
Appl. Math. Inf. Sci.9, No. 3, 1445-1454 (2015) 1445

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090339

Degradation of Complexity for Join Enumeration via
Weight Measure on CMP

Yongheng Chen1,∗, Kerui Chen2 and YaoJin Lin1

1 College of Computer Science,MinNan Normal University, Zhangzhou 363000, China
2 College of Computer and Information Engineering, Hennan University of Economics and Law, Zhengzhou, China

Received: 9 Aug. 2014, Revised: 10 Nov. 2014, Accepted: 11 Nov. 2014
Published online: 1 May 2015

Abstract: Most contemporary database systems query optimizers exploit System-R’s Bottom-Up dynamic programming method (DP)
to find the optimal query execution plan (QEP). The dynamic programming algorithm has a worst case running time, thus for queries
with more than 10 joins, it becomes infeasible. To resolve this problem, random strategies are used. In this paper we propose a parallel
top-down join enumeration algorithm that is optimal with respect to the partial order graph based on Chip Multi-Processor (CMP).
This paper firstly transforms the undirected query graph to Weighted Edge Join Graph (WEJG) according to the edge weight and
constructs all partial order join and partial order graph within WEJG. Then the global optimal query plan is achieved according to the
parallelize top-down enumeration. Our theoretical results and empirical evaluation show that our algorithm could gracefully degrade
the complexity degree for top-down join enumeration with large number of tables and gains impressive in the performancein terms of
both output quality and running time.

Keywords: chip multi-processor, parallel query processing, DP queryoptimization

1 Introduction

On the hardware front, the development trend of
processor is transforming from high-speed single-core to
Chip Multi-Processor, and from instructions level parallel
to thread level parallel. Tomorrows computer will have
more cores rather than exponentially faster clock speeds,
and software designs must be restructured to fully exploit
the new architectures [1]. The question for database
researchers is this: how best can we use this increasing
multithreading capability to improve database
performance in a manner that scales well with machine
size [2,3,4]?

The key to the success of a Database Management
System, especially of one based on the relational model,
is the effectiveness of the query optimization module of
the system. The input to this module is some internal
representation of an ad-hoc query. Its purpose is to select
the most efficient algorithm (access plan) in order to
access the relevant data and answer the query. Query
optimization is an expensive process, primarily because
the number of alternative access plans for a query grows
at least exponentially with the number of relations

participating in the query [5]. The application of several
useful heuristics eliminates some alternatives that are
likely to be suboptimal, but it does not change the
combinatorial nature of the problem. Future database
systems will need to optimize queries of much higher
complexity than current ones. This increase in complexity
may be caused by an increase in the number of relations
in a query, by an increase in the number of relations in a
query, by an increase in the number of queries that are
optimized collectively [6,7].

Based on this trend, it has become temping to revisit
the concepts of database parallelism in the light of those
emerging hardware architectures. Most contemporary
database systems perform cost-based join enumeration
using some variant of System-R’s bottom-up dynamic
programming method [8]. For example, recently, by
exploiting the new wave of multi-core processor
architecture, Han et al. first propose a novel algorithm
PDPsva to parallelize query optimization process to
exploit multi-core processor architectures whose main
memory is shared among all cores [9]. This join
enumeration algorithm separates join pair generation and
plan generation. To avoid synchronization conflict,

∗ Corresponding author e-mail:cyh771@163.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090339

1446 Y. Chen et. al. : Degradation of Complexity for Join Enumeration via...

PDPsva convert the total order over join pair into a partial
order by grouping the same size of the resulting quantifier
set, and then, perform plan generation using multiple
threads. PDPsva generated QEPs for all smaller
quantifiers sets (i.e. size-driven). On contrary, the
bottom-up dynamic programming optimizers such as
DPcpp [10] and DPhyp [11], which directly traverse a
query graph to generate join pairs, i.e., only considers
pairs of connected sub-queries. Thus, plan generation
mainly use of join pair without cross products, reduce
execution time. Further, DPhyp is capable to handle
complex join predicates efficiently.

