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Abstract: In this paper, we consider the depth-specific descripti@onfewhat homomorphic encryption(SHE) schemes over irdege
The ciphertexts of SHE scheme may have various forms depgiodi its encryption depth, and this makes the correctneskaif the
encryption scheme cumbersome. However, if one can presgiHEascheme depth-specifically, the correctness check isgbnwith
depth-wise checks. We relate the homomorphic evaluatgoridhms and binary operations on the geof ciphertexts, and investigate
what makes the depth-specific description is enough for @atrat homomorphic encryption. We conclude that it is swgfitto have
% with a ring-like structure with respect to the evaluatiogaaithms for a somewhat homomorphic encryption with reédyi small
depth. In fact, it is common to have the set of ciphertexts fallg homomorphic encryption(FHE) scheme as a ring withpees to
the evaluation algorithms. It is previously known that oae expand the message size of a SHEtases larger with the ciphertexts
t times larger using the Chinese Remainder Theorem(CRT hisnpaper, we rewrite the message expansion method with @RT b
using the depth specific description. Moreover, in the cA®N cryptosystem, we show that one can expand the messageigh
smaller ciphertexts by using CRT twice. The rate of reductibthe ciphertext size depends on the security level. Famgke, for
BGN cryptosystem using a bilinear group of 2048 bit, one cgrard the size of plaintexts &gimes larger witht/3 times larger
ciphertexts. We see that the reducing rate becomes betier security level increases.

Keywords: homomorphic encryption, somewhat homomorphic encrypsicieme, binary operation, Chinese Remainder Theorem,
BGN cryptosytem

1 Introduction encryption scheme is closely related to the efficiency of
the underlying somewhat homomorphic encryption

Recently many improvements on the construction an cheme. We also believe that the efficient somewhat

implementation of fully homomorphic encryption(FHE) omomorph.|c_gncrypt|on scheme is Important as |ts§If.
schemes have been proposed since its first concrete 1Ne definition of (+,)-homomorphic encryption
introduction by Gentry4]. An efficient and secure fully —°V€r integers can be illustrated by the following
homomorphic encryption scheme allows to use untrustefommutative diagrams.

computing resources without risk of disclosure of n o

sensitive data. In particular, one can efficiently evaluate IxL———7 IxL——17

any multivariate polynomial over ciphertexts using FHE.

A somewhat homomorphic encryption(SHE) scheme DeCXDecT DECT DECXDGCT DeCT

allows to evaluate multivariate polynomials up to a %x%%g) %’x%’m%
predetermined degree over ciphertexts. A fully

homomorphic encryption scheme commonly starts from aWe consider the(+, x)-homomorphic encryption over
somewhat homomorphic encryption scheme andintegers with depthk, which means a somewhat
sophisticated techniques such as modulus reductions arftomomorphic encryption scheme to evaluate multivariate
key switching are used to make it fully homomorphic. polynomials of degree up td& over ciphertexts. For
Therefore, the efficiency of the fully homomorphic example, BGN cryptosystem is @, x )-homomorphic
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encryption with depth twoZ]. We call an encryption of a rewrite  the expanding method using CRT
plaintext as a fresh ciphertext. We den@eas the set of depth-specifically. We show that one can expand the
ciphertexts of the depth that is, ciphertexts evaluated message size with smaller ciphertexts by using CRT twice
multivariate polynomials of degreei over fresh in the case of BGN cryptosystem. In Sectiof, we
ciphertexts. The set of fresh ciphertexts is a subséfjof  conclude our paper.
Checking the correctness of &+, x)-homomorphic
encryption with deptlk is not simple in general, because
the type of ciphertexts varies as its encryption depth. A2 Preliminaries
depth specific description of homomorphic encryption of
depthk will simplify the correctness-check of the scheme. 2 1 Definition of(+, x)-Homomorphic

Our main contributions are as follows. We suggestEncr tion Schem’e
when a depth-specific description is enough for a yp

(+,x)-homomorphic encryption with deptik to be The (+, x)-homomorphic encryption scheme allows

correct. We rewrite a previously known message . . RN
expansion method by using the depth specific description‘?myone to add and multiply the plaintext values implicitly

