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Abstract: Based on operator algebras commonly used in quantum meshsoine properties of special functions such as Hermite
and Laguerre polynomials and Bessel functions are derived.
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1 Introduction that, if we define the functions

. /4
Based on some _technlques that are common to quantum Wn(X) = e*XZ/ZHn(x), n=012.. (5
mechanics, we give some examples on how some series of /2t

special functions may be added.
For this, we use some theorems and lemmas that are ndfen
usually known when one studies special functions, such as

the Baker-Hausdorff formula and the Hadamard lemma. Afyy,(x) = 1 ( — i) Un(X) = vVNn+1Pn 1(X) (6)
We developed further preliminary results presentedjn [ V2 dx
and
i i ~ 1 d
2 Hermite polynomials An(x) = v <x+&> Un(X) = Vg 10, ()
The generating function for the Hermite polynomia®} [
is [3,4,5] The functions §) constitute a complete orthonormal set
_a2ioax | a” for the space of square integrable functions, then we can
€ = n;H”(X)W' (1) expand any function in that space as
The Hermite polynomials may be obtained from e
Rodrigues’ formula3,4,6,7] as f(x) = nZOC”q"”(X)’ ®)
n
Ho(x) = (-1 e ()  where -
Cn :/ dx f(X) Yn(X). 9)
From the recurrence relation3][ ) ] - ]
Hermite polynomials are also solutions of the second order
Hn1(X) = 2xHn(X) — 2nHy_1(X), (3) ordinary differential equatiorg{4, 5]
and from y' —2xy +2ny=0. (10)
dHn(x)
dx 2nHh-1(x), (4) Let us define the differential operatpras
we can generate all the Hermite polynomials. A d
From the above recurrence relations, we can also prove p= _I&’ (11)
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then we have that

a7 p\"
= (-7) 12
and we can rewrite?) in the form
Ho(X) = (i) pe = (~i)" (& ﬁe*"z)n. (13)

The operator inside the parenthesis above has the form

fABe A (14)

for which we will use the following lemmag[9, 1]
Hadamard lemma. Given two linear operatord and B
then

e"Be A —B+ ¢ [AB] + i—[ A[AB]]  (15)

B]] +

= AB— BA is the commutator of operatofs

)>)

3

+S AR
where(A, B]
andB.
This allows us to obtain an expression for the formafg) (
developed above. We identify= 1, A= x2 andB = pin
equation 15), so that

& pe = p+1p2 0] + o [ [, ]
+% (X2, X2, [x%,p]]] +

To calculate the first commutatdix?, p|, we use the
general property [AB,C] = AB,C] + [ACB of

=p+ (16)

commutators, and thdx, f] = i, to get the commutation

relation [x%, p] = 2ix. It is obvious that all the other

commutators in16) are zero, and we finally get

Hn(X) = (=)™ (p+ 2ix)" 1. (17)

This last expression can be used to obtain the generating

function. We have,

a’ e an

> HlX = 3 (1) (62" 1=

e—ia(ﬁ+2ix) 1.

(18)

We obtained the exponential of the sum of two quantities

then o Lias s

A8 oz [ABAB (20)
We apply this formula to expressiothg) |dent|fy|ngA =
2ax, B = —iap, and we ge{A B] = —2ia?[x, p] = 2a?,

such that
hd o
Hn(x)—
PR

Using now the obvious fact tha'9P1 = 1, we finally
obtain
" —a?+2ax
nZOHn(X)W =e 5

that is the generating function for Hermite polynomials

[12.

— g a’gPuxgiapy (21)

(22)

2.2 Series of even Hermite polynomials

In order to show the power of the operator methods, we
calculate now the value of the following even Hermite
polynomials series,

R =5 (0 (29
From (17), we get
Han (X) = (—1)" (p+ 2ix)*" 1. (24)
Therefore,
F(t) = zot oo = 3 15 (1) (b2 (25)

_Zjn' {p+2|x)} 1

= exp[—t(m— 2ix) } 1.

