
N6, 1) = A15(8) — (2A1+A2) 5(8 + 1),
where
whered is the Dirac delta function. Faf € C([—To,0],R),
we define f0(27 Z) = f(07W(Z(t)7 Zt)a O) + ZRG{Z(t)q(O)})
do(0) Eg. (L1) can be written in the abbreviated form as
———=, 0 €[-10,0),
_ d6 o
AR (@) =1 o 2(t) = iwnz+9(z 2),
[ ancwe),  6=o |
—To with
and g(zvz) = (Tk(O) fO(Zva
R . 07 e [_T0,0), ZZ _ 22 ZZZ_
()(9) = f(u,¢), 6=0. = 9205 +91122+9025+9217+---. (12)
Then we can rewrite Eq2) as Therefore, we have
% = AKX+ R(H)%, 9) W =% — 20— 2=
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Solving forWao(6), we find

AW —2Re{q"(0)foq(6)}, 6 € [-T0,0), (13) %o oo _
AW — 2Re{ T (0) foq(0) } + fo, 6=0, Weo(6) = 1, A(8) + 57 5. A(0) + E:e®%,  (20)
namely , B and similarly
W=AW+H(zz8), g g

where Wis(6) =~ ~a(6) +  ~4(0) + Bz,

H(zz0) = Hzo(e)é +H11(0)Z+ Hoz(e)g Feen whereEy, E; are both real constants that can be determined

2 2 by settingd =0inH(zz ). In fact,

Fromx (8) =W(z,z 0) + 2™ + ze' @0 we get Hao(0) = —g200(0) — G203(0) + 2bpe™ 2400,

%(0) =W(z20)+2+2 | H11(0) = —0110(0) — §12(0) + 2bp.
% (—To) = W(z,Z,—T1p) + z€ '070 4 z“0T0, Eqs. 09 yield
and '

f0(2.2) = —HEN [W(2.Z ~To) + 2 0 4 Zde0To]? Ao(0) — (a4 A2) Waol ~ o) =

= —pEAZe AWOZ —2pEN Tz pEFEOOF

i = 2iwoT 0) —Hz0(0 21
+[—2HE)\2287'%T0W11(—T0) WoToWao(0) 20(0) (21)
—UENZEDTON(—T10)|2Z AW1(0) — (241 + A2)Wa1(—To) = —Hi1(0).
H-21EAE W (o) Substituting 20) in (21), we can calculaté&;. Similarly,

—UEAZET WO (—T0)|ZP 4 - - . for Es.
Based on the above analysis, one has that ggdh

Hence, from {2), comparing coefficients, it follows that (14) is determined. Thus, we can compute the following
Uo0 = —2DpENSe 2@, (14)  quantities:
011 = —2DpENZ, (15) i 2 lgozl® 921
Go — —2DUE AR (16) C1(0) = 2 g11020 — 2(011|" — 3 | T (22)
Oo1 = 25[—2[.15)\2284000T0W11(—T0)
 LEAZEDOW (1) (17) iy — _%,

We need to computéh(—1p) andWao(—1p) that appear 0
in 921_. From B, = 2Re{C4(0)},
H(zZ6) = ~2Re{q'(0)foq(6)} ,

= —9(z2)a(6) —9(z2)q(6) T, - _Im{C1(0)} + polm {A(10) }

7 _ zZ o
= - (9205 +011ZZ+ Y027 +- ) aee) It is well known thaty, determines the direction of

the Hopf bifurcation: ifu, > 0 (resp.pz < 0), then the

2 2 _ H . C . .
_ z = £ 0). (18 opf bifurcation is supercritical (resp. subcritical) ahe
(9202 +on +9022 + )q( ). (18) bifurcating periodic solutions exist for > 19 (resp.

we obtain T< Tp); B2 deter'mines.the sta}bili.ty of bifurcating periodic
_ solutions: the bifurcating periodic solutions on the cente

H20(6) = —g200(6) — 9o20(6), manifold are stable (resp. unstable) 86 < O (resp.

H11(6) = —0110(8) — 911q(6). B> > 0); T, determines the period of the bifurcating

i — periodic solutions: the period increases (resp. decrgases
On the center manifoldy = W,z+W;zz. Hence, we get the if T, > 0 (resp.T» < 0). Since ) givesRe{A'(10)} > 0,

equations we thus have the main result of the present paper.
(A—2ion)Weo(0) = —H20(0), Theorem 2.Let N. be the unique positive equilibrium of
AM1(0) = —H11(0), (19)  the delayed mathematical moddl) (and Re{C;(0)} be
(A+ 2ion)Woz(8) = —Hoz(6). the real part of (22). Then the direction of the Hopf

bifurcation of (1) at the equilibrium N whent = 19 is
supercritical (resp. subcritical and the bifurcating
periodic solutions on the center manifold are stapksp.

Wao(6) = 2ica\bo(8) — G200(8) — Go20(6). unstable if Re{C1(0)} < 0 (resp. R§Cy1(0)} > 0).

From @3), we have
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