The algorithms discussed above which all constructed
based on bottom-up join enumeration method. The
notable exceptions are systems based on the top-down
transformational search of Volcano/Cascades [12]. David
DeHaan describes a top-down join enumeration algorithm
that is optimal with respect to the join graph [13]. This
algorithm enumerates the search space top-down, it does
not rely on transformations and thus retains much of the
architecture of traditional dynamic programming. As
such, this work provides a migration path for existing
bottom-up optimizers to exploit top-down search without
drastically changing to the transformational paradigm.

But these algorithms discussed above which all
constructed based on Dynamic Programming (DP)
methods. DP methods, regardless of Top-down or not,
face a difficult for complex queries because of its inherent
exponential nature owing to the explosive search space.

The heuristically pruning, almost exhaustive search
algorithms used by current optimizers are inadequate for
queries of the expected complexity [11,2]. To resolve this
problem, the need to develop random strategies
optimization algorithms becomes apparent. The
transformational approach characterizes this kind of
strategies. Several rules of transformation were proposed
where the validity depends on the nature of the considered
search space [6,14].The random strategies start generally
with an initial execution plan which is iteratively
improved by the application of a set of transformation
rules. The start plan(s) can be obtained through an
enumerative strategy like Augmented Heuristics.

The performance evaluation of these strategies is very
hard because of strong influence, at the same time, of
random parameters and factors. The main difficulty lies in
the choice of these parameters. Indeed, the quality of
execution and the optimization cost depend on the quality
of choice [15]. After the tuning of the parameters, the
comparison of the algorithms will allow to determine the
most efficient random algorithm for the optimization
problem of complex queries.

Randomized algorithms have been successfully
applied to various combinatorial optimization problems.
In the literature there are many alternative approaches to
the join ordering problem, V.V. Meduri et al present a
good overview [16]. Approaches such as Iterative
Improvement, Simulated Annealing, Genetic Algorithms,
Two phase optimization etc all provide efficient

alternatives although producing sub-optimal solutions to
the join-ordering problem for large queries. John W.
Raymond and Peter Willett give a thorough survey of the
various approaches towards the detection of subgraph
isomorphism [18]. Bertrand et al. aim at finding the
largest common induced subgraph of two graphs [19].
Qiang Zhu et al. introduced a technique to perform query
optimization via exploiting similarity of substructures in a
given complex query [15]. Meduri applied Simulated
Annealing to the optimization of some recursive queries
and constructed the plans by re-using the query plans
among the identified similar sub-queries and avoided
multiple plan construction for each join candidate in order
to make memory efficient [17]. However these algorithms
are proposed for single-core CPU. Impressive gains in the
performance of running time by these algorithms have
been built largely on contempt for the quality of the
optimization plan. On the other hand, it does not take
advantage of the special characteristics of the query[20].

In order to improve quality of the output plan and
consider the characteristics of the query, the parallelize
top-down enumeration based on Weighted Edge Join
Graph is proposed in this paper. The method firstly
parameterizes and quantifies the impact of a join to the
cost of its succeeding join and constructs WEJG.
Secondly, the partial order join and partial order graph are
archived take advantage of the weight in WEJG. Finally,
the global solution is constructed based on parallelize
top-down enumeration.sults of performance evaluation
and conclude this paper.

2 Query Graph Definition

2.1 Preliminary Concepts
Graph is widely used to represent query structure. A

connected Graph is denoted by G(V, E, T, P,α, β), where
V is the finite set of its vertices, E∈ V × V the set of
edges,α a function assigning labels to the vertices andβ a
function assigning labels to the edges. T ={R1, R2...Rn}
is the set of tables referred in G and P ={p1, p2...pm} the
set of all predicates referred in G.α : 7→ R is a one-to-one
function, where x∈ V and R∈ T. β : e 7→ c is a function,
where e∈ E and c∈ P.

NumRel(V) denotes the number of vertices in V.
NumE(E) denotes the number of edges in E. The edge e
.
= (u, v) ∈ E is said to be incident with vertices u and v,
where u and v are the end of e. These two vertices are
called adjacent. vertices (e) denotes the set of vertices
connected by edge e in a query graph. N(v) obtains the
adjacent nodes of node v.

