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Abstract: In this article we introduce and study sequence spatés,.7), 63 (7,7 ) and %\, (7,.7) on the sequence of bounded
linear operators with the help of a sequern€e= ( fi) of modulus functions. We study some topological and algelmaperties, prove
the decomposition theorem and study some inclusion relsito these spaces.
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1 Introduction The sequences of bounded linear operators arise
frequently in the abstract formulation of concrete
LetN, R andC be the sets of all natural, real and complex sjtuations, for instance, in connection with convergence
numbers respectively. problems of Fourier series or sequences of interpolation
We denote polynomials or methods of numerical integration, to name
just a few. In such cases one is usually concerned with the
convergence of those sequences of operators with
the space of all real or complex sequences. boundedness of corresponding sequences of norms or
with similar properties. We also studyconvergence of
Any subspacé\ of the linear spacev of sequences is sequences of these operators and some related results.
called a sequence space. A sequence spaeéh linear
topology is called aK-space provided each of maps Let %.(.7) be denote the normed space of sequences
pi : A — C defined bypi(x) = x; is continuous, for all  of all bounded linear operators from a normed spéde
i € N. A space) is called anFK-space providech is  anormed spacé normed by
complete linear metric space. AfrK-space whose
topology is normable is calledBK-space. | 7 ||=sup|| Tk(X) || (sedl4]). (1.3)
k

w={X=(X): X« € RorC},

We denote P (T ) is a Banach spaceYf is a Banach space.

L(T)= {9 = (Tk) : Tk: X = Yis linear, for each k N}7 Throughout© andI represent zero and identity operators
(1.1) respectively.

the space of all linear operators from a normed spate

normed spac¥. It was due to J.Von Neumann(sed4[22]), the

following definitions were introduced.
Definition 1.1. Let X andY be two normed linear spaces _— .
andT : 2(T) — Y be a linear operator, whetg(T) C X. Definition 1.2. Let X andY be two normed linear spaces.

Then, the operatdF is said to be bounded if there exists a A Séquenc&Tk) of operatorsiy € %« (7) is said to be;
realk > 0 such that 1) Uniformly convergent if T¢) converges in the norm on

PBos(T).
| TX|| <k x|, forall, xe 2(T). (1.2) 2) Strongly convergent ifTyx) converges strongly ity
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for everyx € X.
3) Weakly convergent ifTyx) converges weakly ity for
everyx € X.

That is, if there is a linear operatdr: X — Y such that
Tk € B(T) Is;
1) Uniformly convergentif| Ty — T ||— O.
2) Strongly convergent if| Tyxx— Tx ||— 0, for every
xe X.
3) Weakly convergent if f(Tgx) — f(Tx) |— O, for every
xe X andf eY’.

Theorem 1.3.Let Ty € (7)), where k=1,2,3,... Then
T« — T if and only if for everye > 0, there is anN,
depending only o, such that for alk > N and allx € X
of norm 1, we have,

[ k() = T(x) [ < e(sed14]). (14)
Let ¥(Z) and %p(.7) be the convergent and null
sequence spaces respectively of the sequéiige of
bounded operators defined as follows.
C(T)= {7 =(Tk) € Bo(T) ;|| Te(x) = T(x) || = 0, for all x X}
and

(7)) = {,7: (Tk) € Boo(T) || T(X) —O(x) || — O for all xe X}, (c.f.[14],[15]).

Then¥ () andé, () are normed spaces with norm
defined as above in (1.3).

Remark 1.4.60(.7) C €(7) C Pe(T).

As a generalisation of usual convergence, the conceplt?

of statistical convergent was first introduced by F&jt [
and also independently by Buck][and Schoenberg[29]

for real and complex sequences. Later on, it was further
investigated from a sequence space point of view an

linked with the Summability Theory by Fridy3], Salat
[26], Tripathy [30] and many others.

Henceforth, in this papex,is considered as an element N this case, we writé

of the normed spacx.

