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Abstract: The present work deals with the study of Magnetohydrodynamic (MHD) boundary layer flow over a heated stretching sheet
with variable fluid viscosity. The fluid viscosity is assumedto vary as a linear function of temperature in the presence ofuniform
transverse magnetic field. The fluid is assumed to be electrically conducting. Lie-group method is applied for determining symmetry
reductions for the MHD boundary-layer equations. Lie-group method starts out with a general infinitesimal group of transformations
under which the given partial differential equations are invariant. The determining equations are a set of linear differential equations,
the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group
has been determined, a solution to the given partial differential equations may be found from the invariant surface condition such that
its solution leads to similarity variables that reduce the number of independent variables of the system. The effect of the Hartmann
number (M ), the viscosity parameter (A ) and the Prandtl number (Pr ) on the horizontal and vertical velocities, temperature profiles,
wall heat transfer and the wall shear stress (skin friction), have been studied and the results are plotted.
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1 Introduction

Flow and heat transfer of an incompressible viscous fluid
over a stretching sheet appear in several industrial
processes such as the extrusion of polymers, the cooling
of metallic plates, the aerodynamic extrusion of plastic
sheets, etc. In the glass industry, blowing, floating or
spinning of fibers are processes, which involve the flow
due to a stretching surface, [1]. The study of heat transfer
and flow field is necessary for determining the quality of
the final products of such processes.

Sakiadis [2] presented the pioneering work in this
field. He investigated the flow induced by a semi-infinite
horizontally moving wall in an ambient fluid.

Crane [3] studied the flow over a linearly stretching
sheet in an ambient fluid and gave a similarity solution
in closed analytical form for the steady two-dimensional

problem. He presented a closed form exponential solution
for the planar viscous flow of linear stretching case.

Moreover, the study of Magnetohydrodynamic
(MHD) flow of an electrically conducting fluid is of
considerable interest in modern metallurgical and
metal-working processes. There has been a great interest
in the study of magnetohydrodynamic flow and heat
transfer in any medium due to the effect of magnetic field
on the boundary layer flow control and on the
performance of many systems using electrically
conducting fluids, [4].

The problem of flow, heat and mass transfer over a
stretching sheet in the presence of suction or blowing was
examined by Gupta and Gupta [5]. Dutta and Gupta [6]
extended the pioneering works of Crane [3] to explore
various aspects of the flow and heat transfer occurring in
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an infinite domain of the fluid surrounding the stretching
sheet.

The fluid viscosity was assumed uniform in the flow
region in all the pervious mentioned works. Practically,
the coefficient of viscosity decreases in case of liquids
whereas it increases in case of gases as the temperature
increases.

Pop et al. [7] and Pantokratoras [8] studied the effect of
variable viscosity on flow and heat transfer to a continuous
moving flat plate. In their work, they assumed that the fluid
viscosity varies as an inverse function of temperature.

Abel et al. [9] studied the boundary layer flow and
heat transfer of a visco-elastic fluid immersed in a porous
over a stretching sheet with variable fluid viscosity. The
fluid viscosity is assumed to vary as an inverse function of
temperature. A numerical shooting algorithm with
fourth-order Runge-Kutta integration scheme has been
used to solve the coupled nonlinear boundary value
problem.

Mukhopadhyay et al. [4] studied the MHD boundary
layer flow over a heated stretching sheet with variable
viscosity. The fluid viscosity is assumed to vary as a
linear function of temperature. The scaling group of
transformations is applied to the governing equations.
The resulting system of non-linear ordinary differential
equations is solved numerically.

Pantokratoras [10] critiqued the work of
Mukhopadhyay et al. [4]. He concluded that, in the work
of Mukhopadhyay et al. [4], the calculation domain was
small and the temperature profiles are truncated. The
results of his work are obtained with the direct numerical
solution of the boundary layer equations taking into
account both viscosity and Prandtl number variation
across the boundary layer. The temperature profiles of his
work are quite different from those of Mukhopadhyay et
al. [4].

