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Abstract: In the present paper, the thermal relaxation time of a mexaurrounding a growing vapour bubbles between two-phase
temperatures under the effect of heating sink is investijathe mathematical model obtained by Mohammadgirs[extended and
solved analytically by using similarity parameters methatlich used by Mohammadeirb][between two finite boundaries. Under
the initial and final boundaries of growing vapour bubblégrinal relaxation time is derived in terms of void fractioaffected by
initial superheating and thermal diffusivity. Thermalahtion time under the effect of heating sink performs a fovedues than the
previous pressure and thermal relaxation times obtaineauliyors #,5]. Thermal relaxation time performs a good agreement with
Moby Dick experiment2].
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1 Introduction that vapour and liquid phases are moving with equal
velocities, and the structure of the flow is homogeneous
The heat transfer between superheated liquid and thénixture of the two phases. Temperature distribution and
growing vapour bubble has been widely discussed bythermal relaxation time between two-phase flow are
many authorsZ,4,5,7,8,9,10,12,13]. The initial growth ~ obtained by many author,4,5]. The heat equation of
of the bubble nucleus depends strongly on the interfaciaScriven P] under the effect of heating sink is extended to
mechanical interactions like acceleration, pressuresforc estimate temperature distribution surrounded a growing
and surface tension forces. During this stage thermabf vapour bubbles. The growth of bubble radius in terms
phenomena are negligible. Therefore, this stage is calle@#f some physical parameters is obtained by
isothermal. As the nucleus radius increases, the bubbl®lohammadein and Elgammad][has the form
growth becomes mostly dependent on supply of the heat

that is consumed to vaporize the liquid on the bubble R(t) = /Re+2C(t —to). (1)

surface. During this stage the rate of expansion of the

bubble is much lower than during the isothermal stage.On the basis of Appendix, the constant C can be written in
The bubble and the liquid surrounding it can be assumedhe form

to make up an isobaric system. This stage of the bubble

growth is called isobaric. It is worth noticing that duratio

of isothermal stage is very short, compared to the isobaric c— ay Ja )
stage. B bE i (CpL—Cpy )26,
Scriven P] determined the field of temperature (1+?) (1_¢()3) [1+7PL T }

around the growing vapour bubbles in an infinite

superheated liquid . One of the models including theWhereb = —1 for heating sink

phenomenon of non-equilibrium of two-phase flow under  In this paper, the thermal relaxation tirfie is derived
the effect of source and sink is the homogeneous thermah terms of void fractiog, for a mixture of superheated
relaxation model. Within this framework, it is assumed liquid and vapour under the effect of heating sink. The
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Mohammadein model5] is extended to describe the
current problem. Thermal relaxation tinfg is compared T [K]

with previous theoretical thermal and pressure relaxation 2 .- — . .
times and with that obtained from Moby Dick experiment 16

[2]. |
|
i

1.2

2 Relaxation time T 2 PO 5. e

Any thermodynamic system is described by means of 04 | I
certain thermodynamic parameters such as pressure
temperature, density and others characterizing the state ¢
the system. Among many states of the system, the state o
equilibrium is a distinguished one. In this state all

thermodynamic parameters have well-defined values,

being constant in space and time as long as the system ﬁg. 1: Determination of the relaxation time from time evolution

isolated from .its surroundings. Any .action' .of'external of the average liquid superheating in the surroundingsaéirg
thermodynamic forces on the system in equilibrium |ead5vapour bubbles.

to a non-equilibrium state. The system regaiits
thermodynamic equilibrium spontaneously. However, as a
result of interaction with the surroundings its physical

the thermodynamic system from non-equilibrium to the relation

equilibrium is calledrelaxation. The time during which R(tm) = Rm. The total drop of the average temperature of
the transition takes place is calledaxation time. It is the liquid is equal to its initial superheatingT,.
assumed that the relaxation time is equal to the time i”According to the definition %), the relaxation timedr
which a thermodynamic parameter changes from itSyg|ated to the temperature of the liquid is equal to the time

initial value to a value e times lower. This definition qyring which the average temperature decreases to the
comes from the dynamic analysis of phenomenasy|iowing value

described by a quantityY(t); which is decreasing
exponentially with time

5 10 i'a 2;:; 25 30
t[ms]