Definition 1.5. A sequence
T = (Tk) € $(7) C Z(7) is said to be statistically
convergentto an operatdrif for every € > 0, we have

im H{neN:n T —T() |[= & n< k}‘ 0, (15)

d)efinition

The notation of ideal convergence (I-convergence) was
introduced and studied by Kostyrko, Macaj, Salat and
Wilczyhski [11,12]. Later on, it was studied bysalat,
Tripathy and Ziman 27,28], Tripathy and Hazarika31,

32, Mursaleen and Alotaibi 16], Mursaleen and
Mohiuddin [17,18,19], Mursaleen and S.K.Sharmad],
Khanet,al[6,7,8] and many others.

Here we give some preliminaries about the notion of
I-convergence.

Definition 1.6. Let N be a non empty set. Then a family
of setsl C 2V (power set of N) is said to be an ideal if

1)1 is additive i.evVA,Be | = AUBe

2) | is hereditary i.e/A€landBC A= B¢€ll.

Definition 1.7. A non-empty family of set£(1) € 2V is
said to be filter on N if and only if

1) ¢ £()),

2)V A Be£(l) we haveANB e £(1),
)VAc£(l)andACB=Bec£(l).

Definition 1.8. An Ideal | C 2N is called non-trivial if

| # 2N,

Definition 1.9. A non-trivial ideal | € 2N is called
admissible if

{{x}:xeN}ClI.

Definition 1.10. A non-trivial ideal | is maximal if there
cannot exist any non-trivial idedl # | containingl as a
subset.

emark 1.11. For each ideall, there is a filter£(l)
corresponding to.
i.e£(l) ={K CN:K®el}, whereK®=N\K.

1.12. A sequence
T =(Tk) € Bo(T) C Z(7) is said to bd -convergent
to an operatorT if for every ¢ > 0, the set
{keN: || k) —=T(X) ||> €} el.

—lim Tk=T.

Definition 1.13. A sequence? = (Tyx) € $=(.7) is said
to bel-nullif T = O. In this case, we writé—lim T, = O.

Definition 1.14.A sequence” = (1) € (7)) is said
to bel-cauchy if for everye > 0 there exists a number
m=m(e) such thattk € N :|| T«(X) — Tm(X) || > €} €I.

Definition 1.15. A sequence? = (Tx) € %»(7) is said

where vertical lines denote the cardinality of the enclosed© Pe I-bounded if there exists somd > 0 such that

set.
Thatis, if6(A(g)) =0, where

Ale) = {ke N:|| Te(X) = T(x) ||> e}.

{keN:|| Tk(x) ||> M} el.

Definition 1.16. A sequence spac&” ( space of
operators) said to be solid(normal) {foTy) € E7
whenever(Ty) € E7 and for any sequenc¢e) of scalars
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with | ay |< 1, for allk € N. f(nx) <nf(x), forallx, y € [0, ).

Definition 1.17. A sequence spac&”’ said to be A modulus functionf is said to satisfyl, — Condition
symmetric if (T ) € EZ whenevefl, € E7, whererris for all values ofu if there exists a constai€ > 0 such

a permutation oiN. that f(Lu) < KL f(u) for all values ofL > 1.

Definition 1.18. A sequence spac&” said to be The idea of modulus function was introduced by

sequence algebra () * (S) = (T«.S) € E7 whenever  Nakano in 1953Seé21], Nakang1953.

(Tk)a (S() € El?' . .
Ruckle 23,24,25] used the idea of a modulus function

Definition 1.19. A sequence spac&” said to be f toconstructthe sequence space

convergence free ifS,) € EZ whenever(Ty) € EZ and o

Tx = Oimplies S = O, for all k. X(f) = {x= (%) : Z (%) < oo} = {x=xc: (f(| %)) € X}

Deflnllgon 1.20.LetK = {ky <kp <ks <k4 < k5};_c N This space is afF K-space and Rucklep, 24,25] proved
andE” be a Sequence spacekAstep space 0E” isa  hat the intersection of all suck(f) spaces isp, the

sequence spadg = {(T,) €.2(7): (T) €E7}. space of all finite sequences. The spXdé) is closely
related to the spacé; which is an X(f) space with
Definition 1.21. A canonical pre-image of a sequence f(x) = x for all real x > 0. Thus Ruckle 23,24,25]