Developing the power in the exponential above we get

F)= 3 Ha 0
=exp{—t[p*—E+2i(xp+px)]|} 1. (26)

that do not commute. The above exponential can be
factorized in the product of exponentials via the The operators in the exponential in this last expression do

Baker-Hausdorff formula:

2.1 Baker-Hausdorff formula

Baker-Hausdorff formula [8,10,11]. Given two
operatorsA andB that obey
[[AB],A] = [[AB].B] =0, (19)

not satisfy the conditions of the Baker-Hausdorff formula,
so we need another method to understand the action of the
full operator that appears in the right side of expression
(26). What we do is to propose the ansatz,

F(t) = exp[ f (t)x*] explg (t) (xp+ px)] exp[h(t) ﬁz}(zl,?)
where f(t),g(t) andh(t) are functions to be determined.
The exponential that contains the tergit) is the
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so-called squeeze operatdd]. Deriving this expression it is clear that
with respect td, and dropping the explicit dependence of

F(t), f(t), g(t) andh(t) ont, exp[g (xp+ PX)] p* exp[—g (xp+ pX)] =
© gl
dF  df — 25 (4) L — Rexpldig). (36)
Fir ,Zo j!

d R R R R .
+ ol exp( fxz) (XP+ PX) explg (xp+ PX)] exp(h p2) 1 We proceed now to complete the study of the third operator

dt in expressionZ9). Until now we have

dh 2 A~ ~ ~D
+ g7 &XP(x7) explg (xp-+ px)] p7exp(h )L (28) & explg (xp-+ pX)] B2 expl—g(xp+ px)]e ™ =

2\ A2 - 2
Introducing an "smart” 1 in the second and third term, we = exp(— fx7) p* exp(4ig) exp(— fx°).
get We use once more formula¥), to write

dF _ df er 4 99602 54 pxePPE exp(fx?) p?exp(—1x*) = p*+ f [x*, p]

dt ~dt’ o dt 2 e

2 2 a2 2 2 2 a2
+ S0P explg (xp-+ ) 7 expl g (xp + e " 7 D DB+ 57 D D DS BT+
(29) (37)

We work then with the operator in the second term; we useThe first commutator g|ves[x P ] = —2+4ipx, the

the Hadamard lemma.§) to obtain second one givebZ, [x%, p?]] = —8x?, and the third one
%%, [x%, [x%,p?]]] = 0; such that all the other

efX2 (Xf)-l— px) effx2 _ Xﬁ—f— F’jx_’_ f [XZ,XF’j—f— F’jx] commutators are zero, and
2 2\ a2 C£y2) _ A2 _ ;
+% 0, [ xp-+ P]] exp(fxf)zp exp(—fx°) = p°+ f (—2+4ipx)
£3 + 5 (—8¢) = P2+ 20f (xp+ ) — 4f2% (38)
g7 D DB ) - |

(30)  Finally, we can write a reduced expression for the
derivative of the original serids(t) as
The first commutator that appears in the above expressionCI =
is easily calculated[x?,xp+ pX = 4ix?, and so all the — =
others commutators are zero. Substituting back3i0), ( dt 4 q dh
we get _ 19T 4¢G99 42 NC L1}
{ [dt +4if at 4f<exp(4ig) dt] X
exp(fx?) (xp—+ px) exp(—fx?) = xp—+ px+4ifx2. (31 d dh dh
P(PX) (xp+ P exp( ) =xpp (1) [d—?+2if exp(4ig)a} (xp+ f)x)+exp(4ig)af)2}F.

We analyze now the third operator in expressig) (We (39)
study first only a part of it,
explg(xp+ pX)] p*exp[—g(xp+ px)]. Using again 15), We get back to the original expression for the operator,

o o expressionZ7), and taken the derivative with respectfo
exp[g (xp+ Px)] P~ exp[—g (xp+ Px)] =

dF (t) ) o
2 = =[PP — AP+ 2i (XP+ PX
= 2+ g [xp+ 7] + 2 [x-+ B [xp-+ b P2 a =~ P el
g : ) x exp{ —t [p? — 4%+ 2i (xp+ px)] } 1
+ 57 DB+ P [P+ Px [xp+ P p]] 4o (32) = [ 2+ 43— 2i (xp+ PX)] F. (40)
Calculating the first commutators, Comparing 89) and @0), we get the system of differential
equations
[xp+ px, p?] = 4ip?, (33) df dg dh
hullel if—= _4f2 i) — —
at +4if at 4fexp(4ig) at 4,
P . o 5 dg .. . .dh .
[XP+ Px, [xp+ px, p°]] = —16p°, (34) at + 2if exp(4ig) rri —2i, (41)
. .dh
. 4ig) S = 1,
[x-+ . [xp-+ P [xp+ px p2]]] — ~64p%  (35) SXPIHY) G
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The initial conditions that we must set on these equationsdy using the chain rule we ha\{](?—)