This paper is concerned with the study of MHD
boundary layer flow over a heated stretching sheet with
variable fluid viscosity using Lie-group method.
Following Batchelor [11], the fluid viscosity is assumed
to vary as a linear function of temperature in the presence
of uniform transverse magnetic field. The fluid is assumed
to be electrically conducting. Lie-group theory is applied
to the equations of motion and energy for determining
symmetry reductions of partial differential
equations, [12–25]. The resulting system of non-linear
differential equations is then solved numerically using
shooting method coupled with Runge-Kutta scheme. The
obtained results are compared with those of
Mukhopadhyay et al. [4], Pantokratoras [10], Chiam [26],
Carragher and Crane [27], Grubka and Bobba [28].

2 Mathematical Formulation of the Problem

Consider a steady, two-dimensional flow of a viscous and
incompressible electrically conducting fluid over a heated
stretching sheet placed in the region ¯y > 0 of a Cartesian

Fig. 1: Physical model and coordinate system.

system of coordinatesOx̄ȳ. The stretching surface has a
uniform temperatureTw and the free stream temperature is
T∞ with Tw > T∞. The wall is stretched by applying two
equal and opposite forces along the ¯x− axis, to keep the
origin fixed. A uniform magnetic field of strengthB0 is
assumed to be imposed along the ¯y− axis. The viscosity
of the fluid is assumed to be temperature-dependent.

Under the above assumptions, the resulting boundary-
layer equations are given by:

Continuity Equation:

∂ ū
∂ x̄

+
∂ v̄
∂ ȳ

= 0, (2.1)

Momentum Equation:

ū
∂ ū
∂ x̄

+ v̄
∂ ū
∂ ȳ

=
1
ρ

∂ µ̄
∂ T̄

∂ T̄
∂ ȳ

∂ ū
∂ ȳ

+
µ̄
ρ

∂ 2 ū
∂ ȳ2 − σ B0

2

ρ
ū,

(2.2)
Energy Equation:

ū
∂ T̄
∂ x̄

+ v̄
∂ T̄
∂ ȳ

= α
∂ 2T̄
∂ ȳ2 , (2.3)

and with the following boundary conditions,

(i) ū=Cx̄, v̄= 0, T̄ = Tw at ȳ= 0, (2.4)

(ii) ū→ 0, T̄ → T∞ as ȳ→ ∞,

whereū andv̄, are the velocity components in the ¯x andȳ
directions, respectively,̄T is the temperature and̄µ is the
temperature dependent viscosity of the fluid. Moreover,ρ
is the fluid density,σ is the electrical conductivity of the
fluid, B0 is the strength of uniform magnetic field,α is
the coefficient of the thermal diffusivity,C is a constant,
is a constant,Tw is the wall temperature andT∞ is the free
stream temperature.

Follow Batchelor [11], the temperature dependent
viscosity is assume to be in the form

µ̄ = µ∗ (a+b (Tw− T̄)) , (2.5)
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whereµ∗ is the reference viscosity, and are constants.
The variables in equations (2.1) - (2.4) are

dimensionless according to

x=
Cx̄
U1

, y=

√

C
ν

ȳ, u=
ū

U1
, v=

v̄√
Cν

, T =
T̄ −T∞

Tw−T∞
,

(2.6)
whereU1 is the characteristic velocity andν = µ∗/ρ is the
kinematic viscosity.

Substitution from (2.5)-(2.6) into (2.1) - (2.3), gives

∂ u
∂ x

+
∂ v
∂ y

= 0, (2.7)

u
∂ u
∂ x

+ v
∂ u
∂ y

=−A
∂ T
∂ y

∂ u
∂ y

+(a+A(1−T))
∂ 2u
∂ y2 −M2u,

(2.8)

u
∂ T
∂ x

+ v
∂ T
∂ y

=
1
Pr

∂ 2T
∂ y2 , (2.9)

where,M2 =
σB2

0
ρ C , M is the Hartmann number (constant),

A = b(Tw−T∞) is the viscosity parameter (constant) and
Pr= ν

α is the Prandtl number.
The boundary conditions (2.4) will be considered as

follows,

(i) u= x, v= 0, T = 1 at y= 0,

(ii) u→ 0, T → 0 as y→ ∞. (2.10)

From the continuity equation (2.7), a stream function
Ψ (x,y) may exist as,

u(x,y) =
∂ Ψ
∂ y

, v(x,y) =−∂ Ψ
∂ x

, (2.11)

which satisfies equation (2.7) identically.
Substituting from (2.11) into (2.8)-(2.9) yields

ΨyΨxy−ΨxΨyy+A TyΨyy−(a+A(1−T))Ψyyy+M2Ψy= 0,
(2.12)

and

ΨyTx−ΨxTy−
1
Pr

Tyy = 0, (2.13)

where subscripts denote partial derivatives.
The boundary conditions (2.10) will be as follows,

(i) Ψy = x, Ψx = 0, T = 1 at y= 0,

(ii) Ψy → 0, T → 0 as y→ ∞. (2.14)

3 Solution of the Problem

Firstly, we derive the similarity solutions using Lie-group
method under which (2.12)-(2.13) and the boundary
conditions (2.14) are invariant, and then we use these
symmetries to determine the similarity variables.