Definition 2.1: A connected graph S (V, E, T, P,α, β)
is a sub-query of G (V, E, T, P,α, β) if

V= {v| v⊆ N(E)∈V },
E= {e| e⊆E and vertices (e)∈V},
T= { r| r∈T andα(r) ∈V},
P= {p| p∈P and p∈h and h is the set of predicates

labeled on e∈E},

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 3, 1445-1454 (2015) /www.naturalspublishing.com/Journals.asp 1447

α: x 7→ r, where x∈V, r∈T andα(x)
.
=r,

β : e7→c, where e∈E, c∈Pandβ (e)
.
=c.

For a subquery S (V, E, T, Pα,β) of G (V, E, T, P,
α, β), the neighborhood of S is denoted as ad(S) ={v∈
(V-V) | (u,v)∈E and u∈V}.

Definition 2.2: A connected sub-query S (V, E, T, P,
α, β) of G (V, E, T, P,α, β) is a partial order join or POJ
for short, if the connected graph S only includes two
different edges, calledE1andE2, and the predicates{β
(E1), β (E2)} are a partial order, i.e., one of
{β (E1),β (E2)} must be executed before the other.

Definition 2.3: A connected sub-query S (V, E, T,
P,α, β) of G (V, E, T, P,α, β) is a partial order graph or
POG for short, if the connected graph S has more than
two edges, and the predicates are partially ordered set.

2.2 Weighted Edge Join Graph
The definition of a G can be further extended to

include a weight and a direction among edges to represent
precisely the influence of a join to the cost of the next
join.

For convenience, we will use⊲⊳i to represent the ith
join predicate operation in the join sequence. We use an
example to illustrate the idea. A connected graph with
predicate operation{⊲⊳1,⊲⊳2,⊲⊳3,⊲⊳4} is considered the
following join sequence:

(((⊲⊳1) ⊲⊳2) ⊲⊳3) ⊲⊳4
In this sequence,⊲⊳1 is carried out first. As the cost of

the next join operation⊲⊳2 is dependent on its operand
sizes, the result produced by⊲⊳1 directly influences the
cost of ⊲⊳2. This influence is termed an impact in this
paper. For instance, assume that one of the inputs of⊲⊳2 is
relation S and relation S is the common base relation of
⊲⊳1 and ⊲⊳2. As ⊲⊳1 is evaluated before⊲⊳2, the
intermediate result of⊲⊳1 will replace the common base
relation S as the input to⊲⊳2. If ⊲⊳1 produces a large result
(assume much larger than S), then it creates s stronger
impact to ⊲⊳2 because S, one of the original operand
relation of⊲⊳2, is replaced by a larger relation. Otherwise,
⊲⊳1 gives a small impact to⊲⊳2. In the following, we
formally parameterize and quantify the impact of a join to
the cost of its succeeding join and embed it in a Weighted
Edge Join Graph.

Definition 2.4: A Weighted Edge Join Graph (WEJG)
(V”, E”, P”, α”, β ”) of G (V, E, T, P, α, β) is defined as
following:

V”= {e | e ∈ E}
E”= {e1e2, e2e1 | e1,e2∈ E and vertices(e1)

⋂

vertices(e2) 6= /0}
P”= {p | p∈ P}
α”: v 7→t, where v∈V”, t∈ {α(vn)|vn∈ vertices(v)} ∈

T.
β ”: e 7→c, where e∈V”, c =β (e)∈P”, andβ ”(e) =c.
WEJG is a weighted complete (p, q) digraph, where

each vertex is connected to another vertex via two edges
in opposite direction, and the vertex in WEJG is exactly
the edge in the connected Graph G based on the definition.
From the definition, WEJG is deducible from G. Let us
consider an example. WEJG of connected Graph G in Fig.

Fig. 1: Weighted Directed Join Graph

1(a) is shown in Fig. 1(b). The predicate between node v1
and v2 is indicated as⊲⊳i, v2 and v3 as⊲⊳ j, and v3 and v4
is indicated as⊲⊳k in Fig. 1(a).