(Tk,) € )\E‘7 is a sequencely) € .2 (.7) defined by proved that, for any modululs
=1 To if keK, X(f) C £y andL(f)% = lo
O, otherwise
where
A canonical preimage of a step spa/x}é7 is a set of ®
preimages all elements ikE” .i.e..7 is in the canonical X(H*={y= (%) € w: kZlf(|yk><k|) < oo}
preimage oﬂKEy iff .7 is the canonical preimage of some B
T c )\Ey, Spaces of the typ¥(f) are a special case of the spaces

structured by B.Gramsclb]. From the point of view of
Definition 1.22. A sequence spac&” is said to be local convexity, spaces of the typX(f) are quite
monotone if it contains the canonical preimages of its stegdathological. Symmetric sequence spaces, which are
space. locally convex have been frequently studied by D.J.H

Garling [4], G.Kothe [L3] and W.H.Ruckle 23,24,25].
Definition 1.23. A maph defined on a domaid C X i.e
h:DcC X — is said to satisfy Lipschitz condition if ~ After then E.Kolk [?,10] gave an extension of(f) by
IR(x) — A(y)| < K|x —y| where K is known as the considering a sequence of moduhi = (fx) and defined
Lipschitz constant. The class df-Lipschitz functions the sequence space

defined on D is denoted Hye (D,K).
{X— (fk |Xk| ) EX}.
Definition 1.24.A convergence field of-covergence is a . I
set We used the following lemmas for establishing some

results of this article.

F(I) = {x= (Xk) € | : there exist$ — limx € R}. ) .
Lemma(l). Every solid space is monotone.
The convergence fielH (1) is a closed linear subspace of
lo with respect to the supremum norm, Lemma(ll). Let K € £(1) andM C N. If M ¢ I, then

F(I) =lsNc (seé27)). MNK &1

Definition 1.25.A function f : [0,c0) — [0,0) is called ~Lemma(lll). If 1 € 2N and M C N. If M ¢ I, then

a modulus if MNN¢I.

(1) f(t) =0ifand only ift =0,

(2) f(t+u) < f(t)+ f(u) forallt, u>0, Throughout the article?'(7), 6y(7), %u(7),

(3) f isincreasing and MY(T) and///% (.7) are considered as the classes of all
(4) f is continuous from the right at zero. I-convergent, I-null, I-bounded, bounded I-convergent

and bounded I-null sequences of bounded linear operators
For any modulus functiorf, we have the inequalities respectively.

ot - fy < f(l x -y [) and
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2 Main Results

In this article, we introduce and study the following
classes of sequences.

T, F)= {,7 =(T) € Bo(T) : | —IiLn fi(|| Te(x) =L ||) = 0, for someL}
(21);
@7.7)={7 =M1 -imiT D=0} @2;

BT, T) = {:7:(Tk) € B (7):IK>0such thafke N: fi (|| Te(x) ) > K} €1
(23);
(2.4).

B(,F) = {ﬂ' = (T € 2(7) suph( | T ) < w}

We also denote

MY T\ T) = B T, F)NC (T ,.F) andty, (T ,.F) = B T, F)NCH T, F).
where.# = (fi) is a sequence of modulus functions.

Theorem 2.1.Let .# = (fx) be a sequence of modulus
functions. Then, the classes of sequen@d$.7,.%),
6 (T, F), M(T,F) and My (T,F) are linear
spaces.

Proof. We shall prove the result for the spaié(.7,.7).
For other spaces the results are similar.

For, let (7) = (Tx), () = (&) be two elements of
¢ (7,7) anda, B be scalars.

Now, since (Ty), (&) € €'(.7,.%). Then, there exists
someLy, L, such that

AT -La ) =0 (29

and

I —tim fie([} Sc(x) — L2 [|) = O. (2.6)

Then, for givere > 0, the sets
} el

ber.

m={reri T - <5heen  @7)

{ke N (]| Te(x) — L1 |]) >

NI ™

and
{keN: ol S — Lz ) >

NI ™

Let

and
Azz{keN:fkaa(x)—L2||><§}e£<l> (28)

be such thaf\f, AS € |. Now, since eachiy( k € N) is a
modulus function, we have

o= {ke s e (@T0-+BS09—(aLs +BL) | ) <e}

£

> erN: fie(lal 10— La | ) < 5}

ﬂ{keN: fic(181 11 ) — Lz || ) < %H

> erN: fie( I 00— La I ) < %}
|

m{keN: (1500 ~La ) <

Therefore,

£
2

o= {ice s (11 @0+ BS09 — (ata+pLa) | ) <}

5 erN: (IO —Lall ) < %}

n{kemin(Is@-Lal) <3}]

implies thatAz € £(1). Thus,A§ = A{UAS € 1.