Moreover, in the case of BGN cryptosystem, we ShOWWhllle Wo_rll<|tr_19 onI mp{;‘ertexts only. It consists of five
that one can expand the message size with smallgPeynomiattime aigorthms
ciphertexts by using CRT twice. (KeyGen, Enc, Eval., , Eval, , Dec).
The homomorphic evaluations on ciphertexts
essentially have some integer-arithmetics-like propsrti KeyGen: It outputs a pair(pk,sk) of public key pk and
because they involve the additions and multiplications on  secret keysk on inputting security parametar.
integers. We relate the requirements of homomorphicEnc: It outputs a ciphertext on inputting the public kpk
evaluations on ciphertexts with properties of binary  and messagen.
operations on the set of integeZs Note that the set of Dec: It recovers the plaintext from a ciphertext on
integersZ forms a ring with respect to the addition and inputting the secret kegkand a ciphertext.
the multiplication. In particular, rearranging the Eval,: On inputting the public key and cipherte@s and
parentheses or the order of operands in adding many C,, it evaluates the addition homomorphically which
integers(or multiplying many integers) will not change we denoteC = Eval, (pk, (C1,Cp)).
the value. Moreover, the multiplication is distributiveesv  Eval,.: On inputting the public key and ciphertegs and
the addition in the integer arithmetics. We reflect these  C,, it evaluates the multiplication homomorphically
facts to the above commutative diagram of the  which we denot€ = Eval, (pk, (C;,C)).
(4, x)-homomorphic encryption with depthand present . .
a sufficient condition on the homomorphic evaluation ~ \Wesay that &+, x)-homomorphic encryption scheme
Eval, ,Eval, for a depth specific description is enough. IS correct if it satisfies the followings, for any valid keyipa
Many homomorphic encryption requires plaintexts (pk;sk).
with small bit sizes and expanding the plaintext properly 1 For any messagd, we have
is another issue in constructing homomorphic encryption
schemes. It is known that one can expand plaintexts using Dec(sk Enc(pk,M)) = M;
Chinese Remainder Theorem(CRT) I8}.[To expand the )
size of plaintext as times larger, this method makes the ~ 2.For any ciphertexs,C’, we have
ciphertexts times larger, too. We rewrite the expanding
method by using the depth-specific description which has Dec(sk Eval.. (pk. (C,C'))) =M +M’,
a simplified correctness check. In the case of BGN N /
cryptosystem, we expand the sizetatimes larger with Dec(sk Evalx (pk (C,C7))) =M x M,
smaller ciphertexts using CRT twice. For example, for ~ whereDec(skC) =M andDec(skC') = M’
BGN cryptosystem using a bilinear group of 2048 bit, one
can expand the size of plaintexttasmes larger witht /3
times larger ciphertexts, and this is comparable with the2.2 Binary operations
result using the direct usage as i6].[ The rate of
reduction of the ciphertext size depends on the securityA binary operation® on a non-empty setA is a
level and we see that the reducing rate becomes better ifiell-defined map® : Ax A — A and we denote
the security level increases. X®y = ®(x,y) € A. Examples of binary operation on the
The rest of the paper is organized as follows. Inset of integers include the additidr-), the subtraction
Section 2, we review the definition of the (—), the multiplication(x) and the division(=). Note
(+, x)-homomorphic encryption scheme and binary that the number of ways of associatid@pplications of a
operations. In Sectior3, we present a sufficient condition binary operation forlmy,mp,...,m4;1) is known as the

on the homomorphic evaluation8val, ,Eval, for a . . 2d
depth specific description is enough. In Sectigh we  d-th Catalan Number and it is quantified ‘8‘%( d )
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and it is asymptotically estimated aﬁ% Therefore, 3.1 Evaluation algorithm&val . andEval
expressing and computing many applications of a binary

operation is very complicated in general. A nice property\We first consider the algorithrieval,  : 6 x 6 — %i.

for efficient expression and computation severalBecause the encryption homomorphically evaluates
applications of a binary operation is associativity. We saypolynomially many addition over ciphertexts, we have the
that a binary operatiorb on A is associative if it holds ~following diagram commutes, for ang’ < d = d(A)
X®(y®z) = (xay)@zforall xy,ze A If a binary Whered(A) is a polynomial in the security paramefer
operation® on A is associative, then rearranging the

parentheses in its computation will not change the value. y 59,
Therefore, one can expre@zlcj without specifying the z VA
parenthesis in the expression. If a binary operatiors )

associative and commutative, that¥spy = y @ x, then Dec* Eval_y Dec
the output of@'j‘:lcj is independent to the choice of od 221 @

circuits in the computation. If there are two different
binary operations> and® on a non-empty se4, we say

o is  distributive over @ if it  holds The commutativity of the diagram assumes that two maps

Eval_y andDec are well-defined.