If there is common node betweenviv j and vlvk, two
edges in opposite direction exist between the two. By this
rule, Fig. 1(b) can be achieved. Every edge in graph G
will be regarded as a node by Corresponding WEJG. In
Fig.1(b)Ei, E j andEk are used to denote⊲⊳i,⊲⊳ j and⊲⊳k
respectively. The direction of an edgeEi 7→ E j indicates
an execution partial order of⊲⊳ j immediately after⊲⊳i.
Associated with each edgeEi 7→ E j is a weight Wi j,
which is calculated as follows:

In order to simplified representation, we useEi j to
denote Ei7→Ej. Edges(Ei j) function is used to achieve the
partial ordered setEi, E j. SN(Ei j) and EN(Ei j) are used
obtain the first and last element in the partial ordered set.
Accordingly, we define:

SN(Ei j)=Edges(Ei j)[0]
EN(Ei j)=Edges(Ei j)[Edges(Ei j).length-1]

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1448 Y. Chen et. al. : Degradation of Complexity for Join Enumeration via...

Such aswe can list the following equation according to
above equation

2.3 Weight Parameters
As the join selectivity factor is normally assumed

known from collecting statistical information, the
elements of a weight can be defined based on such known
parameters. Let us formally define those parameters that
are used in the weight representation.

Join Selectivity Factor (JSF)
Join selectivity factor is a factor to represent the ratio

of the cardinality of a join result to the cross product of the
cardinalities of the two join relations.

|R i S|

|R| |S|
JSFi= |X| means the cardinality of relation X

Join Concatenation Factor (JCF)
Join Concatenation Factor is the ratio of the

concatenated tuple size of the join to the sum of the sizes
of two join relations.

Assume that⊲⊳ j is over R and S and⊲⊳i is over S and
T. Then, the weight of⊲⊳ j 7→⊲⊳i can be reformulated as
follows:

Let us define an operator⊙ as:
s⊙t=< s1× st1,s2× t2 >
s=< s1,s2 > t=< t1, t2 >
The weight can then be further simpled as following.

JSFj JCFj

|S| , ||S||

Wji = <W
1
ji,W

2
ji>

|R| |S|, || R||+||S|| =

Therefore, the weight of an edge between⊲⊳ j=R⊲⊳S
and⊲⊳i=S⊲⊳R is expressed as follows.

Consider two edges⊲⊳1 and⊲⊳2where⊲⊳1 =R⊲⊳S and
⊲⊳2=S⊲⊳T. An weightW12=< 2,1> implies that the result
of ⊲⊳1 has twice as many tuples(i.e.,the cardinality is
doubled) as the number of tuples of S, an input to⊲⊳.
Because the cost of a join depends on its input size, this
< 2,1 > weight implies that the degree of influence
(impact) of ⊲⊳1 to ⊲⊳2 is doubled in cardinality(since
w1

12=2) and remains the same in tuple size(since
w2

12=1). Consequently, the WEJG and the edge weights
in it can be used as a tool for finding a good (low cost)
execution plan for query optimization.

3 Generating cover set of Partial Orders

3.1 Construction of POJ List
Generating the partial order join is an important first

step. We firstly need consider the relationship between
edges of G.We could generate all partial order join
according to two enumeration steps.

For every node vi ∈ V we perform the first
enumeration step: Firstly, we use N(vi) to obtain the
adjacent nodes. Then, for every adjacent nodes achieved,
the edge is represented by ENumN . NumN is an
incrementing variable starting with one. In order to avoid
producing duplicate edge, the idea is to use the numbering
to define an enumeration order: the algorithm enumerates
adjacent nodes for every node vi, but not considers node
nj with j<i. Using the definition Bi= v j| j ≤ i.

For every node vi ∈V we perform the second
enumeration step: firstly, we calculates the neighborhood
of vi. If the number of neighborhood is greater than 0, the
weight W1 is calculated among the edges of vi and
adjacent nodes. And add partial order join to set of POJ
set. The execution is demonstrated in pseudo code format
by CreatePOJ Algorithm.