3.1 Lie Point Symmetries

Consider the one-parameter(ε) Lie group of infinitesimal
transformations in(x,y;Ψ ,T) given by

x∗ = x+ ε ϕ (x,y;Ψ ,T)+O(ε2),
y∗ = y+ ε ζ (x,y;Ψ ,T)+O(ε2),
Ψ∗ =Ψ + ε η (x,y;Ψ ,T)+O(ε2),
T∗ = T + ε F (x,y;Ψ ,T)+O(ε2),

(3.1)

where “ε ” is a small parameter.
A system of partial differential equations (2.12)-(2.13)

is said to admit a symmetry generated by the vector field

X ≡ ϕ
∂

∂ x
+ ζ

∂
∂ y

+η
∂

∂ Ψ
+F

∂
∂ T

, (3.2)

if it is left invariant by the transformation
(x,y;Ψ ,T)→ (x∗,y∗;Ψ∗,T∗).

The solutionsΨ = Ψ (x,y) and T = T (x,y) , are
invariant under the symmetry (3.2) if

ΦΨ = X (Ψ −Ψ(x,y)) = 0 whenΨ =Ψ (x,y), (3.3)

and

ΦT = X (T −T (x,y)) = 0whenT = T (x,y). (3.4)

Assume,

∆1 =ΨyΨxy−ΨxΨyy+A TyΨyy− (a+A(1−T))Ψyyy+M2 Ψy,
(3.5)

∆2 =ΨyTx−ΨxTy−
1
Pr

Tyy. (3.6)

A vector X given by (3.2), is said to be a Lie point
symmetry vector field for (2.12)-(2.13) if

X[3] (∆ j)
∣

∣

∆ j=0 = 0, j = 1,2, (3.7)

where,

X[3] ≡ ϕ ∂
∂ x + ζ ∂

∂ y +η ∂
∂ Ψ +F ∂

∂ T +ηx ∂
∂ Ψx

+ηy ∂
∂ Ψy

+Fx ∂
∂ Tx

+Fy ∂
∂ Ty

+ηxy ∂
∂ Ψxy

+ηyy ∂
∂ Ψyy

+Fyy ∂
∂ Tyy

+ηyyy ∂
∂ Ψyyy

,

(3.8)
is the third prolongation ofX.

To calculate the prolongation of the given
transformation, we need to differentiate (3.1) with respect
to each of the variables, and . To do this, we introduce the
following total derivatives

Dx ≡ ∂x+Ψx∂Ψ +Tx∂T +Ψxx∂Ψx +Txx∂Tx +Ψxy∂Ψy + ........,
Dy ≡ ∂y+Ψy∂Ψ +Ty∂T +Ψyy∂Ψy +Tyy∂Ty +Ψxy∂Ψx + .........

(3.9)
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Table 1: Table of commutators of the basis operators.

Equation (3.7) gives the following system of linear
partial differential equations

A F Ψyyy −Ψyyηx+(Ψxy+M2)ηy+AΨyy Fy+Ψyηxy+
(A Ty−Ψx)ηyy− (a+A(1−T)) ηyyy= 0,

(3.10)
and

−Tyηx+Txηy+ΨyF
x−ΨxF y− 1

Pr
Fyy = 0. (3.11)

The componentsηx,ηy,Fx,Fy,ηxy,ηyy,Fyy,ηyyy can
be determined from the following expressions

ηS= DSη −ΨxDSϕ −ΨyDSζ ,FS= DSF −TxDSϕ −TyDSζ ,
ηJ S= DSηJ −ΨJxDSϕ −ΨJyDSζ , FJS= DSFJ−TJ xDSϕ −TJ yDSζ ,

(3.12)
whereSandJ are standing forx,y.