XO(Yy®z = (xoy) ® (X2 for al xy,ze€ A. The Tj-1
distributive law of two binary operations is very crucial in Because the addition i is commutative,z?;l is
many fast algorithms associated withand®. well-defined and the output is independent to the choice

of circuits to compute the summation. Therefore, we need
the output of Evalzd/ to be independent (up to
j=1

3 A depth specific d_escrlptlor_l of decryption) to the choice of the circuit to compgé’zl.
(+, x)-homomorphic encryption Here, we say thatEvalyy is independent up to
j=1

- - J - . . -
We consider &+, x)-homomorphic encryption scheme decryption |fDec(EvaIz?,:l) coincides for any circuit to
over integers with the depthand denotes; as the set of computeEvaIzd/ )
=

ciphertexts of depthfori =1,...,k. The outputs oEnc Eval,; : % x 6 — % is a commutative and associative
belong t0%;. We see thats’ = Ui<j<«%; is the set of binary operation on the s&.

ciphertexts. Then clearly, we have Now we consideEval, ;). Similarly as in the case

Eval, ;== Eval, | : 6 x 6 — % of Eva.IJ_i, the definition of (+, x)-hpmomorphic

Eval, . = Eval,| X L encryption scheme with the depth requires that the
< (1.0) = xleixey - 012 0] I+ following diagram commutes for arky < k.

The depth-specific description of a

. A sufficient way to achieve this is that

(4, x)-homomorphic encryption scheme over integers Y I'ijzl
with the depttk consists of Z Z
(KeyGen,Enc, (Eval; j)1<k, (Evalx_(i)j))1§i}j§n}iﬂ-§k7 Dec). Deck T E"a'nk' DECT

If the depth specific description is enough to define a
(4, x)-homomorphic encryption scheme, the correctness
check can be done depthwise. Note that|‘|‘j</=1 in Z is well-defined and the output is

The definition of homomorphic encryption scheme independent to the choice of circuits to compute the
over integers requires the following diagrams aremultiplication. A sufficient way to give commutativity of

commutative. the above diagram for generalis that¢ = %; for all i
andEval, : € x € — ¢ is a commutative and associative
ZxZ " z Z7x7 "~ z binary operation fof6 = %;. Note that the operations of

DecheCT DeCT DechecT process, it is good to have the output of evaluation

, D Bval _ Eval algorithm is decrypted independently to a specific circuit

Gx 6 — G X C) —— Ciy | of underlying computations of plaintexts. For the case
k = 2, it is enough thatEval, : €1 x €1 — %> is

In this section, we relate the evaluation algorithmsefficiently = computable well-defined map and

Eval;; and Eval, ;; with binary operations over commutative up to decryption. A sufficient way to give
ciphertexts and investigate what makes the depth specificommutativity of the above diagram for genekak that
description is enough for (+,x)-homomorphic % = % for all i and Eval, : € x ¢ — ¢ is a
encryption over integers with the depth commutative and associative binary operationdoe ;.

T plaintexts are implicit in the homomorphic evaluation
Dec
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Now we consider Eval.j and Eval, Theorem 1Suppose that we have an encryption scheme
simultaneously. We assume that operatidﬁ\salzq, (KeyGen,Enc,Dec) where the following diagrams

j=1
independent to the choice of the circuit to compute and®®MmMute
Eval_, are independent to parenthesizing the input.