Y()=Y(0)e (¥, 3) T(6r)=Te+AT. e L~ T+ 0.368AT..  (5)

The relaxation time9 appears here as a time constant, Let the average superheating of the ligiidl = T, — Ts be
setting the rate of decay of the quantitft). The state of introduced. In Fig. 1, the evaluation of the relaxation time
the thermodynamic system is usually described by abased on time evolution of the average superheatifig
function of chosen thermodynamic parameters. Thes presented. It has been assumed that the initial value of
relaxation time corresponding to different parametersvoid fraction ¢.= 0.01, initial superheating of the liquid
may be different. The largest value is considered to be thel To = 2.0K and the initial bubble radiusg?= 0.1 mm.
relaxation time of the entire thermodynamic system. In ~ The relaxation time determined from growth of a
two-phase flow the highest value belongs to the relaxatiorsingle vapour bubble can describe the heat and mass
time related to evaporation or condensation. Theexchange in the entire bubble flow if the flow is
relaxation time due to the growth of the vapour bubble ofhomogeneous, that is when the distance between all
initial radius Ry has been determined from time variations neighboring bubbles in a control volume is the same and
of the average temperatufig of the superheated liquid all bubbles have the same radius.

surrounding the growing vapour bubbles. To representthe The derivation of pressure relaxation time between
bubble surroundings a sphere of outer radigsRRg has  two-phase bubbly flow in a pure mixture of vapour and
been chosen. The average temperature in this domain issuperheated liquid is obtained by Mohammadein and

function of time defined as follows Omran {] in the form
_ 1 Rm
TU) =g / 4mmr?) T (r,t) dr, 4 20%¢ pCie 20e | 022 pCie
(l) V R(ti)( ) ( |) () O — > 2+p0+ > 2+p0’ (6)
C{APS  8ARy  CoAPy || CEARF  8AR
where 4
Vi = én(%_ R(t)); where -
/ 1
is the instantaneous volume of the liquid. For a fixed value Co= 1—75\]a(a4)§ 1— ¢(I)3 , (7)

of Ry, the functionT(t) may be calculated between instants
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. Substituting from Eq. (16) into Eq.(13), then
. 3oRoR}
B=1+= . (8)
t
The above equatiors) represents the formula of pressure s+ (To—Ts) EXp(ﬁo - )
e . . NS 1
;ea:?;(r?]té?grgrne in terms of void fraction and some physical = R e ,
x [ReTo—RO(6r) T {R (6r), 61} S35, P2 52|

(18)

3 Analysis where

oT(r,6r CcM ,
The non-equilibrium of two-phase temperatures fns(mer)rg%dr:_?q“b)(tl)

introduces some relaxation phenomena to reach the X]ﬁi‘“ﬁ)ﬁexp{—%(z—,{%ﬁm)—(8+%))}dr’
== i

equilibrium state. Thermal relaxation time is obtained as ' (19)

constant time as in the following relaxation equation Substituting from integral19) into Eq.(.8), and by

_ _ using Eq.¢) then
dT(t) :_T(t)—Ts7 ) B

dt 6r -1 B
_ — 3 M O
with the initial and boundary conditions 2C (6r —to) +Rg = Roty {1+ 260 [l—exp(%’—l)] } :

20
Att =ty T (r,to) =T, (10) Forty << 6r (20)
T (R ) = To D GTZ% q%{“—d@o[l—'\gx =) }r_l>’
The temperature distributio (r,t) between two-phase P
mixture under the effect of heating sin§] s the basis for (21)
estimation of thermal relaxation tirfle, then by Where 2B (oL — Cov) A6
integrating equationd) w. r. to t, we have = J_O {1 PLf , (22)
a d
T(t)=Ts+ (To—Ts) exp <%> ’ (12) By substituting from Eq.22) in Eq.@21), then
=2
and at = 6r, then &:ﬁ 0 1+1+w T_l
) t 2C | [7°) 7 " Ja[l—exp(—1)]
T(6r)=Ts+(To—Ty) exp(%—l). (13) (23)
The above equation2B) represents thermal relaxation
On the basis of physical rule time 6r in terms of void fractiongpand other physical

parameters. The thermal relaxation time obtained by
N 3 2 _ Mohammadein [5] is considered as a special case of the
T = R —R3(t) /R(mr T(rt)dr (14) present relaxation time when b=0.

