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Abstract: In the present paper, the thermal relaxation time of a mixture surrounding a growing vapour bubbles between two-phase
temperatures under the effect of heating sink is investigated. The mathematical model obtained by Mohammadein [6] is extended and
solved analytically by using similarity parameters method; which used by Mohammadein [5] between two finite boundaries. Under
the initial and final boundaries of growing vapour bubbles, thermal relaxation time is derived in terms of void fraction and affected by
initial superheating and thermal diffusivity. Thermal relaxation time under the effect of heating sink performs a lower values than the
previous pressure and thermal relaxation times obtained byauthors [4,5]. Thermal relaxation time performs a good agreement with
Moby Dick experiment [2].
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1 Introduction

The heat transfer between superheated liquid and the
growing vapour bubble has been widely discussed by
many authors [2,4,5,7,8,9,10,12,13]. The initial growth
of the bubble nucleus depends strongly on the interfacial
mechanical interactions like acceleration, pressure forces
and surface tension forces. During this stage thermal
phenomena are negligible. Therefore, this stage is called
isothermal. As the nucleus radius increases, the bubble
growth becomes mostly dependent on supply of the heat
that is consumed to vaporize the liquid on the bubble
surface. During this stage the rate of expansion of the
bubble is much lower than during the isothermal stage.
The bubble and the liquid surrounding it can be assumed
to make up an isobaric system. This stage of the bubble
growth is called isobaric. It is worth noticing that duration
of isothermal stage is very short, compared to the isobaric
stage.

Scriven [9] determined the field of temperature
around the growing vapour bubbles in an infinite
superheated liquid . One of the models including the
phenomenon of non-equilibrium of two-phase flow under
the effect of source and sink is the homogeneous thermal
relaxation model. Within this framework, it is assumed

that vapour and liquid phases are moving with equal
velocities, and the structure of the flow is homogeneous
mixture of the two phases. Temperature distribution and
thermal relaxation time between two-phase flow are
obtained by many authors [2,4,5]. The heat equation of
Scriven [9] under the effect of heating sink is extended to
estimate temperature distribution surrounded a growing
of vapour bubbles. The growth of bubble radius in terms
of some physical parameters is obtained by
Mohammadein and Elgammal [6] has the form

R(t) =
√

R2
0+2C(t − t0). (1)

On the basis of Appendix, the constant C can be written in
the form

C =









al Ja

(

1+ bF
3

)

(

1−ϕ
1
3
0

)

[

1+ (CPL−CPV )∆θ◦
L

]









(2)

Whereb =−1 for heating sink
In this paper, the thermal relaxation timeθT is derived

in terms of void fractionϕ◦ for a mixture of superheated
liquid and vapour under the effect of heating sink. The
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Mohammadein model [5] is extended to describe the
current problem. Thermal relaxation timeθT is compared
with previous theoretical thermal and pressure relaxation
times and with that obtained from Moby Dick experiment
[2].

2 Relaxation time

Any thermodynamic system is described by means of
certain thermodynamic parameters such as pressure,
temperature, density and others characterizing the state of
the system. Among many states of the system, the state of
equilibrium is a distinguished one. In this state all
thermodynamic parameters have well-defined values,
being constant in space and time as long as the system is
isolated from its surroundings. Any action of external
thermodynamic forces on the system in equilibrium leads
to a non-equilibrium state. The system regainsits
thermodynamic equilibrium spontaneously. However, as a
result of interaction with the surroundings its physical
parameters may obtain different values. The transition of
the thermodynamic system from non-equilibrium to
equilibrium is calledrelaxation. The time during which
the transition takes place is calledrelaxation time. It is
assumed that the relaxation time is equal to the time in
which a thermodynamic parameter changes from its
initial value to a value e times lower. This definition
comes from the dynamic analysis of phenomena
described by a quantityY(t); which is decreasing
exponentially with time

Y (t) = Y (0) e−( t
θ ). (3)

The relaxation timeθ appears here as a time constant,
setting the rate of decay of the quantityY(t). The state of
the thermodynamic system is usually described by a
function of chosen thermodynamic parameters. The
relaxation time corresponding to different parameters
may be different. The largest value is considered to be the
relaxation time of the entire thermodynamic system. In
two-phase flow the highest value belongs to the relaxation
time related to evaporation or condensation. The
relaxation time due to the growth of the vapour bubble of
initial radius R0 has been determined from time variations
of the average temperatureTl of the superheated liquid
surrounding the growing vapour bubbles. To represent the
bubble surroundings a sphere of outer radius Rm > R0 has
been chosen. The average temperature in this domain is a
function of time defined as follows

−
T (ti) =

1
Vl

∫ Rm

R(ti)