are f(0) = g(0) = h(0) = 0, so fort = 0 the operator in
the right side of 26) is the identity. The solutions then are
simply
4t
g:—l—zln(4t+1), (43)
h= L (44)
T
We calculate now explicitlyd7). As p = —|(§’—X, it is very
easy to see that expp?) 1= 1 and then
F (t) = exp(x?) exp[g (xp+ px)] 1. (45)
Using now thafx, p| =i, we write
exp[g (xp+ px)] 1 = exp[g(2xp—i)| 1
=exp(—ig)exp(2gxp) 1 (46)
and itis also clear that
. N ST
exp(2gxp) 1= 1+gxp+? (xp)°+...|1
- IR P _
=1+4+9gxpl+ 5 (xp)°1+..=1 (47)
and also that
exp[g (xp+ Px)] 1 = exp(—ig). (48)
We then have
F(t) = exp(fx*—ig). (49)
Substituting the function§ y g,
1 4tx?
F(t)= 50
0= amo0(a0g) 60

and finally, getting back to2@), we get the formula we
were looking for

S U bon (%) = ———_ex (4“‘2) (51)
2 a0 = 7o )

2.3 Addition formula

We want to apply the form obtained inlY),

Hn(x) = (—)"(p+2ix)"1, to evaluate the quantity
Hn(X+Y). We write it as
Hn(x+y) = (—i)”[—id(x+y) +2i(x+y)",  (52)

9,9
Ty 5 (ﬁ + ﬁ_y) , SO
that we may re-expres82) in the form

Hn(x+y) =

i -
<\/§> (i \/_ +2ivV2x—i \/zy+2|\/§y)(.53)

By definingpx = —i £ andpy = —i £ with X = v/2xand
Y = /2y, we obtain
Hn(x+y) =
= % i <r|:> (=) (px +20X) (=) (py +2iY)" ¥
2 k=

(54)
that by usingH; (x) = (—i)"(p+2ix)!1 adds to
n

H0cey) = 53 3 () PVZOH (VD). (69

which is the addition formula we were looking for.

3 Associated Laguerre polynomials

The generating function for the associated Laguerre
polynomials is B,12,14]

[ee]

O ronen 1 —xt
nZoLn(X)t = (1_t)"+1EXp(1—t>’ [t| < 1. (56)

The associated Laguerre polynomials may be obtained
from the corresponding Rodrigues’ formui&4,12,14]

dn
Ly (x) = =x 9e'— (e7X™Y). (57)
The associated Laguerre polynomials satisfy several
recurrence relations. One very useful, when extracting

properties of the wave functions of the hydrogen atom, is

(N+1)L1(x) = (n+a)LY 5().

(58)
We will use the operator method outlined above for the
Hermite polynomials, to derive the usual explicit
expression for the associated Laguerre polynomials. We
rewrite expressiorg(7) as

(2n+a+1-x)L7(x) —

L (0= Tx o€ (ip)e X0, (59)

where again the operatgr= —id /dx, defined in 11), is

used.
We notice thae*(ip)"e* = [eX(ip) e~

(15), e'pe = (p+i )

1 —a d " n+a
Ex (&—1>x .

X" and that, using

LY (x) = (60)
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Using the binomial expansion and becausewhere py = —id/dx is the operator introduced in
%an = (nﬁﬂ)!x”*"*m, we obtain the usual form for expression 11). Becausee ¥Px1 = 1, developing thef

function in a Taylor series (we cath to the coefficients

associated Laguerre polynomials, . ; ) . - S
9 poly in the expansion) and using the linearity of tla&Px

n k operator,
-3 () o e )
= VP f (x)e VPx1 = VP (x) = VP Z)Cka
k=
4 Bessel functions of the first kind of integer = @Yok (70)
order k=0
Bessel functions of the first kind of integer ord&(x), are ~ NOw
solutions of the Bessel differential equatidrb[16,17)] w0 oAl | K
Yk _ M(_i)ld_xk: 5 () (k> NE
X2y +xy + (& —n?)y =0, (62) 2,0 A" g\
k
wheren is an integer. They may be obtained from the = (X+y)", (71)
generating functiond, 15,16, 17] th
en
1 i - . o0
exp l)—z( <t - f)] = 5 t"h(x), (63) P f(x)e V1= 5 a(x+y) = f(x+y), (72)
N=—co0 k=0
and also from the following recurrence relatioB8sl[5, 16, as we wanted to prove.
17] Now consider the Bessel functialy evaluated ak + .
%Jn(x) — Jn2(X) + dna (). (64) From expressiong9) we have
— dYbx —iy Px
Bessel functions of the first kind of integer order may be In(x+y) = Jn(x)e 1, (73)
written as because YP<1 = 1, and developing the first exponential
@ (—1)memen in Taylor series, we obtain
W)=Y s (65)
L 22 ml (m+n)! @ ym gm
Jn(X"'Y) = z Han(X)- (74)
and also the following integral representation is very m=0""
useful B] To calculate than-derivative ofJ,, we use the integral
1 T . representationg) to write
Jn (X) _ E-[/ efl(nrfxsmr)dl.. (66)
-1