Equation (4) can be rewritten in the form
4 Discussion of results

T(t)= m The system (9-11) is solved analytically in terms of
% [R§1T0—R3(ti)T{R(ti),ti}me p3dT(t) 4 | average temperature. The temperature distribution
R(t) dr 15 surrounded a growing vapour bubbles is obtained (see ref.
(15) [6]). Thermal relaxation timérin terms of void fraction
and Jacob number is obtained by relatiaB)( The values
of physical parameters considered in this study is taken
- 1 from the ref. [L(] for a superheated steam water as in the
T(6r) = & —reer) following Table :
% {R?nTo— R3(6r)T{R(6r), eT}fIE(meT) ﬁ%dr ’ The thermal relaxation time in terms of void fraction
(16 for two different values of thermal diffusivity under eftec
of heating sink is shown in Fig.2. It is observed that,
dT (r,6r) dT (r,6r) thermal relaxation time8r is decreasing with the
dr = ar 17) increasing of thermal diffusivity values. The thermal

Att=6r

where
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Table 1 title v LY ' ' ' ' ]
Value Value ) ';'
a | 169x108m2s 1| L | 41910QW/m?)/(K%/m) =z i Mohammadein model
o 9583Kgm*3 A 0.679\N/(mKO) E B l,_ Present model (Sink) - - - - - - - ]
pv | 0.597Kgm3 Ro | 0.0001m = :
Cp | 42200/(kgKO) Rm | 0.001m g il € 1
Cpv | 20303/ (kgK?) £ %
E ¥ \\
[T LS 6 T - “‘\‘_\“_-
T ‘ T T T e T e e - = -
i : Ileauwl diffwia = # ] 000 b 4 L ) £ =
' i 000 oo 00+ oo nnz
1 Iemmal Affedaty = 2 8 == —= £

4
wdl fracton , 10)

Fig. 2. Thermal relaxation time in terms of void fraction for two
different values of thermal diffusivity under the effecttafating
sink.
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Fig. 3: Thermal relaxation time in terms of void fraction for two
different values of initial superheating under the effddtieating
sink.

relaxation time in terms of void fraction for two different
values of superheating is shown in Fig.3. It is observed
that, thermal relaxation timé is decreasing with the
increasing of superheating values.

The comparison of thermal relaxation tinfgin terms of

Fig. 4. The comparison of thermal relaxation time in terms of
void fraction under effect of heating sink with Mohammadein
model[5].

Moby Dic kExperiment
Present model (Sink)

Thermalrelaxatontime, &7[t]

010
Yoid fraction | g

n.oo 0.04

Fig. 5: The comparison of thermal relaxation time in terms of
void fraction under the effect of heating sink with Moby Dick
experiment al\ 6y = 2K.
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Fig. 6: The comparison of thermal relaxation time in terms of

void fraction under effect of heating sink with Pressuraxation

void fraction under the effect of heating sink with time (Mohammadein and Omran model [4]\# = 2K.

Mohammadein §] is shown in Fig.4. It observed that,
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thermal relation time6r performs lower values than or

Mohammadeinj]. oM

The thermal relaxation time in terms of void fracton T (R(ti),ti) —To = —Tl

under effect of heating sink is compared with Moby Dick 1- R (iii)

experiment as shown in Fig.5. It is observed that, thermal
relaxation time6&; coincide with experiment for some

values of physical parameters. The thermal relaxationVhere
time is compared with pressure relaxation time
Bp(Mohammadein and Omran model]] as shown in

Fig. 6. It observed that, thermal relaxation tinein

terms of void fraction performs lower values than
pressure relaxation tingg.