Substitution from (3.12) into (3.10)-(3.11) and
solving the resulting determining equations in view of the
invariance of the boundary conditions (2.14), yields

ϕ =C1 x, ζ =C2, η =C1Ψ +C3, F = 0. (3.13)

So, the nonlinear equations (2.12)-(2.13) have the
three-parameter Lie group of point symmetries generated
by

X1 ≡ x
∂

∂ x
+Ψ

∂
∂ Ψ

, X2 ≡
∂

∂ y
, and X3 ≡

∂
∂ Ψ

. (3.14)

The one-parameter group generated byX1 consists of
scaling, whereasX2 and X3 consists of translation. The
commutator table of the symmetries is given in Table1,
where the entry in theith row and jth column is defined
asXi ,Xj ] = XiXj −XjXi .

The finite transformations corresponding to the
symmetriesX1, X2 andX3 are respectively

X1 : x∗ = eε 1x, y∗ = y, Ψ∗ = eε 1Ψ , T∗ = T,
X2 : x∗ = x, y∗ = y+ ε2, Ψ ∗ =Ψ , T∗ = T,
X3 : x∗ = x, y∗ = y, Ψ∗ =Ψ + ε3, T∗ = T,

(3.15)
whereε1, ε2 andε3 are group parameters.

Table 2 shows the solution of the invariant surface
conditions (3.3)-(3.4).

ForX1 , the characteristic,

Φ = (ΦΨ ,ΦT) , (3.16)

Table 2: Solution of the invariant surface conditions.

has the component

ΦΨ =Ψ − xΨx, ΦT =−Tx. (3.17)

Therefore, the general solutions of the invariant surface
conditions (3.3)-(3.4) are

Ψ = xG(y) , T = T(y). (3.18)

Substitution from (3.18) into (2.12)-(2.13) yields

(

d G
d y

)2
−Gd2G

d y2 +A d T
d y

d2G
d y2 − (a+A(1−T)) d3G

d y3 +M2 d G
d y = 0,

(3.19)
and

d2T
d y2 +Pr G

d T
d y

= 0. (3.20)

The boundary conditions (2.14) will be

(i)
d G
d y

= 1, G = 0, T = 1 as y= 0,

(ii)
d G
d y

→ 0 T → 0 as y→ ∞. (3.21)

ForX2, the characteristic (3.16) has the component

ΦΨ = −Ψy, ΦT =−Ty. (3.22)

Therefore, the general solutions of the invariant surface
conditions (3.3)-(3.4) areΨ =Ψ(x) andT = T(x), which
contradict the boundary conditions.

ForX3, the characteristic (3.16) has the component

ΦΨ = 1, ΦT = 0. (3.23)

Therefore, no solution invariant underX3.
For X1 + βX2, the characteristic (3.16) has the

component

ΦΨ =Ψ − xΨx−β Ψy, ΦT =−xTx−β Ty. (3.24)

Therefore, the general solutions of the invariant surface
conditions (3.3)-(3.4) areΨ = x L1(ω) and T = T(ω),
where ω = y − lnxβ is the similarity variable. These
solutions contradict the boundary conditions.
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Table 3: Values of the wall heat transfer(−T ′(0)) for different values ofM and Pr atA= 0.0

For X1 + βX3, the characteristic (3.16) has the
component

ΦΨ =Ψ +β − xΨx, ΦT =−xTx. (3.25)

Therefore, the general solutions of the invariant surface
conditions (3.3)-(3.4) are

Ψ = xL2(y)−β , T = T(y). (3.26)

Substitution from (3.26) into (2.12)-(2.13) yields the
same ordinary differential equations (3.19)-(3.20) with
the same boundary conditions (3.21). So, the solutions
invariant under bothX1 andX1+βX3 are the same.

For X2 + βX3, , the characteristic (3.16) has the
component

ΦΨ = β − Ψy, ΦT =−Ty. (3.27)

Therefore, the general solutions of the invariant surface
conditions (3.3)-(3.4) areΨ = β y+ h(x) andT = T(x),
which contradicts the boundary conditions.

For X1+ λX2+ δX3, , the characteristic (3.16) has the
component

ΦΨ = Ψ + δ − xΨx−λ Ψy, ΦT =−xTx−λ Ty.
(3.28)

Therefore, the general solutions of the invariant surface
conditions (3.3)-(3.4) areΨ +δ = x L2(π) andT = T(π),
where π = y − lnxλ is the similarity variable. These
solutions contradict the boundary conditions.