M _ oY ZxZ——7 ZIxZ—— 7
Now we considerc € 4 andc’ € %} with i > j. Then
Eval;(c,c’) can be naturally defined as follows using DechecT DECT DeCXDeCT DecT
homomorphic property, that is, Eval. Evaly i

Phicproperty GxG— %G G X 6] — G
Eval, (c,c') = Eval, j(c,Eval, ;_j j)(€,¢)),
and

where ¢ = Evalﬂlgkgifj(clvl"'?(?147""Ci*j) with Eval, ( ) are efficiently computable and the outputs of
¢, = Enc(1) for 1 < ¢ < i— j. Therefore, the Evall_lk/ are independent to parenthesizing the input
depth-specific algorithrizval,. j : € x 6 — % naturally for anjy::IL< <k

extends to the full evaluation  algorithm i . . N
Eval, : 4 x € — %. When we consider both of the EVal+iare associative binary operations foralli;

addition and multiplication together, we should have theEValx.(ij) Is distributive oveiEval, i up to decryption,
following diagram commutes. i.e., forq € 4 and @, c3 € 6 with i+ j <k, we have

Dec(EvaIX,(i_’j) (c1,Evaly j(cp,c3)))
= Dec(Evaly it j(Eval, g j(c1,c2),Eval,  j)(C1,C3))).

77 %7 My x (NMp+mg) 7
KLex Then (KeyGen,Enc,Eval, Eval,,Dec) defines an
Dec? Dec efficient(4, x) homomorphic encryption of depth k with
Eval,, ) (c1.Evals (c5.C3)) the set of ciphertexts ¢ = U‘J?:O%j, where
G x € x €1 ' Cirmax(j. 1) Eval, : ¢ x € — ¥ is defined as follows: for € % and

¢ € ¢} assuming K i <k, define

where ¢ = max(j,¢). Again, the commutativity of the
above diagram requires thaval, ;) is distributive over
Eval. where it is defined.

For a large k, using a commutative ring
(¢,Eval;,Eval,) could be a solution. In that case,
making the decryption algorithmec as well-defined in

Eval,(c,c’) = Eval, (¢,c)),

where € = Eval, ;_jj(Evalp,_, (C1,...,c-j) with
c,=Enc(l)forl<i<i-—].

Proof. To show that the encryption scheme

the diagram is the main focus in the design (ef, x) : -
. . ’ (KeyGen,Enc,Eval, ,Eval,,Dec) defines an efficient
homomorphic encryption scheme. In fact, all the known (+, x) homomorphic encryption scheme of deffit is

fully homomorphic encryption scheme are defined over a P _
commutative ring and the core research issues in theenough to show that, for afl,c',c" € ¢ andc, € %j and

construction of (fully or somewhat) homomorphic 2 € ),¢ € G with (i +max(j,0)) <k,
encryption schemes is how to makec as an efficient Dec(Eval, (c,c')) = Dec(Eval (¢, c)),
well-defined map in the commutative diggram .above. Dec(Eval, (c,Eval(c/,c")))

If we consider smalk, there are solutions withoutany Dec(Eval, (Eval, (c,c),¢"))
ring structure such as the BGN cryptosystem and the GHV — * T ’
cryptosystem. In the BGN cryptosystem, it is assumed that Dec(Evalx (c,Eval. (cz,¢3)))
the size of the plaintext is small in order to mdkec as a = Dec(Eval; (Evaly (c1,¢2),Eval.(c1,¢3))).

well-defined and efficient map. All these follows from the fact that for anye ¢ and

¢ € ¢, we can assume that,c’ € Gnagje by
. . .. multiplying 1 homomorphically. Note that the
32 A SUﬁ:|C|ent Cond|t|0n fOf the Depth SpeC|f|Cassociativity OfEVEl|+ : % X % — % for everi assures
Description is Enough that the associativity ofEval, and Eval, ;) is
distributive overEval, i, for everyi,j with i +] <k
We start from a public key encryption scheme assures thakval, is distributive overEval, where it is
(KeyGen,Enc,Dec) with the depth specific defined.
homomorphic evaluation&val, ; : 6 x 6 — % and
Eval, ) : 6 x ¢j — %i+j. The following Theorem
states a  sufficient  conditon to  extend 3.3 Examples
(KeyGen, Enc,Dec) to an efficient+, x ) homomorphic
encryption scheme of depthwith the set of ciphertexts Now we review some examples of the
€ = U'J-‘zl%j. (4, x)-homomorphic encryption schemes of depth two in
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the framework of Theorenl. We show that the BGN Itis clear thaEval, is an associative binary operation and
cryptosystem satisfies all the conditions for depth specificEval, is distributive ovelEval., because

encryption is enougt?]. On the otherhand, we show that
the GHV cryptosystem has a subtle difference from the
BGN cryptosystem becaug®val, : ¢, x €1 — € is not Eval. (c1,Eval, (c2,C3))
commutative up to decryption. =c-(C2+c3)"