Let us consider an example for CreatePOJ
algorithm.Figure 2 contains a query graph whose nodes

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 3, 1445-1454 (2015) /www.naturalspublishing.com/Journals.asp 1449

CreatePOJ Algorithm

Input: a connected query graph G = (V, E)

Precondition: nodes in V are numbered

according to a breadth‐first search

Out: emits all POJs of G

initialize POJ=φ NumN=1

for all i∈[n − 1, . . . , 0] descending {

 N=N(ni)/Bi;

 for node n∈ N {

 using ENumN denote edge (ni, n)

 NumN++; }

}

for all i∈[n − 1, . . . , 0] descending {

 N=N(ni);

 if (N>0)

 for node NR∈N{

 for node NL∈[N‐NR] {

 if (W
1

NRNL<1)

append ENRNL to POJ }

 }

 }

are numbered. The result of first Enumerations for all
nodes is indicated by Figure 3(a). According the existing
edges in Figure 2, obviously, eight edges are produced.
For example, the edge of n1 to n2 is represented as E1, n1
to n4 is E2 and so on. It is an upper triangular matrix by
using Bi function. The nodes of Figure 3(a) are the result
of first enumeration by CreatePOJ algorithm. The
directed edge with W1 less than one in Figure 3(b) is the
result of second enumeration by CreatePOJ algorithm.
The resulting set of POJ is{E12, E31, E32, E41, E45, E67,
E78, E74}.

3.2 Enumeration POG by Growth of POJ
In the previous subsection, we have constructed POJ.

In this subsection, we present CreatePOG algorithm to
generate POG of query graph. The POG can be producted
by combining the POJ and smaller constructed POG. So
POG is the extension of POJ. The pseudocode of
CreatePOG algorithm looks as follows:

In this algorithm, the variable POG0 is initialized with
POJ. Two phases are included in the algorithm.

The first phase is to choose an edge that can reduce the
cost of constructed POG as much as possible. For every
element Ei in the set of POG0, we consider the element Ej
in the set of constructed POGi initialized with POG0.

Fig. 2: Weighted Directed Join Graph

(a) The result of first Enumeration

(b) The result of second Enumeration

Figure 3: Enumeration by CreatePOJ algorithm

Fig. 3: Weighted Directed Join Graph

If Ei and Ej meet the conditions with EN (Ei) equal to
SN (Ej) or SN (Ei) equal to EN (Ej), and not including
common node in addition to connecting join node, this
shows edge Ei causes a large cost benefit to Ej or the
opposite Ej to Ei. We can connect Ei and Ej to product
bigger POG. And Ei and Ej are respectively appended to
POJUsed and POGUsed. For example, consider E41 and
E12 in Figure 4. EN (E41) and SN (E12) all equal to one.
And the remaining node is E4 except common node E1
for E41. The remaining node is E2 except common node
E1 for E12. So E41 and E12 meet the connection condition,
we can construct bigger POG E412 by combining E41 and
E12.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1450 Y. Chen et. al. : Degradation of Complexity for Join Enumeration via...

The second phase is adjustment phase for the set
POG0 and current set POG. When POGi is the set of
POG0, we put the set of POG0 minus POJUsed to HPOJ
and delete these elements from POG0. This is because
these seed elements can not be used to product bigger
POG. Otherwise, the unused seed elements are deleted
from POG0. And the used elements of POGUsed are
deleted from POGi, because the POGUsed elements in
POGi can been replace by the bigger POG in POGi+1.

The two phases continue until no more beneficial
edges can be found.