Therefore, a(Ty) + B() € ¢'(7,.%) for all scalars
a, B and(Tk)a (S() € %|(y’g¢‘)

Hence, the spacg’ (.7,.7) is linear.

(2.9)

Theorem 2.2.The spaces#,, (.7 ,.#) and.#}, (T ,.7)
are paranormed, paranormed by

9(7) = Stklpfk | () | -

Proof. (P1) Let 7 = (T) € 4L (T, F). If 7 = O, then
9(.7) =0 is obvious.
(P) Let 7 = (Ty) € AL (T ,.F). Then

9(-7)= Stlpfk(l\ (=T ) = Stlpfk(l\ Tk ) = Stlpfk(l\ T ) =9(7).

Thereforeg(—7) =9(7), forall 7 € .43, (¢, 7).
(P3) Let 7 = (Ty) and. = (&) € #L(T,.F). Then,

97 +7)= Stlpfk(ll (Tc+S)X) [1) = Stlpfk(ll T +S) )

< SEpfk(” T() 1) +SEpfk(H S(X) ) =9(7)+9().
Thereforeg(.7 +.v) <9(7)+9(¥) forall, 7, .7 €
MUT, F).

(Ps) Let (Ax) be a sequence of scalars wittx) — A (k—
) and

(Tw), T €.#',(7,.7) such that

T« =T (k— ),
in the sense that
9(Tk—T) = 0 (k— o),

Then, since the inequality

9(Tk) <9(Tk—T) +9(T)
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holds by subadditivity ofg, the sequencegg(Ty)} is

bounded.
Therefore,

g[(/\ka—/\T)] Zg[(/\ka—)\Tk—l—)\Tk—)\T)]
=g[(A—A)T+A(Tc—T)]
<g[Ak— )T +g[A (T —T)]

<[ (A=2A) [g(x)+ A [9(x—T) =0
as (k — «). That is to say that scalar multiplication is

continuous.

Hence,#!,(7,Z) is paranormed space.
For.#!, (7,7), the result is similar.

Theorem 2.3.Let % = (fx) be a sequence of modulus
functions. A sequencd = (Ty) € %=(.7) I-converges if
and only if for everye > 0, there exist®N; € N such that

{ke sl T~ T 1 <} € £0).

Proof. Let us suppose that = (T) € Bw(T7)).
LetL =1 —Ilim.7. Then, the set

Bgz{keN: fk(|Tk(x)—L||)<§} c£(1) foralle > 0.

Now, since eacHy, k € N is a modulus function. Fix an

Ng € Bg.
Then, we have

el 00 = The (09 1) < il T =L 1D+ Bl Tae () L ) < 5+ 5 =&

which holds for alk € B;.

Hence{ke N (|| Te(¥) — Tne (X) []) < s} e £(1).

Conversely, suppose that

{ke N (|| Te®¥) — Tne (X) []) < 8} c£(1).

Since, eacHy, k € N is a modulus function and by basic
norm and modulus inequalities, we have

{keN:| fie(ll () 1) = f(ll T, 9 1) | < e} c£(1), forall€ > 0.

Then, the set

Co— {keN: (1 T ) € M Tae 09 ) — €. el T () n>+e]}
c£(l) foralle > 0.
LetJ, = {fk(| Tne(X) |]) — & fi(]] Tne (X) []) + €] - 1T we fix

an € > 0 then, we hav€, € £(1) as well asCe € £(1).
HenceC. NC; < £(1). This implies that

That is
{ke Nz (| k(%) [|) € 3} € £(1).

Thatis
diamJ< diaml

where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed
intervals

J=1pg211D ... DlgD e,

with the property that diamk < %diamlk_l for
(k=2,3,4,.....) and

{ke N: fi(]| Tk(¥) |) € Ik} € £(1) for (k=1,2,3,4,......).
Then there exists & € NIy where k € N such that
& = 1 — Iimf(]] Tk(x) |) showing that
T = (Tk) € $=(7) is |-convergent.

Hence, the result.