=C1XCh+CpXCh

3.3.1 BGN cryptosystem = Eval; (Eval. (c1,¢2),Eval. (c1,€3))

. ] ) The security of GHV cryptosystem is based on the
The BGN cryptosystem is the firgt-, x) homomorphic | \WE problem, which requires the size of underlying
encryption scheme with depth tw@][ It is defined overa  matrices to be large. Moreover, it is a challenging
bilinear mape: G x G — Gy with cyclic groupsG,Gr of  problem to find an efficient embeddirgbof integers to
order N = pg, and the depth specific description of matrices so that the related diagram commutes. We also
evaluation algorithms of the BGN cryptosystem is given note thaEval, is not commutative even up to decryption,
as follows. therefore the order of the operatidval, should be
o . . consistent to the order of the multiplication zh Recall
%:%:'tthh: ggr?uuppci ?fgeneratog, that it is good to have the outputs of the evaluation
3Eval, 1 : €1 x 61 — € is the multiplication inG, algorithms are decrypted independently to a specific
which'is associative and commutative: circuit of underlying computations of plaintexts.
4Eval, »: 6 x € — ¢, is the multiplication inGr, Therefore, 'this feature .of GHV cryptosystem is
which is associative and commutative: undesirable in homomorphic encryption scheme.

5.Eval is the pairinge: G x G — Gy, which is

associative and commutative. ZxzZ—= 47
It is clear that the pairingEval, = e is efficiently emglxemg{ emng
computable. Moreover, we haeéc, ¢’) = e(c/, c) and this A
implies that one can evaluate independently to the order RXR————R
in the multiplication of integers(plaintexts). It is also DecheCT DECT
distributive ovelEval. , because Eval,
RxR—— R
Eval, (c1,Eval; 1(c2,C3))
= €(C1,C2" C3)
= e(C1,Cp) - €(Cy,C3) 4 Application to Message Expansion of SHE

= Eval, »(Evaly(cq,c0),Evaly(cq,C
+2l (1,e2) (€1,63)) Suppose that we have(a-, x) homomorphic encryption

For set;urity reason, one can add a random_ness in thechemeHE,, of depthk whose message space is integers
evaluation algorithms. However, one can easily see thaless thanw-bits:

the evaluations Eval, i,Eval, >, and Eval. are
associative and commutative up to decryption. In that (KeyGen, Enc, Eval. ,Eval,,Dec).
caseEval, is distributive oveiEval . up to decryption. . _ _ _
In order to make the algorithnDec correctly ~We denote algorithms oHE, using the notations in

decrypts, the message size is restricted so small as thEheorem 1 as follows;
discrete logarithm can be efficiently solved in the setting g,.. 7 _, @
the message as the exponent. , ,

Eval, : 6 x € — i+

Dec: % — Z, where? = U ;%
3.3.2 GHV cryptosystem Eval, : ¢ x € — ¢,whereEval, : 6 x 6 — €,

In the GHV cryptosystemq], the authors consider the set

R of k x k matrices over a finite field and construct the 4.1 Expanding the plaintexts by using

cryptosystem in the settin : .
ypiosy 9 CRT(Chinese Remainder Theorem)
1.%0 = ¢1 = R: the ring ofk x k matrices;
2.Eval, =Eval, ;1 =Eval, »: RxR— Rasthesumof |t is known that one can expand plaintexts of somewhat

matrices inR; . homomorphic encryptions using Chinese Remainder
3Eval, : Rx R— Rdefined agval (c1,¢z) =¢1-C} € Theorem(CRT) by§]. To expand the size of plaintext &is
R, wherec] is the transpose of the matrix. times larger, this method makes the ciphertdéxtanes
(@© 2015 NSP
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larger, too. We rewrite the expanding method by using theThe primesg; are chosen small enough f&nc : Z; —

depth-specific description which has a simplified %o to be correctly decrypted in the original homomorphic

correctness check. encryption scheme E,,. We setX = Zg, x --- x Zg Which
Note that(Z!, +, x) is a commutative ring with unity, can be considered as a subseZof

where + and x are addition and multiplication

componentwise, that is,
+ modn -modn

(a,...,a)+(@},...,a) = (ag+ay,...,a+&) € Z' Zn X Zn ——— Zn Zn X Zn —— Zn
(a,...,a) x (&,...,&) = (ar x aj,...,a x a) € Z', CRTXCRTT CRTT CRTXCRTT CRTT
SChl;lI’?:Z we construct ¢+, x) homomorphic encryption X ox X X N M
H Et — (KeyGent, EnCt, EValt_,'_, Evalt>< , Dect) DECt XDECtT Evalt DECtT Dect XDECtT vl DECtT
i val, (i
G x G — s %IX%¢>%I.