3.2 Numerical Solution

The system of non-linear differential equations
(3.19)-(3.20) with the boundary conditions (3.21) is
solved numerically using the shooting method, coupled
with Runge-Kutta scheme. We takea = 1, in all
calculations.

From (2.11) and (3.18), we get

u
x
=

d G
d y

, v=− G(y), T = T(y). (3.29)

4 Results and Discussion

4.1 Horizontal Velocity

4.1.1 The Effect of the Hartmann NumberM

Figure 2 illustrates the behaviour of the horizontal
velocity u/x for Pr= 0.1 and Pr= 1.0 with A= 0, over a
range of the Hartmann numberM. As seen, the horizontal
velocity increases by decreasingM, i.e. the transport rate
increases, which indicate that the transverse magnetic
field is opposite to the transport phenomena. That is
because, variation of the Hartmann number leads to the
variation of the Lorentz force due to the transverse
magnetic field and accordingly, the Lorentz force
produces more resistance to transport phenomena, [4].
Our profiles are agreed very well with those of
Mukhopadhyay et al. [4] and Pantokratoras [10]. As seen
from Figure 2b, the calculation domain is higher than that
of Figure 2a, that is because the value of the Prandtl
number is increases.

4.1.2 The Effect of the Viscosity ParameterA

Figure 3 illustrates the behaviour of the horizontal
velocityu/x for Pr= 0.1 and Pr= 1.0 with M = 0, over a
range of the viscosity parameterA. As seen, the
horizontal velocity increases by increasingA. That is
because, with increasingA, the fluid viscosity decreases
resulting in increment of the velocity boundary layer
thickness. Unfortunately, in the work of Mukhopadhyay
et al. [4] and Pantokratoras [10], the profiles are reversed,
i.e. the horizontal velocity decreases asA increases,
which is wrong.

4.2 Vertical Velocity

4.2.1 The Effect of the Hartmann NumberM

Figure 4 illustrates the behaviour of the vertical velocityv
for Pr= 0.1 and Pr= 1.0 with A= 0 , over a range of the
Hartmann numberM. As seen, the absolute value of the
vertical velocity increases by decreasingM as mentioned
before. These profiles were not present in both works of
Mukhopadhyay et al. [4] and Pantokratoras [10].
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Fig. 2: Horizontal velocity profiles over a range ofM with A= 0 at: (a) Pr= 0.1 (b) Pr= 1.0.

Fig. 3: Horizontal velocity profiles over a range ofA with M = 0 at: (a) Pr= 0.1 (b) Pr= 1.0.

Fig. 4: Vertical velocity profiles over a range ofM with A= 0 at: (a) Pr= 0.1 (b) Pr= 1.0.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 3, 1327-1338 (2015) /www.naturalspublishing.com/Journals.asp 1333

Fig. 5: Vertical velocity profiles over a range ofA with M = 0 at: (a) Pr= 0.1 (b) Pr= 1.0.

4.2.2 The Effect of the Viscosity ParameterA

Figure 5 illustrates the behaviour of the vertical velocity
v for Pr= 0.1 and Pr= 1.0 with M = 0 , over a range of
the viscosity parameterA, As seen, the absolute value of
the vertical velocity increases by increasingA. Also, these
profiles were not present in both works of Mukhopadhyay
et al. [4] and Pantokratoras [10].

4.3 The Temperature Profiles

4.3.1 The Effect of the Hartmann NumberM

Figure 6 illustrates the variation of the temperature
profilesT for Pr= 0.1 with A = 0 , over a range of the
Hartmann numberM. We notice that, the temperature
increases asM increases and therefore the thinning of the
thermal boundary layer. Our results are in complete
agreement with that reported by Mukhopadhyay et al. [4],
but in their work, the calculation domain is small which
causes the temperature profiles appear truncated. This
disadvantage was critiqued by Pantokratoras [10].
Unfortunately, in the work of Pantokratoras [10], the
profiles are reversed, i.e. the temperature increases asM
decreases, which is wrong.