Theorem 2.4 Let .% = (fx) and ¥ = (g«) be two
sequences of modulus functions and for ekehN, (fy)
and(gy) satisfyingA, — Condition, then

@2 (7.9)C 2 (T,F9)

)y 2(7,F)N(7,9)C 2 (T,F+9)

for 2’=¢', 6}, .}, and.x;,

Proof.(a) Let .7 = (Ty) € €!(.7,%) be any arbitrary
element. Then
I —lim o(l| k) [[) =0

that is, the set

{keN:gk(H Ti(X) ||) ze}el. (2.12)

Let € > 0 and choosed with 0 < d < 1 such that
foreach ke N, fi(t) <&, 0<t <.
Let us denote

Se=a( I 1)
and consider

Iirknfk(SK): lim i (S)+  lim  fi(So).

S<0.,keN S¢>0,keN

Now, sincefy for each ke N is an modulus function , we
have

o Jm_ (S) < (@) fim_ (So- (212)

For S > o, we have

& &
S(<E<1+g'

Now, since eachfy is non-decreasing and modulus, it
follows that

S 1 1. 25
I=3NJ #0. k(S < fk(1+5) < 52 + 5 f(5").
(@© 2015 NSP
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Again, sincefy satisfiesA, — Condition, we have Define a sequend&) as
1 1 =T, forall k<m.
fi(S) < EK(%‘)fk(2)+§l<%fk(2) 5= Tio forall k<my
Form <k < ,teN
Thus, fi (S) < K(—%) fi(2). m =M+
Hence, S = {Tk, if (]| Te(x) —L||) <t
. _ . L,otherwise
lim  f(S) < 1,K& t(2) | :
sk>l(§,Tl]<eN k(S) < max{1, k( )S(>'(g?(€N(S<)

(2.13)  Then,(S) € €(.7,.#) and from the following inclusion
Therefore, from (2.11), (2.12) and (2.13), we have,

T =(T) €T, Fo9). {k<m T S C{k<me: Kl TG —L () > e} €.
Thus, €(7,9) C ENT,F o 4). Hence,
V(TG C V(T Fod)for =2, We getTy = §;, for a.a.k..

| a i
For 2= €' .#" and .#. the inclusions can be (b) implies (c). For(Ty) € €' (7, %). Then, there exists
estab”shed Slml|6(16r|y % (S() S %(y,ﬁ) SUCh thaﬂ—k = S(, fOI‘ a.a.k.ﬂ. Let K =

_ [ 7 [ {ke N: Ty # &}, thenK €.
(b)Let7 = () € %.(7,7)N%(7.9). Define a sequendgly) as

I —1im fie (|| Te(x =0 2.14
A k(I Tk(X) [1) (2.14) U [ TS ek,
and k=1 O, otherwise
| —Ilim Te(x =0. 2.15
Gl Tetx) ) @19 henUe (7, %) andSc € #(7. 7).
Therefore, from (2.14) and (2.15), we have (c)dimplies (d). LetPy = {ke N (|| Uk(x) [|) > €} €
an
— pC _
|~ lim | (et 991 T )| =0 * =P flasle <o < <E:
Then we hav%_ljm‘k(n T, (X)—L])=0
implies that7 = (Ty) € €)(7,.F7 +9). (d) implies (a). LeK = {k; <kp < ks < ...} € £(I) and
Thus, ¢ (7,76 (7.9) C 6T, F +%). ,
Hence, 2 (7,%)N 2 (7,49) C 2 (7,7 + %) for lim fi (|| Te,(x) =L [)) =0
2 =% e
For 2'=%¢", .4}, and.#,, the inclusions are similar. Then, for anye > 0, and by Lemma (Il), we have
For gk(x) = x and {(x) = f(x), ¥V x € [0,), we have the c
f0||owing Coro”ary_ {kGNZ fk(“ Tk(x)_l- H) > 5} cK U{kE K: fk(” Tk(x)_l- H) > g},

Thus,(Ty) € €' (.7,.7).

— | |
Corollary 2.5. 2 (7) C Z(7,%) for 2= ¢, ¢,, Hence the result.