using the product space®, %!, 4" and applying each
algorithm componentwise. We omit the ind@xof the
evaluation algorithms because it is clear from their We  consider (keygen,enc,eval,,eval,, dec)

domains. defined by
KeyGen' : (pk,sk) «+ KeyGen(1}) keygen = KeyGen'
Encly: Zt — ¢ defined by enc(m) = Enc'(CRT 1(m))
dec(c) = CRT(Dec'(c))
Encpi(my,...,m) = (Encpe(my), ..., Encpe(m)) eval, (c,c) = Eval', (c,¢)

evaly (c,c’) = Eval(c,c).

. Therefore(keygen,enc,eval,,eval,,dec) defines a
Evaly . ((c1, ..., @), (ch,---,q)) homomorphic encryption over integers of the dizemes
= (Evalpyx (C1,C)), ..., Evalp . (¢, €) larger than the original homomorphic encryption scheme

, HE,.
Decl,: €' — Z! defined by

Evaly, : 6! x ¢! — %, ; defined by

Decy(C1,.-..,G) = (Decs(C1), ..., Decs(c))

4.2 Application to BGN cryptosystem
Evally , : ¢! x ¢! — ¢ defined by
t , Now we show that we can expand the sizetasmes
Evaly . ((c1,- -, @), (¢, G)) larger with smaller ciphertexts using CRT twice, in the
= (Evalpi4 (C1,¢}),...,Evalp 4 (Ct, ¢f)) case of the BGN cryptosytem. The rate of reduction of the
ciphertext size depends on the security level. As an
example, for BGN cryptosystem using a bilinear group of

2048 bit, we show that one can expand the size of

This introduces the following commutative diagrams.

St 7t St 7t X 7 p]aintext ast times_ larger with t/3 times Iarger'
ciphertexts, and this is comparable with the result using
Dect XDeCtT DeCtT DectXDeCtT Decﬂ the direct usage as i8],
t
G Gt B
4.2.1 A Modified BGN Cryptosystem using Multiprimes
It is clear to see that

(KeyGent,Enc‘,EvaIi,EvaI‘X,Dec‘) satisfies the The idea of expanding the plaintext si_zg is to modify the
depth-specific hypothesis of Theorem 1. Thereforetype of the composite order of the bilinear group. The
(KeyGen‘,Enc‘,EvaIEr,EvaItX,Dect) defines a(+, x) original BGN cryptosystem uses the bilinear group of
homomorphic encryption scheme with defth composite ordelP P, where its security relies on the
Now we show thatHE! can be used to expand the hardness of factorization oPyP,. In this section, we
plaintexts of HE,, ast times larger. Fom = qu¢p---q ~ Modify the BGN cryptosystem using bilinear groups of
with distinct prime numbers;, CRT introduces an ring ©orderN whereN is a product ofr + 1 distinct prime

iSomorphisnCRT: Zg, x -+ x Zg — Zy as follows. numbersPy, P, ..., Pr, P and it is computationally hard
to factor N. Our modification expands the bit size of

CRT(my, ..., m) plaintexts of BGN cryptosystem astimes larger while
t n n,_; sustaining the size of order of bilinear group but in a
- .21'“ e ((a) mOdGﬁ) modn different form.
= ' ' Suppose that we have a bilinear mapG x G — Gy
CRT }(m) = (mmodgqy,...,mmodq) with |G| = |Gt| = N = P;---Pry1 and assume that it is
(@© 2015 NSP
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hard to factoN. We also suppose thgg is a generator of over Eval,.. We also see that the following diagrams
N N