4.3.2 The Effect of the Viscosity ParameterA

Figure 7 illustrates the variation of the temperature
profilesT for Pr= 1.0 with M = 0, over a range of the
viscosity parameterA. As seen, the temperature decreases
as A increases. That is because, the increase of the
viscosity parameterA causes decrease of the thermal
boundary layer thickness which results in decrease of the
temperature. Our results are in complete agreement with

that reported by Mukhopadhyay et al. [4], but
unfortunately in their work, the profiles are reversed; see
Figure 2 in their work. The same mistake appeared in the
work of Pantokratoras [10]; see Figure 3 in his work.

4.3.3 The Effect of the Prandtl Number Pr

Figure 8 illustrates the variation of the temperature
profilesT for M = 0 andM = 1 with A= 0, over a range
of Prandtl number Pr. It is noticed that, as Pr decreases,
the thickness of the thermal boundary layer becomes
greater than the thickness of the velocity boundary layer
according to the well known relationδT

δ ≈ (Pr)−1/2,
whereδT is the thickness of the thermal boundary layer
andδ is the thickness of the velocity boundary layer. So,
the thickness of the thermal boundary layer increases as
Pr decreases and hence, the temperatureT increases with
the decrease of Pr

4.4 Wall Heat Transfer

When the Prandtl number increases, the thickness of
thermal boundary layer becomes thinner and this causes
an increase in the gradient of the temperature. Therefore,
the wall heat transfer(−T ′(0)) increases as Pr increases.
For different values of the Hartmann numberM and
Prandtl number Pr atA = 0.0 , values of the wall heat
transfer are computed, Table 3. Also, for fixed value of Pr
, the wall heat transfer(−T ′(0)) decreases as the
Hartmann numberM increases as mentioned before. The
value of(−T ′(0)) is positive which is consistent with the
fact that the heat flows from the surface to the fluid as
long asTw > T∞ in the absence of viscous dissipation.

The computed values of(−T ′(0)) are compared with
those obtained by Chiam [26], Carragher and Crane [27],
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Fig. 6: Temperature profiles over a range ofM with Pr= 1.0 andA= 0

Table 4: Comparison between the values of(−T ′(0)) at A= 0.0 andM = 0 for different values of Pr

Table 5: Values of the dimensionless wall shear stressG′′(0) for differentM andA at Pr= 1.0
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Fig. 7: Temperature profiles over a range ofA with Pr= 1.0 andM = 0

Fig. 8: Temperature profiles over a range of Pr withA= 0 at: (a) M = 0 (b) M = 1
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Table 6: Comparison between the values ofG′′(0) at A= 0.0 andM = 0 for different values of Pr.

Grubka and Bobba [28] and Pantokratoras [10]. The
results are in very good agreement, Table 4.

4.5 Wall Shear Stress

The dimensionless wall shear stressG′′(0) (skin friction)
is computed for different values of the Hartmann number
and the viscosity parameterA at Pr= 1.0. As seen from
Table 5, the absolute value of the dimensionless wall
shear stress|G′′(0) | increases asA increases which is
consistent with the fact that, there is progressive thinning
of the boundary layer with increasingA. . Also, the
absolute value of the dimensionless wall shear stress
|G′′(0) | increases asM increases for fixed value of
viscosity parameterA, Table 5.

The computed values ofG′′(0) are compared with
those obtained by Carragher and Crane [27], Grubka and
Bobba [28] and Pantokratoras [10] The results are in very
good agreement, Table 6.

5 Conclusion

The steady two-dimensional incompressible
Magnetohydrodynamic (MHD) boundary layer flow of
variable viscosity over a heated stretching sheet in the
presence of uniform transverse magnetic field has been
investigated. The system of non-linear partial differential
equations is solved using Lie-group method. The
resulting ordinary differential equations are solved
numerically using the shooting method coupled with
Runge-Kutta scheme. The influences of the Hartmann
numberM, the viscosity parameterA, and the Prandtl
number Pr on the horizontal velocityu/x, vertical
velocity v, temperature profilesT, wall heat transfer
−T ′(0) and the wall shear stressG′′(0) (skin friction)
were examined. Particular cases of our results are
compared with those of Pantokratoras [10], Chiam [26],
Carragher and Crane [27], Grubka and Bobba [28] and
were found a good agreement with their results.
Comments on the work of Mukhopadhyay et al. [4] and
Pantokratoras [10] were discussed and corrected.
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