MYy and. A, .
o —
Theorem 2.6.Let | be an admissible ideal and = (fy) ;I;Jr;]ec?lr:r:r; 2.7.Let ?hgn( fi) be atshzquence oifn(r:rrttj)gg:quss
be a sequence of modulus functions. Then, the followmg(g|( F)C T, F) C 2(7,F) hold
are equivalent. ’ o '
(@) (To) € €'(7,7); \(7 7 -
(b) there existgS ] € €(7.7) such thatT, = S, for spdzﬁfih;?ttr(\-gk%eet ¢'(7,7). Then, there exists sonie
a.a.k.;
(c) there existdS,) € ¢(7,.7) and (Uy) € 6! (7,.7) . N>
such that Ty = S + U for all k € N and {keN:f(l| Tx) ~L[) 2 e} €.
{ke N: fy(|| S«(x)—L|) > €} €; Since, eaclfy is modulus, we have
d) there exists a subskt= {k; < k» < ks...} of N such
oA € £(1) and fim fy(| Tkn{(xﬁ “Uh=o J il Te) 1) = ficll| Tel®) —L+L ) < fie[| Tel®) =L [+ Fie([| L -

o | Taking supremum over k on both sides, we get
Proof. (a) implies (b). Le{Tx) € €' (7, .%). Then, for any (T) € BT, 7).

£ > 0, there exists somesuch that the set The inclusiorfﬁé(ﬂ,ﬁ) ce (7,.7) s obvious.
{keN:fi(|| i) —L|)) > e} el. Hences!(7,7)Cc 6" (7,F) C BT, 7).

Let (m) be an increasing sequence withe N such that ~ Theorem 2.8.Let .7 = (fi) be a sequence of modulus
functions with fi(x) = x for all x € [0,] andk € N.
{k<m: fil(|| Te) =L ) >ty el. Then, the functionh : .Z,(7,#) — R defined by
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h(7) =|| I — Ilm% II, where
MUT T = BT, F)NE"(7,F), is a Lipschitz
function and hence uniformly continuous.

Proof. First of all, we show that the functioh is well
defined.
For, let.7, .7 be two elements of#Z}, (.7 ,.%) such that

T=S=1-lImT =1-lim.~”
=|1-1lim7 ||=| | —limY¥ ||= h(Z) =h(.¥).
Thus,his well defined.
Next, let.7 = (Ty), & = (&) € ///Jg(ﬂ,ﬁ), T+ 7.

Then, the sets
Az ={keN: fi(|| T(x) —

Ay ={keN: f(|| S(x) -
where|| 7 —. ||.= supfy || (T« —
k

ATzl 7=« el

R )2 7 -5 . }el.
S)X) I -
Thus, the sets

B = {ke Ni| Tu(x) -

By = {keN:|| S(x)—R(.7) [[<[| 7 -7 ||. } € £(1)

HenceB=B»>NBy € £(1), so thatB # 0.
Now takingk € B, we have

A7) 1< 7= |- } €£0)

|A(7) =h(Z) [<IAT) = TkCO) [+ 1| Te(x) =

+ 1S =h() |< 3] (7) = (L) [|- -

Thus, h is Lipschitz function and hence uniformly
continuous.

SX) |

Theorem 2.9.Let ¥ =
functions with fi(x) =

(fx) be a sequence of modulus
x for all x € [O,oo] andk € N. If

T = (W, = (&% € ///%(9 F)  with
TkS(X) = Tk(X)-&(x), then (7.") € =///<5(9 ) and
h7.7) = R(Z)R(Z), where h: #,(7,7) — R
defined byh(.7) =|| I —lim .7 |.

Proof. Fore > 0, the sets
By = {kE N || Tk(X) —

By = {ke N:[| &(x) -

A7) <7 =7 |+ } e(g(l)

16)
R) <l 7= | } € £(1)
(2.17

Now,

| TS(x) = h(Z)A(.7) ||=

Tk(¥)h(7) + T(¥)h(-#") —=h(T)A(.7) ||
)R Tk(¥) —h(Z) || -

[ Te(X)Sc(x) —
< ) 111l Se(x) = (-

(2
As MY(T,TF) C PBu(T,F), there exists aM €
such that]| Tk(x) || < M.