FP1 commute.
Gandg =g, "' € Gfori :1,...,randh:géﬁ €G.
N N2
Note that we have;” = ggpjp”l =1 ande(g;,g;) is of + x
orderP 1 if i # J. \I/Ve also note that(g;,gi) is of order ZxZ z ZxZ A
RPr+1. Therefore, we see that DeCXDECT DECT DeCXDECT DECT
Eval |

o armr 01 arpr! L ai-al f GxG — G Gr xGr e Gr

gyt grh gt gt = _FlE(gi,gi) B
i=
ZxZ2——7
where the order oB € Gt is P, 1. Now we describe our
modified BGN cryptosystem. From our Theoreimwe DecheCT Dec
only need a depth specific description by settfig= G Evalx
and > = Gt. The public key of our modification is GxG Gr
pk=(e:Gx G — Gr,N,go,d1,....9r,h) and the private Therefore, our constructioEnc of homomorphic
key is sk= (PL,P,...,Pr). We defineEnc : Z, = G encryption scheme satisfies all the depth-specific
wheren = q103- - - g in the following manner: condition in Theoreml and we conclude that it is a
m Mt (4, x) homomorphic encryption scheme of depth two
Enc(m) =g;"---gr*h" € G, wheremy = mmodg;. which encrypts integers< oq0z---g; under the

assumption that the original BGN cryptosystem encrypts

For the notational convenience, we omit the integers smaller thag foralli = 1,....T.

re-randomization in the homomorphic evaluation.

Eval, (C,C') = &(C,C') for C,C' € G Definition 1.(Subset Membership Problem) Consider Z
Eval. (C.C)=C.CeG, ' for n =¥, p. Let ¢,7 be subsets of Zsuch that
Evaliyz(C’C/)zc-C/eG,T. ¥ C ¥. The subset membership problem defined by

(¢,7) is the problem of deciding whetherex?” for a
For given a ciphertext € 41 U%> = GUGr, we decrypt  given x« .
the ciphertexC as follows:

Definition 2.(Subgroup Decision Problem) Considep Z
(Casel)CeG

forn= |‘|}‘=1 pﬁ and let G be a cyclic group of the order n

1.ComputeC :C% = (g,’“)% foralli=1,...,1. and G be a subgroup of G of orderieip The subgroup
2.Computem = log N Cfori=1,...,1. decision problem is the subset membership problem
(q') (€,7)withe =G, 7 =G;.

3.Computem = CRTy,...q; (M. My). It was proven that the subgroup decision problem on
(Case2) C € Gr N N G is computationally equivalent to the factorization
1.Compute G = CR = (e(gi,g)™)" for all problem ofn = |G| in the generic model9,10]. We call

i=1,...,T. the subgroup decision assumption as the assumption that
2.Computem = log ny G fori=1,...,1. the subgroup decision problem is hard.
e(gi.6i) 7 As in the BGN cryptosystem, we see our modified
3.Computen=CRT,.._ g, (M,...m¢). BGN cryptosystem is IND-CPA secure is based on the

o . subgroup decision assumption with auxiliary inputs.
Now we show that our modified BGN cryptosystemis p1ore precisely, we consider the subgroup decision

acorrec(+, x) homomorphic encryption scheme of depth problem in the cyclic groupsG (and Gt) with
two. For any ciphertex@ € 41U %2 = GUGr, we see the |G| = |Gr| = N = PiP>---Pr.1 with the subgroups o6
following holds. (and Gt) of order P; with an auxiliary input

(Casel)CeG (01,92,...,0¢) € G' (and(e(gi,9j)) € G}z). Because we
C=gi*-gfvh". consider smallr’s, the auxiliary input doesn’t make the
subgroup decision easieB][ Therefore, we select the
largestt where integer factorization ol = P1P,---Pry1
is infeasible for a fixed bit size dfl. The state of the art
for the integer factorization is given in many literatures
such as 1,7,11,12]. The current factorization technique
suggests that one can uskas a product of four prime
Therefore, it correctly decrypts depth wise. As in the numbers of the same sizes for ¢ = 2048, i.e,
original BGN cryptosystem, we see thdival, is N = P,P,P;P; and this implies that one can use= 3 for
associative binary operation arfval, is distributive N of 2048 bits. FoN with 4096 bits, one can ude of

(Case 2) Ce Gy

C=e(91,91)™--e(gr,0r)™B',

whereB € Gy is of orderP; ;.
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five prime numbers of the same size and this implies thaDec:

T = 4 for logpN = 4096. We denote the BGN
cryptosystem over bilinear group of order-bits as
BGNg. By using multiprimes in the original BGN

For given ciphertextc = (ci,Cp,C3,C4), the
decryAption ofc is proceeded as follows. Assume that
ce G

1.Forj=1,2,3andi =1,2 3,4, compute

cryptosystem, we can encrypt message of three times

larger (four times) larger than the original BGdYg
(BGNgggg)Ccryptosystem without increasing the size of
ciphertexts.

