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1 Introduction Hermite-Hadamard inequality in the literature.
b
f<a42rb> . b1 /f(x)dxS f(a)erf(b).
Convexity plays an important role in different fields of —aa

attention has been given to this field by many researcher .O';msifrf]: drerc;er:g extensm?s and geneirnahzatlﬁgs of
Consequently the concept of convexity has been extende eee L ??—6 g fl 1az 17-20 22_2)7/[3289 3q] equalities,
gnd generallzedl in different dimensions using novel andlsnspir,ed eim’j moti;/ated énd b ' th;a oﬁgoing research we
innovative techniques se246,11-20, 23,26-29. y

Youness 28] introduced a new class of convex functions consider the class of geometrically nonconvex (relative
with respect to an arbitrary function. This class of Convexponvex) functions. Several new Hermite-Hadamard type

functions is called the relative convex functions or inequalities for geometrically nonconvex functions arsd it
nonconvex functions. These nonconvex functions play a
important role in optimization theory. Noorl$] has
proved that the optimality condition for differentiable
relative convex functions on relative convex sets can b
characterized by a class of variational inequality which is
called as general variational inequality. For the
applications of relative convexity, sed3-15 and the o
references therein. Recently Noor et dl[introduced 2 Preliminaries

and investigated the concept of geometrically relative

convex functions, which also contains the class of relativeln this section, we recall some previously known
convex functions. concepts. In the sequel of the pap&’ is the finite
Let f : 1 CR — R be a convex function witth < b and  dimensional euclidian space, whose inner product is
a,b € 1. Then the following double inequality is known as denoted by(.,.), ¢ = [g(a),g(b)] C R, = (0,) where

pure and applied sciences. Knowing its importance, muc%

variant forms are obtained.

Several special cases are discussed. The interestedgeader

are encouraged to find the novel applications of the
eometrically nonconvex functions and their variant
orms in various areas of pure and applied sciences.
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g : R" — R" be arbitrary function, unless otherwise Fort = % in (2), we have Jensen geometrically nonconvex
specified. functions, that is

set is defined as <V (a(x)f(ay))-

Definition 1( [12]). Let | C R;. A geometrically convex
f{ vaxa(y)
Xyl tel, wxyel,telo,1].

Definition 2([12]). A function f: 1 CR, — R is said to
be geometrically convex, if

FOAy Y < (FO)) (F(x)YE, wxyel,telo,1].

Definition 6( [18]). Let | = [g(a),9(b)] € Ry. Then f is
geometrically nonconvex function, if and only if,

’ 1 1 1

logg(a)  logg(x) logg(b) | >0

log f log f logf(g(b
We now define the concept of geometrically relative 0g(g(@)) logf(g(x)) logf(g(b))
convex set. where da) < g(x) < g(b).

Definition 3( [18]). A set¥ is said to be geometrically whereg(x) =g(a)'g(b)*! € I andt € [0, 1].
nonconvex (relative convex) set with respect to anFor g(x) = x Definition 6 reduces to the definition for
arbitrary function g: R" — R" and Vx,y € R" if geometrically convex functions, se&.

9(x).9(y) €, then Definition 7([18]). A function f: ¢4 — R is said to be GA

)

— f ti ith tt bit f ti
(g(x))t(g(y))l t c g,t c [O, 1]. QO%OT?R);, #nc 10N Wi respect 1o an arpitrary tunction
UsingAM — GM inequality, we have F((900) (ay) 1) < tF(g()) + (1—1)f(g(y),
(9(x)'(g(y)* " <tg(x) + (1—t)g(y), vxyeR": g(x),9(y) € 4.t €[0,1]. (3)

Vxy€eR": g(x),g(y) €4t €[0,1] From Definition 3 and Definition 5, it follows th&G —

GA, but the converse is not true.

Definition 4( [17, 28]). A set M, C R" is said to be a We also note that fog(x) = €* in Definition 5, we have

nonconvex (relative convex) set with respect to arbitrary (e (1-0Y) <tf(e)+ (1—1t)f (&),

function g: R" — R", if YxyeZ,te0,1]. ()
tg(x) + (1 -t)g(y) € Mg, Again using theAM — GM inequality from Definition 3,
Vx,y € R": g(x),9(y) € Mg,t € [0,1]. Q) we have the following known concept of relative convex
functions.