(

4πr2) T (r, ti)dr, (4)

where

Vl =
4
3

π
(

R3
m −R3(ti)

)

;

is the instantaneous volume of the liquid. For a fixed value
of Rm, the functionT(t) may be calculated between instants

Fig. 1: Determination of the relaxation time from time evolution
of the average liquid superheating in the surroundings of growing
vapour bubbles.

to = 0 and tm, the final instant time of ti determined from
the relation
R(tm) = Rm. The total drop of the average temperature of
the liquid is equal to its initial superheating∆T◦.
According to the definition (1), the relaxation timeθT
related to the temperature of the liquid is equal to the time
during which the average temperature decreases to the
following value

−
T (θT ) = Ts +∆T◦ e−1 ≈ Ts +0.368∆T◦. (5)

Let the average superheating of the liquid∆T = Tl −Ts be
introduced. In Fig. 1, the evaluation of the relaxation time
based on time evolution of the average superheating∆T
is presented. It has been assumed that the initial value of
void fractionϕ◦= 0.01, initial superheating of the liquid
∆T◦ = 2.0K and the initial bubble radius R0 = 0.1 mm.

The relaxation time determined from growth of a
single vapour bubble can describe the heat and mass
exchange in the entire bubble flow if the flow is
homogeneous, that is when the distance between all
neighboring bubbles in a control volume is the same and
all bubbles have the same radius.

The derivation of pressure relaxation time between
two-phase bubbly flow in a pure mixture of vapour and
superheated liquid is obtained by Mohammadein and
Omran [4] in the form

θP =
2σ2e2

C2
0∆P2

0

+
ρC2

0e
8∆P0

+
2σe

C0∆P0

√

σ2e2

C2
0∆P2

0

+
ρC2

0e

8∆P0
, (6)

where

C0 =

√

12
π

Ja (al)
1
2



1− ϕ
1−n

3
0

B



 , (7)
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B = 1+
3ρlR0Ṙ2

0

4σ
. (8)

The above equation (6) represents the formula of pressure
relaxation time in terms of void fraction and some physical
parameters.

3 Analysis

The non-equilibrium of two-phase temperatures
introduces some relaxation phenomena to reach the
equilibrium state. Thermal relaxation time is obtained as
constant time as in the following relaxation equation

d
−
T (t)
dt

=−
−
T (t)−Ts

θT
, (9)

with the initial and boundary conditions

At t = t0,T (r, t0) = T0, (10)

T (Rm, ti) = T0. (11)

The temperature distributionT (r, t) between two-phase
mixture under the effect of heating sink [6] is the basis for
estimation of thermal relaxation timeθT , then by
integrating equation (9) w. r. to t, we have

−
T (t) = Ts +(T0−Ts) exp

(

t0− t
θT

)

, (12)

and att = θT , then

−
T (θT ) = Ts +(T0−Ts) exp

(

t0
θT

−1

)

. (13)

On the basis of physical rule

−
T (ti) =

3
R3

m −R3(ti)

∫ Rm

R(ti)
r2T (r, ti)dr. (14)

Equation (14) can be rewritten in the form

−
T (ti) = 3

R3
m−R3(ti)

×
[

R3
mT0−R3(ti)T {R(ti) , ti}

∫ Rm
R(ti)

r3 dT(r,ti)
dr dr

] .

(15)
At t = θT

−
T (θT ) =

1
R3

m−R3(θT )

×
[

R3
mT0−R3(θT )T {R(θT ) ,θT }

∫ Rm
R(θT )

r3 ∂T(r,θT )
∂ r dr

] ,

(16)
where

dT (r,θT )

dr
=

∂T (r,θT )

∂ r
. (17)

Substituting from Eq. (16) into Eq.(13), then

Ts +(T0−Ts)exp
(

t0
θT

−1
)

= 1
R3

m−R3(θT )

×
[

R3
mT0−R3(θT ) T {R (θT ) ,θT }

∫ Rm
R(θT )

r3 ∂T(r,θT )
∂ r dr

]

,

(18)
where
∫ Rm

R(θT )
r3 ∂T (r,θT )

∂ r dr =−C M
al

R(1+b) (ti)

×∫ Rm
R(θT )

1
r(b−1) exp

{

− C
al

(

r2

2R2(ti)
+ ε R(ti)

r −
(

ε + 1
2

)

)}

dr
,

(19)
Substituting from integral (19) into Eq.(18), and by

using Eq.(1) then

√

2C (θT − t0)+R2
0 = R0φ

−1
3

0

{

1+ M

∆θ0

[

1−exp
(

t0
θT

−1
)]

}−1
3

.