4.2.2 A Method of using CRT twice with an Example for
2048 bit Security Level

For further expansion of the message space, one can

apply CRT method to the modified BGN cryptosystem.
We use the modified BGN cryptosystem in multiprime
with T+ 1 distinct primes and apply CRT expansion on it

with t/1 dimensional product space. In this way, one can

expand the message siteimes larger witht/T times
larger ciphertexts. Note that the selectionrafepends on
the hardness of factoring ®f. The valuert increases as
the security level of the system increases, which mean

N

)(Ci)Pj-

M = CRTy.qip,03 (Mi2, Mi2, Miz).

N
P

mjj = log

2.Fori =1,2,3,4, compute

3.0utput
m= CR-El,nz,ng,n4(m17 m25 rn37 rn4)

If ¢ € G, then we proceed with

N>(ci)PNj.

m; = log |
(e(gj vgj) !

S

that the reduction rate of ciphertext size is better as the~or given ciphertexts = (cy,...,¢s),¢' = (cy,...,c}), the

security level increases.

homomorphic evaluation algorithms are proceeded as

For example, if one wants to enlarge 12 times largerfollows.

than the original BGN cryptosystem of RSA-2048
security level, then one can do as follows which is given
in depth specific description. Suppose that the origina
BGN cryptosystem encrypts integerswohits.

KeyGen:
1.Generate distinct prime numbgrof 512 bits and
setN = P P,PsPy.
2.Generate bilinear grou@ of order N with a
bilinear map e : G x G — Gy and set
N
G=<g>,h=gMk.
3.Generate distinct prime numbegs of w bits and
set n = ninyngny where nj = (i10Gi2Qiz  for
i=1,234andj=123.
4.Output
sk= (P,P2,Ps),
pk=(N,€,9,01,02,93,h, M, 12, N3, Na),
whereg, = gh% ., gp = g%, gs = g™,
Enc: For a given messagr of 12w bits, the encryption of
mis computed as follows.
1.Fori =1,2,3,4, compute
m =m (modn;) withmj=m (modg;),
whereqi1, g2 andg;z are prime factors of;.
2.Fori =1,2,3,4, compute

¢ = Enc(my) = gi™g32g3°h" € G.
3.0utput

c= (Enc(my),Enc(my),Enc(mg),Enc(my)).

For c,c € G%
Eval, (c,d) = (e(c1,c}), ..., e(Cq,Cy)) € G},
Eval, 1(c,d) = (c1-C},...,Cq4-Cy) € G*.
For c,c € G},
Eval, »(c,c) = (c1-¢,...,c4-Cy) € GF.

We see that the direct application of CRT as @ fas
ciphertexts in(G')*? U (Gy)*?, where |G| = |G}| = N/
with log,N = log,N’ while we have ciphertexts in
(G)*U(Gr)* using CRT twice.

5 Conclusion

In this paper, we investigate when a depth-specific
description is enough for SHE schemes over integers. If a
SHE is well defined using depth specific description only,
then the correctness check is simply depth-wise check.
We relate the homomorphic evaluation algorithms and
binary operations on the set of ciphertexts and we show
that the evaluation algorithms should be associative and
binary (up to decryption) binary operations (or maps) and
Eval,, should be distributive (up to decryption) over
Eval. in order to a depth-specific description is enough
for a SHE. It is known that one can expand plaintexts
using Chinese Remainder Theorem(CRT) 8}. [To
expand the size of plaintext asimes larger, this method
makes the ciphertextstimes larger, too. We rewrite the
expanding method by using the depth-specific description
which has a simplified correctness check. In the case of
BGN cryptosystem, we modify the BGN cryptosystem in
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multiprime setting and we show that one can expand the
message size times larger witht/T times larger
ciphertexts by using CRT twice, where+ 1 is the
number of prime factors of the ordbr of the underlying
bilinear group. Note that the selectionoflepends on the
hardness of factoring dfl. The valuer increases as the
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