Let us consider an example for CreatePOG algorithm.
Figure 4 is the execution result of CreatePOG algorithm
based on Figure 3. CreatePOG algorithm accepts input
parameter of the constructed set POJ{E12 E32 E31 E41 E45
E67 E74 E78}, and uses this set to initialize parameter of
POG0. Based on POG0, POG1 is constructed, that is
{E312 E412 E741 E745 E674 E678}. Because E32 is not used

Fig. 4: Weighted Directed Join Graph

during this processor, E32 is put to the set HPOG, and
deleted from POG0. Based on the adjusted POG0 and
POG1, we can achieve POG2{E7412 E6741 E6745} in the
first phase. In the second phase, we respectively adjust the
set POG0 and set POG1 to {E12 E67} and{E312 E412 E674
E678}. POG3 can be achieved by set POG0 {E12 E67} and
POG2 {E7412E6741 E6745}. When the adjustment is made,
the set POG0 is transformed into{E12} and POG2{E7412
E6745}. The set POG0 and POG3 deduce the null set
POG4. And then the set POG0 is cleared. It is the end of a
while-loop, and HPOJ is put to the set POG0.

4 Parallel Top-down Enumeration using
Partial Orders

In this section, we will use the constructed HPOG and
POG to build the best query plans according to the
parallelize top-down enumeration. In order to realize the
parallel algorithm for the top-down enumeration, we
firstly need allocate the set of{HPOG, POG} to different
threads. We use the number of cores, num(cores), to
denote the number of threads. Every local thread, in turn,
obtains the supplementary node set of item allocated it
and builds the best query plan of the supplementary node
set.

CreatePlans algorithm shows the process with
pseudocode. CreatePlans algorithm firstly appends every
POJ included the set{HPOG, POG} to set POJs, and
reallocate thePOJs to array SSM according to num
(cores). Secondly, num (cores) threads parallel implement
the corresponding set of SSM. The local thread firstly
constructs the complementary set for every allocated POJ,
and builds the best query plan using the function of
BestPlan based on top-down enumeration algorithm.
Lastly, best query plan for POJ and the corresponding
best query plan of complementatry set can be achieved by
using BestPlan function. CreatePlan Algorithm finally
uses MergeAndPrune Plans function to achieve the global
optimal solution.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 3, 1445-1454 (2015) /www.naturalspublishing.com/Journals.asp 1451

5 Performance Analysis

Type Enumeration Style

the top-down transformational

search of Volcano/Cascades
TD_VC

top-down join enumeration

algorithm optimal with respect to

the join graph

TD_OJP
Top-down

DP

optimized top-down enumeration

based constructed POG
TD_POJ

Bottom-up

DP
Parallel Size-Driven

PDPsva

Iterative DP Randomized query IDP

Table 1: Table I Experimental Parameters

In the following, we will present the experimental
findings of our algorithm. All the experiments were
performed on a Windows Vista PC with two Intel Xeon
Quad Core E540 1.6GHz CPUs (=8 cores) and 8GB of
physical memory. Each CPU has two 4Mbyte L2 caches,
each of which is shared by four cores. The experimental
parameters and their values are illustrated by Table I.

We ran several experiments to evaluate the different
algorithms under different settings. The goals of out
experiments are to show that our algorithm is an efficient
polynomial time method, which is suitable for optimizing
complex queries. Due to lack of space, we selected the
two typical experiments.

In the first experiment, we compares the running time
of TD VC, TD OJP and TDPOJ algorithms by changing
the number of quantifiers for varying query graphs in
Figure 4. The algorithms listed above which all
constructed based on top-down join enumeration method.
The running time consists of two parts, optimization time
used to construct query plan and execution time for query
plan. Execution time reflects the quality of constructed
query plan. We want to answer that besides clique queries
the algorithm optimized top-down enumeration TDPOJ
based constructed POJ significantly outperforms the
conventional TDVC and TDOJP algorithms.

Figure 4 (a) compares the running time for clique
queries. As illustrated in Figure 4 (a), the total running
time increases as the number of relations is increased.
TD VC and TDOJP have the same execution time
because they are exhaustive search DP algorithms and can
construct the best query plan. TDOJP is optimal with
respect to the join graph in the process of building query
plans, and it can avoid constructing logical join pairs
which are not connected. So the optimization time for
TD OJP is longer than TDVC. TD POJ algorithm has
the shortest optimization time due to using the
constructed partial order graph. However, it cannot
guarantee an optimal query plan. So the execution time is
the longest. Figure 4 (b) compares the running time for
star queries. Figure 4 (c) compares the running time for
cycle queries. Figure 4 (b) and Figure 4 (c) show similar
experiments with Figure 4 (a).