18)
R

Therefore, from (2.16), (2.17) and (2.18), we have
| T«Sc—h(7)h(7 e(say)

for all k € By N By € £(I).
(7.7) € My(T,7)andn(T.7) = h(T)h(.7).

h(.7 ) [<Me+|h(.7)|e =

Hence
Theorem 2.10.Let . =

functions. Then, the spacég (.7
are solid and monotone.

(fx) be a sequence of modulus
Z) and %g (7,7)

Proof. We shall prove the result fo#! (.7,.%). For
MY (T ,.7), the result can be established similarly.

For, let(Ty) € €!(7,.%). Then

{keN: fie(]] Tie(X) ||)2£} el (2.19)

Let (ax) be a sequence of scalars witly, |< 1, for all,

k € N. then, the result follows from (2.19) and the
following inequality

fie(l] oncTiex [[) <[ ot | e[| Tix 1) < (| Tix ), for all k € N.

That the space is monotone follows from lemma (1).

Theorem 2.11.Let # = (fx) be a sequence of modulus
functions. If 7 = (Ty),.7 = (&) € A4YL(T,.7) with

TkSk( ) = Tk(X).&(X). Then, the space¥” (7,.#) and
€ (7,F) are sequence algebra.
Proof. For, let(Ty), (&) € 6! (7,.7), then

I —tim fie([} T() [[) = (2:20)
and

F=lim fie([] Se(x) 1) = (2:2)
Then, from (2.20) and (2.21), we have
| =l (| TeSe3) 1) = 1 = lim fi|| Te(0-Se3) 1) = 0

implies that(Tx.S) € €} (7 ,.7).
Hence%! (.7,.7) is a sequence algebra.
For¢'(7,.%), the result is similar.

Theorem 2.12.Let .# = (fx) be a sequence of modulus
functions. Then.#). (7, %) is closed subspace of
BT, F).

Proof. Let (Tk ) be a Cauchy sequence i, (7 ,.7)

such thafl'k —T.
We show thaﬂ' € MUT,T).

Slnce(Tk ) € #L(T,F), then there exista, such that

{keN: f(| TV 00 — An []) > e} el.

(@© 2015 NSP
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We need to show that
(1) (An) converges tad\.

@1Ifu = {ke N: (]| Te(x) — A < e}, thenU® e l.

(1) Since(Tk(")) is Cauchy sequence i, (7 ,.7) = for
a givene > 0, there exist&y € N such that

)

supfi(| TV 0 -T V) [)) <

wl ™m

forall n, q> ko.
For a givens > 0, we have

Brg = {ke N Al T 00 - TV ) < £ ;
Ba={keN: (| LY —Aql) < £};

B = {ke N (| " 00— An ) < 5}

Then,Bf,, By, B € 1.
Let B¢ = B, UBZUBE, where

B:{keN: fk(||Aq_An|)<$}.

Then,B® € |. We chooség € B®, then for eachn, q > ko,
we have

fcen: A=) < e} 2 [{ke s u
A= T000 ) < 5

n{keN: 3000 -0 ) < 5

n{ken: 00 - Al <5}).

Then(A,) is a Cauchy sequenceYhandY is complete, so
there exists an elemeAtin Y such thatA, — A asn — o,
(2) Let 0< d < 1 be given. Then we show that if

U= {keN: (| T — Al <5},

thenuU® % l.
SinceTk(n — T, then there existgg € N such that

P= {k eN: (|| T (%) — Tu(0) || < g} (2.22)

such thaQQ® € |. Since

{ke N ()] TL%) (%) — Agg [[) > 5} el.

Then we have a subss8bf N such tha&* ¢ |, where
S={keN: fi(|| L% (x) - °
EN(I T 0 = Ag ) < 3 -

let U = P°U Q U S
U:{keN:fk(||Tk(x)—A|)<6}.

Therefore, for eack € U®, we have

where

{k EN A T —A) < 5} 5 [{k e N A
00 -0 ) < 4}

n{kem: W T 0o 1)< 3}

ﬂ{keN: (|| Agy —All) < g”

Then the result follows.

Since the inclusions.Z,(7,7) C $-(7,7) and
My (T, F) C Bo(T,F) are strict so in view of
Theorem (2.11) we have the following result.

Theorem 2.13.Let .# = (f) be a sequence of modulus
functions. Then, the spacegy (7 ,.7) and.#,, (7 ,.7)
are nowhere dense subsetsgf(.7,.7).
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