(20)
For t0 << θT

θT =
R2

0

2C

(

[

φ0

{

1+
M

∆θ0 [1−exp(−1)]

}]−2
3

−1

)

,

(21)
where

M =
∆θ0

Ja

[

1+
(CPL −CPV )∆θ0

L

]

, (22)

By substituting from Eq. (22) in Eq.(21), then

θT =
R2

0

2C





[

ϕ0

{

1+
1+ (CPL−CPV )∆θ0

L

Ja [1−exp(−1)]

}]
−2
3

−1



 .

(23)
The above equation (23) represents thermal relaxation
time θT in terms of void fractionϕ0and other physical
parameters. The thermal relaxation time obtained by
Mohammadein [5] is considered as a special case of the
present relaxation time when b=0.

4 Discussion of results

The system (9-11) is solved analytically in terms of
average temperature. The temperature distribution
surrounded a growing vapour bubbles is obtained (see ref.
[6]). Thermal relaxation timeθT in terms of void fraction
and Jacob number is obtained by relation (23). The values
of physical parameters considered in this study is taken
from the ref. [10] for a superheated steam water as in the
following Table :

The thermal relaxation time in terms of void fraction
for two different values of thermal diffusivity under effect
of heating sink is shown in Fig.2. It is observed that,
thermal relaxation timeθT is decreasing with the
increasing of thermal diffusivity values. The thermal
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Table 1: title
Value Value

al 16.9x10−8 m2.s−1 L 419100(W /m2)/(K0/m)
ρl 958.3Kgm−3 λ 0.679W/(mK0)
ρv 0.597Kgm−3 R0 0.0001m
Cpl 4220J/(kgK0) Rm 0.001m
Cpv 2030J/(kgK0)

Fig. 2: Thermal relaxation time in terms of void fraction for two
different values of thermal diffusivity under the effect ofheating
sink.

Fig. 3: Thermal relaxation time in terms of void fraction for two
different values of initial superheating under the effect of heating
sink.

relaxation time in terms of void fraction for two different
values of superheating is shown in Fig.3. It is observed
that, thermal relaxation timeθT is decreasing with the
increasing of superheating values.
The comparison of thermal relaxation timeθT in terms of
void fraction under the effect of heating sink with
Mohammadein [5] is shown in Fig.4. It observed that,

Fig. 4: The comparison of thermal relaxation time in terms of
void fraction under effect of heating sink with Mohammadein
model[5].

Fig. 5: The comparison of thermal relaxation time in terms of
void fraction under the effect of heating sink with Moby Dick
experiment at∆θ0 = 2K.

Fig. 6: The comparison of thermal relaxation time in terms of
void fraction under effect of heating sink with Pressure relaxation
time (Mohammadein and Omran model [4]) at∆θ0 = 2K.
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thermal relation timeθT performs lower values than
Mohammadein [5].
The thermal relaxation time in terms of void fraction
under effect of heating sink is compared with Moby Dick
experiment as shown in Fig.5. It is observed that, thermal
relaxation timeθT coincide with experiment for some
values of physical parameters. The thermal relaxation
time is compared with pressure relaxation time
θp(Mohammadein and Omran model [4]) as shown in
Fig. 6. It observed that, thermal relaxation timeθT in
terms of void fraction performs lower values than
pressure relaxation timeθp.

5 Conclusion

The temperature distribution surrounded a growing
vapour bubbles is obtained by Mohammadein et al [6] to
calculate average temperature (16). The system (9-11 and
12) is solved analytically to find thermal relaxation time
θT (23). The thermal relaxation time under the effect of
heating sink is obtained in terms of initial void fractionϕ0
thermal diffusivity, and superheating. The discussion of
results and figures concluded the following remarks:
1. Thermal relaxation time in terms of void fractionϕ0 is
proportional inversely with void fraction, superheating and
thermal diffusivity values.
2. Thermal relaxation time performs lower values than
thermal relaxation time obtained by Mohammadein
model [5] and pressure relaxation timeθp
3. The relaxation timeθT under the effect of heating sink
coincides with thermal relaxation time obtained by Moby
Dick experiment [2] for some values of physical
parameters.
4. In the current study, thermal and pressure relaxation
times and experiment have the same order of magnitudes.
5. Thermal relaxation time is very sensitive to the effect of
heating sink for different values of physical parameters.
6. Thermal relaxation time obtained by Mohammadein [5]
is considered as a special case of the thermal relaxation
time in this study when b equal to zero.