Figure 4 shows that TDPOJ algorithm is better than
TD VC and TDOJP. This shows the optimization based
partial order graph is effective in query plans construction
for clique, star and cycle queries.

In the second experiment, we compared TDPOJ,
PDPsva and IDP algorithms in Figure 5. By Figure 5 we
want to answer that TDPOJ algorithm based on the
partial order graph POG significantly outperforms the
PDPsva and IDP algorithms.

Figure 5 (a) compares the running time for clique
queries. As illustrated in Figure 5 (a), the optimization
time for IDP is the shortest. However it does not take
advantage of the special characteristics of the query, the
quality of constructed query plan is not high. So the
execution time of output query plan is the longest. PDPsva
algorithm in Figure 5 (a) has the shortest execution time
because it is exhaustive search DP algorithms and can
construct the best query plan. However it constructs join
pairs by exhaustive method in the process of building
query plan, the optimization time of this algorithm is the
longest. The optimization time of TDPOJ is longer the
IDP, and shorter than PDPsva in Figure 5 (a). The
execution time of TDPOJ is longer the PDPsva, and

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1452 Y. Chen et. al. : Degradation of Complexity for Join Enumeration via...

TD_VC TD_POJTD_OJP

0

100

200

300

400

500

600

20 22 24 26 28 30

0

50

100

150

200

250

300

350

400

20 22 24 26 28 30

0

50

100

150

200

250

300

20 22 24 26 28 30

(a) Total time for clique queries

(b) Total time for star queries

(c) Total time for cycle queries

Number of quantifiers

R
u

n
n

in
g
 tim

e
(in

 s
e
c
o

n
d
s
)

Number of quantifiers

R
u

n
n

in
g
 tim

e
(in

 s
e
c
o

n
d
s
)

Number of quantifiers

R
u
n

n
in

g
 tim

e
(in

 s
e
c
o

n
d

s
)

TD_VC TD_POJTD_OJP

TD_VC TD_POJTD_OJP

Fig. 5: Weighted Directed Join Graph

0

10

20

30

40

50

60

70

80

90

100

20 22 24 26 28 30

0

20

40

60

80

100

120

140

160

20 22 24 26 28 30

TD_POJ

IDP

PDPsva

0

20

40

60

80

100

120

20 22 24 26 28 30

(a) Total time for clique queries

(b) Total time for star queries

(c) Total time for cycle queries

Number of quantifiers

Number of quantifiers

Number of quantifiers

TD_POJ

IDP

PDPsva

TD_POJ

IDP

PDPsva

Fig. 6: Weighted Directed Join Graph

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 3, 1445-1454 (2015) /www.naturalspublishing.com/Journals.asp 1453

shorter than IDP in Figure 5 (a). However it should be
noted, overall, the total time of TDPOJ is the shortest.
Figure 5 (b) compares the running time for star queries.
Figure 5 (c) compares the running time for cycle queries.
Figure 5 (b) and Figure 5 (c) show similar experiments
with Figure 5 (a).

Figure 5 shows that TDPOJ algorithm is optimal for
clique, star and cycle queries.

6 Summary

In this paper, parallelizing top-down dynamic
programming query based on CMP is completed by three
phases. In the first phase, we need consider the
relationship between edges within query graph to
transforms undirected query to Weighted Edge Join
Graph. In the second phase, based on WEJG we use
CreatePOJ and CreatePOG algorithms to construct the
partial order join and partial order graph. Finally,
CreatePlans Algorithm is applied to solve the global
solution using POGs achieved as a result of the second
phase in parallel. By implementing our framework and
analyzing the experiment results, OTDPCJP gracefully
degrade the complexity degree for top-down join
enumeration with large number, impressive gains in the
performance. Future work is still needed in expanding our
algorithms to examine performance on other
multithreaded processors and to support other operations.