dm
Some other important relations for the Bessel functions of dxm
the first kind are the Jacobi-Anger expansi@s|

m . .
Jn(x):im%T / sin"re (xS gr - (75)
-1

substituting sim = (€7 —e~'7) /2i, and using the binomial

. ® : expansion,
gxeosy — z i"Jn(x) e (67) P
I 3
—Jn X) =
and . dxm .
gxsiny — Jn(x)eM. @68 1 T _k(m i(M—K)T o iKT oi (NT—XSiNT)
n:Zw h(X) - —2m+1nk,o( V() [ €M HTere dr
- —TT
11D m\ [
iti - - = _n\k —i[(n—m+2k) T—xsinT]
4.1 Addition formula 2"‘27Tkzo( 1) (k>/e dr,
- -7
Using the operator methods developed in previous (76)

sections, we will obtain here the addition formula for the

Bessel functions of the first kind of integer order. First, and therefore, using again the integral representaiéy (
we will derive the following expression for any "well we obtain

behaved” functiorf, gm

1 m
f(x_|_y) — eiyf)x f (X)e—iyf)xl’ (69) d—xm‘]n(x) - ﬁ kgo(_l)k ( k > Jn—m+2k(x)' (77)
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Substituting this last expression in equatiord)( we [4]M. Abramowitz and L.A. Stegun. Handbook of
obtain (we have taken the sum up to infinite as we add  Mathematical Functions With Formulas,Graphs and
only zeros) Mathematical Tables. National Bureau of Standards

Applied Mathematics, 197

2yn1 2 K/ m [G1N. N. Lebedev. Special functions and their applications
dn(x+y) = Zoﬁﬁkz)(_l) k In-mi2k(x). (78) Prentice-Hall, 1965.
m= . =

[6] Hans J. Weber & Frank E. Harris George B. Arfken.
Mathematical Methods for Physicists. A Comprehensive
Guide. Seventh edition. Elsevier, 2013.

[7]1.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, i8gr

We now change the order of summation and start the
second sum at = k (because froom < k all the terms

are zero) and Products. Seventh edition. Elsevier, 2007.
oo (_1)k ) ym [8] William H. Louisell. Quantum Statistical Properties of
Jn(x+y) = Z ' - In-mi2k(X). (79) Radiation. John Wiley & Sons, 1973.
k=0 k! m= 2M(m—K)! [9] Hector M. Moya-Cessa and Francisco Soto Eguibar.

. . Differential Equations: An Operational Approach. Rinton
We do nowj = m— 2k and obtain Press, 2011.

- 1K o 2k [10] Hector M. Moya-Cessa and Francisco Soto Eguibar.
Jn(x+y) = (-1 Z _ Yy _ Jhi(x), (80) Introduction to Quantum Optics. Rinton Press, 2011.
k;) k! = 2J+2k(1 +k)! IV [11] Christopher Gerry and Peter Knight. Introductory Quiam
Optics. Cambridge University Press, 2005.
take the second sum from minus infinite, and exchange thél2] I.X..Wong & D.R. Guo. Special functions. World Sciefdi
order of the sums 1989.

[13] H. Moya-Cessa and A. Vidiella-Barranco. On the intéi@t
2 2 (—1k oyt of two-level atoms with superpositions of coherent stafes o
h(x+y)= 5 I-j(x) % 2K (mT K light. J. of Mod. Optics, 42:15471552, 1995.
k= ' ' [14] Yury A. Brychkov. Handbook of Special Functions
Derivatives, Integrals, Series and Other Formulas. CRC
= Z In-j(X)Jj(y)- (81) Press, 2008. 9
[15] G. N. Watson. A treatise on the theory of Bessel function
Cambridge University Press, 1995.
[16] B.G. Korenev. Bessel functions and their Applications
o Taylor & Francis, 2002.
In(X+y) = Z In—k(X) k() (82)  [17]F. Bowman. Introduction to Bessel functions. Dover
k=—o0 Publications Inc, 1958.

The final expression

is known as thexddition formulafor the Bessel functions
of the first kind of integer order.
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5 Conclusions

We have shown how to apply some of the formalism of
operator theory to some special functions, namely,
Hermite and Laguerre polynomials and Bessel functions. ! | f
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