A Calculation of constant C in Eq.(2)

The solution of heat diffusion as given by author [6] under
the effect of heating sink has the following form

T (r, ti)−T◦ =−CM
a R(1+b) (ti)

×∫ Rm
r

1
r(2+b) exp

{

−C
a

(

r2

2R2(ti)
+ ε R(ti)

r −
(

ε + 1
2

)

)}

dr
,

(i)
where atr = Rm, thenT (Rm, ti) = T◦,

and atr = R(ti), let z = 1− R(ti)
r , Eq. (i) becomes

T (R(ti) , ti)−T◦ =−CM
a R(1+b) (ti)

×∫ Rm
R(ti)

1
r(2+b) exp

{

−C
a

(

r2

2R2(ti)
+ εR(ti)

r −
(

ε + 1
2

)

)}

dr
,

(ii)

or

T (R(ti) , ti)−T◦ =−CM1
a

×
∫ 1− R(ti)

Rm
0 (1− z)b exp

{

− 3C
2a

(

z+ F
3

)2
}

dz
, (iii)

Where

M1 = M exp

{

CF2

6a

}

. (iv)

Let h =

√

3C
2a

(

z+
F
3

)

, (v)

then (1− z)b = 1+
bF
3

− b

√

2a
3C

h. (vi)

Substituting from relations (v) and (vi) into equation (iii )
then

T (R(ti) , ti)−T◦ =−CM1
a

√

2a
3C

×
∫ h2

h1

(

1+ bF
3 − b

√

3C
2a h

)

e(−h2)dh
. (vii)

The following mathematical rules are satisfied

∫ h2
h1

e(−h2)dh =
∫ h2

0 e(−h2)dh−
∫ h1
0 e(−h2)dh

=
√

π
2 [er f (h2)− er f (h1)]

, (viii)

and
∫ h2

h1

he(−h2)dh =
1
2

(

e−h2
1 − e−h2

2

)

. (ix)

On the basis of mathematical rules (viii ) and (ix), the
integral is evaluated and Eq.(vii ) becomes

T (R(ti) , ti)−T◦ =−CM1
a

√

2a
3C

×















(

1+ bF
3

)

√
π

2









er f

(

√

3C
2a

(

1− R(ti)
Rm

)

+F
√

C
6a

)

−er f

(

F
√

C
6a

)























+ bCM1
2a

√

2a
3C



e
−
(

F
√

C
6a

)2

− e
−
(

√

3C
2a

(

1− R(ti)
Rm

)

+F
√

C
6a

)2




.

(x)
Whenti = t◦,R(t◦) = R◦ thenT (R◦, t◦) = Ts, then Eq. (x)
becomes

∆θo =
CM1

a

√

2a
3C

×















(

1+ bF
3

)

√
π

2









er f

(

√

3C
2a

(

1− R0
Rm

)

+F
√

C
6a

)

−er f

(

F
√

C
6a

)























+ bCM1
2a

√

2a
3C



e
−
(

F
√

C
6a

)2

− e
−
(

√

3C
2a

(

1− R0
Rm

)

+F
√

C
6a

)2




.

(xi)
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The following mathematical rule is satisfied

er f (z) = 2√
π ∑∞

n=1
(−1)nz2n+1

n!(2n+1)

= 2√
π

(

z− z3

3 + z5

10− z7

42+
z9

216− ...
) , (xii)

where

er f

(

√

3C
2a

(

1− R0
Rm

)

+F
√

C
6a

)

− er f

(

F
√

C
6a

)

= 2√
π

√

3C
2a

(

1− R0
Rm

)

. (xiii)

WhenF ≺ 1, F2 → 0, and al ≪ 1 , Eq.(xi) becomes

Ja
[

1+ (CPL−CPV )∆θ◦
L

] =
C
a

(

1+
bF
3

)(

1− R0

Rm

)

.

or

C =









al Ja

(

1+ bF
3

)

(

1−ϕ
1
3
0

)

[

1+ (CPL−CPV )∆θ◦
L

]









. (xiv)

B List of Symbols:

Nomenclature:
a Thermal diffusivity of the liquid

(

m2.s−1
)

C Constant defined by equation (16)
Ja = ρ1c

ρ2L ∆θ0, dimensionless Jakob number for pure liquids

k Thermal conductivity of the liquid
(

J.(s.m.K)−1
)

L Latent heat of vapourization
(

J.kg−1
)

M constant defined by equation (15)
r The distance from the origin of the bubble(m)
R0 Initial bubble wall radius(m)
R Instantaneous bubble wall radius(m)
t Time elapsed(s)
T Absolute temperature of liquid [K]
T0 Initial absolute temperature of liquid [K]
ε =1− ρv

ρl
, constant ,taking effect of radial convection on

bubble growth
∆θ0 Initial uniform liquid superheating above saturation

temperature or liquid superheating at great distance from
bubble or superheating of bulk liquid [deg C]

θT Thermal relaxation time [s]
θP Pressure relaxation time [s]
ρl Liquid density [kg/m3]
ρv Saturated vapour density [kg/m3]
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