Acknowledgments

This work is supported by science and technology project
of fujian provincial education department: No. JA13196;
the National Natural Science Foundation of China
61303131;The National Natural Science Foundation of
China under Grant No. 60373099, No. 60973040;
important science research project of jilin
No.20130206051GX.

References

[1] P. Stenstrom. Proc.of the IPDPS, (2007).
[2] BB Pal, BN Moitra, U Maulik, A goal programming

procedure for fuzzy multiobjective linear fractional
programming problem, Fuzzy Sets and Systems, 139,
395-405 Elsevier (2003)

[3] Balkesen, C. Proc.of the ICDE(2013).
[4] PL Combettes, JC Pesquet, Proximal splitting methods

in signal processing, Fixed-Point Algorithms for Inverse
Problems in Science and Engineering Springer Optimization
and Its Applications, 185-212 (2011)

[5] Spyros Blanas,Yinan Li, Jignesh M. Patel.Proc.of the
SIGMOD,(2011).

[6] Arun N. Swami and Anoop Gupta.Proc.of the SIGMOD,
(1998).

[7] S Blanas, JM Patel. Proc.of the SIGMOD, (2011).
[8] Goetz Graefe. Proc.of the CSRD, (2013).
[9] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and V. Markl.

Proc.of the VLDB, (2008).
[10] G. Moerkotte and T. Neumann. Proc.of the VLDB, (2008).
[11] G. Moerkotte and T. Neumann. Proc.of the VLDB, (2009).
[12] Leonard D. Shapiro, David Maier, Paul Benninghoff, Keith

Billings, Yubo Fan, Kavita Hatwal, Quan Wang, Yu Zhang,
Hsiao min Wu, and Bennet Vance. Proc.of the IDEAS, 2005.

[13] David DeHaan. Proc. of the ACM SIGMOD international
conference on Management of data, (2007).

[14] Donald Kossmann and Konrad Stocker. Proc.of the ACM
Trans. on Database Systems, (2000).

[15] Qiang Zhu, Yingying Tao, and Calisto Zuzarte. Knowl. Inf.
Syst, 8 (2006).

[16] V.V. Meduri, http://scholarbank.nus.edu.sg/bitstream/handle
/10635/2099/report.pdf?sequence=1, (2011).

[17] Meduri Venkata Vamsikrishna. Knowl. Inf. Syst, 8 (2011).
[18] John W. Raymond and Peter Willett. Journal of Computer-

Aided Molecular Design, 8 (2004).
[19] Bertrand Cuissart and Jean-Jacques Hebrard. Proc.of the

GBRPR, 8 (2005).
[20] AM Wazwaz, Fredholm Integral Equations, Linear and

Nonlinear Integral Equations, Springer 119-173 (2011)

YongHeng Chen
was born in Heilongjiang
of China in Dec 1979 and
received the Ph.D. degree at
the Department of Computer
Science and technology, Jilin
University. His current main
research interests include
Query Optimization, Web
Intelligence and Ontology
Engineering and Information

integration. He is a member of System Software
Committee of China’s Computer Federation. More than
20 papers of him were published in key Chinese journals
or international conferences, 10 of which are cited by
SCI/EI.

Kerui Chen received the
PH.D. degree in Computer
and Science from JiLin
University. She currently
is a lecturer in the School
of Computer and Information
Engineering, Hennan
University of Economics
and Law. Her currently
research interests include
Web Intelligence, Ontology

Engineering and Information integration.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1454 Y. Chen et. al. : Degradation of Complexity for Join Enumeration via...

Yaojin Lin received the
PH.D. degree. His research
interests include data mining,
granular computing. He
has published more than 20
papers in many journals, such
as Decision Support Systems,
Applied Intelligence,
Knowledge-Based Systems,
and Neurologizing.

c© 2015 NSP
Natural Sciences Publishing Cor.

	Introduction
	Query Graph Definition
	Generating cover set of Partial Orders
	Parallel Top-down Enumeration using Partial Orders
	Performance Analysis
	Summary