My =M exp{ C': } . (iv)

/3C F
Leth= %a (Z+ 5) ) V)
bF /2 a .
) 1+?—b 3C (Vl)

vapour bubbles is obtained by Mohammadein eatg ~ then

calculate average temperatul®); The system (9-11 and

12) is solved analytically to find thermal relaxation time

6r (23). The thermal relaxation time under the effect of

heating sink is obtained in terms of initial void fracti¢p

thermal diffusivity, and superheating. The discussion of

results and figures concluded the following remarks:

1. Thermal relaxation time in terms of void fractigis

proportional inversely with void fraction, superheatimgla fhh2 el—
“H1

5 Conclusion then (1

T(R(ti)vti)_Toz—Cf'\a/ll §_g "
. Vil
HAPIY I

The following mathematical rules are satisfied

P)dh= ffeel-")dh— M e(-")dn

thermal diffusivity values. \/— , (viii)

2. Thermal relaxation time performs lower values than =5 [erf (hy) —erf (hy)]

thermal relaxation time obtained by Mohammadein

model ] and pressure relaxation tin and hy 1

3. The relaxation timé under the effect of heating sink / he(-"*) dh = 5 (e*hf _ e*hﬁ) . (ix)
hy

coincides with thermal relaxation time obtained by Moby

Dick experiment 2] for some values of physical On the basis of mathematical rulesii) and x), the

parameters. integral is evaluated and Egii) becomes
4. In the current study, thermal and pressure relaxation

times and experiment have the same order of magnltudes.l. (R(t) 1) —
5. Thermal relaxation time is very sensitive to the effect of 1A
heating sink for different values of physical parameters.
6. Thermal relaxation time obtained by Mohammad&jn [
is considered as a special case of the thermal relaxation
time in this study when b equal to zero.

— _CM; /2a
To= a 3C

e Q/%(l—%i))# %)

(1+%)

A Calculation of constant C in Eq.(2)

)

The solution of heat diffusion as given by auth6fiinder  whent; =t,,R(t,) = R, therl (R,,t,) = Ts, then Eq. X)

the effect of heating sink has the following form becomes
T(rt)—To= CMRHb) (t) oMy /2
AGy ==/ 52
X JF e exp{ g(erZZ( (£+%))}dr7 o="a \/x _ .
0 . <~/2a (1—R—m)+|:\/7>
where at = Ry, thenT (Rp,ti) = To, x{ (14+5E) 4T

and atr = R(t), letz=1—

T(R(),t) -

Xth.

R(t;
(T)' Eq. () becomes

T = — SMRAHD) (¢;)

(2Rr22(t|) + ER (8"'%))}0"’

_erf( Je
(V8 o

N—

e}

(1) r)

(xi)

bCM
+55, /2
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The following mathematical rule is satisfied

0 _1n22n+1
erf(Z)Z%Tanl(ng()le) ,
2 () RS AP ;o (i)
where
erf(w/g 1-R)4F 9>—erf<F,/9>
3 R’“) o %) (xiii)

WhenF <1, F2— 0, and g < 1, Eq.ki) becomes

Ja _C/,  bF Ro
[1+7(CPL*CLF’V>A9°} ~a (H?) (1_R_m> '

or

ada
1
(1+5) (1_¢3) [1+ w}

C= . (xiv)

B List of Symbols:

Nomenclature:

Thermal diffusivity of the liquid(m?.s?)

Constant defined by equatiob6)

=%A 6o, dimensionless Jakob number for pure liquids

Thermal conductivity of the quuimﬁJ. (sm‘K)’l>

Latent heat of vapourizatiofd.kg )

constant defined by equatiob)

The distance from the origin of the bubljia)

Initial bubble wall radiugm)

Instantaneous bubble wall radi(s)

Time elapseds)

Absolute temperature of liquid [K]

Initial absolute temperature of liquid [K]

=1-— % , constant ,taking effect of radial convection on
bubble growth

Initial uniform liquid superheating above saturation
temperature or liquid superheating at great distance from
bubble or superheating of bulk liquid [deg C]

Thermal relaxation time [s]

Pressure relaxation time [s]

Liquid density [kg/n7]

Saturated vapour density [kg#n

mo—|—|"';UéU“§|— =~ gt,—-OQJ

Abo

6r
6p
P

Pv
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