It is proved in B], that if Mg is a nonconvex set then it

is possible that it may not be a classical convex set. FoDefinition 8( [17, 28]). A function f is said to be a
example, foMg = [-1,— 3] U[0,1] andg(x) = x?,¥x € R. nonconvex (relative convex) function (that is AA
Clearly, this is a nonconvex set but not classical convexnonconvex function) on a nonconvex (relative convex) set
set. Another possibility may occur that nonconvex set mayMg, there exists an arbitrary function gR" — R" such

be a classical convex set, for exampl®f§ = [—-1,1) and  that,
90) = ¥/, vx € R. F((1- 1900 +g(y) < (1D (G0X) +tf(gly)).
Definition 5( [18]). A function f: ¢ — R. is said to be vx,y € R": g(x),9(y) € Mg,t € [0,1]. (5)

geometrically nonconvex function (GG nonconvex

function) with respect to an arbitrary function It is known [28] that every convex functiof on a convex

. N n n. ; set is a nonconvex function, but the converse is not true.
g: R~ R andvxy € R":g(x),g(y) € ¥t € [0, 1], if However, there are functions which are nonconvex
f((g(x) (g(y)¥h) < (F(g(x)t(f(g(y) . (2)  function but may not be a convex function in the classical

From @), it follows that sense. For example, bty C R be given as:

log ((9(x))! (a(y))**) < tlog £ (g(x)) + (1 —t)logf(g(y)), Ma={0c¥) €R*: (xY) =21(0.0)+42(0,3) + As(2, 1)},

vx,y € R": g(x),9(y) € 4,t €[0,1]. where A > 0, 32 | A = 1, and functiong : R? — R? is
: . o f .2
UsingAM — GM inequality, we have gg;mgg gy £ (xy) = (0,y), then the functiorf : R* — R
()" (g™ < (Fgx))' (Fay))*
<th(g09) +(1-1)f(g(y))- o[ R ityen,

This shows that every geometrically nonconvex function (xy) = Xy if y>1
(that is GG nonconvex function) is als@A nonconvex ’ -
function, but the converse is not true sé&g|[ is a nonconvex function but not a convex function.
(@© 2015 NSP
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Definition 9( [10]). The left sided and right sided Theorem 2.Let f,w:[g(a),g(b)] — R be geometrically
Hadamard fractional integrals of ordera € R* of nonconvex functions. Then
function f(x) are defined as:

9(b)
x a-1 1 f(9(x))w(g(x))
(HIZ ) (x) = %/ (In %‘) f(t)?, a<x<b, Ing(b) — Ing(a)g(/é\) g(x) dg(x)
and : < L(g(b)g(b),g(a)g(a)) < A(g(a)g(a),g(b)g(b)).
b a-1 Proof.Let f andw be geometrically nonconvex functions.
(HJg’f)(x):%/Qni—() f(t)?, a<x<b, Then
x f((g(2) (g(b))* " )w((g(a)) (g(b))* ")
whererl (.) is the gamma function. < (f(g(a))'(f(g(b)) " (w(g(a))) (w(g(b)))*"
Lemma 1([21]). For0< g <l1and0<a<b, we have - (g(a))w(g(a)) t
80— 0] < (b—a)°. = Ho®)wlg(b) lf(g(b))w(g(b))]
Lemma 2( [21]). For all A,u,w > 0, then for any t> 0, Integrating with respecton [0, 1], we have
we have o(b)
1 1 f(g(x))w(g(x))
/(t — )V 1M Lle¥sds Ing(b) —Ing(a) (/) g(x) dgx)
g(a
’ A - __f9(b)w(g(b)) — f(g(a))w(g(@))
<max{1,2"Y (1) <1+ U) W'tV ~ Inf(g(b))w(g(b)) —Inf(g(a))w(g(a))
= L(f(g(b))w(g(b)), f(g(a))w(g(a)))
- fg(@)wig(@)) + f(g(b))w(g(b))
3 Main Results - 2

=A(f(9(a))w(g(a)), f(g(b))w(g(b)))-

] This completes the proof.O
Theorem 1. Let f: [g(a),g(b)] — R, be geometrically _
nonconvex function. Then Theorem 3.Let f,w: [g(a),g(b)] — R, be geometrically

nonconvex functions. & + 3 = 1, then

In this section, we derive our main results.

g(b)
1 f(9(x))
Ing(b) —Ing(a) / g0 J9%) 1 g<b)f(9(X))W(g(X))dg(X)
9(a) Ing(b) —Ing(a) a(x)
< L(g(b),g(@)) < Alg(a).g(b). 8
Proof. L(;:‘tf belgjometrically nc:nconvexiti?ction. Then <a f(g(a))42- f(g(b)) [L(l 1)(f(9(b)) f(g(a)))} T
f((9(2)) (9(b))™) = (f(g(a)) (T(g(b)))
t 1-B
f9(a) T
= f(g(b)) l g (b))] : +Bw(g(a))szw(g(b)) lL(%_l)(W(g(b)),w(g(a)))] :

Proof.Let f andw be geometrically nonconvex functions.

1 g(b>f(g . Using inequality,
ing(b) —Tng@) | g09 9% ;
9(a) Xy < GXH—Byﬁ a,B>0,a+p=1,
_f(glb)— f(g(@) we have
< n(g(b)) _Tnf(g(a) "
=L(f(g(b)), f(g(a)) 1 f(g(x))w(g(x)) dg(x)
 Ila) (gt Ing(b) ~Ing(@) o ol
1
e = [ (0@ (alb))* i (g(@))! b)) e
- 0
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«Q
=z 2

— O

This completes the proof.O

Theorem 4.Let f,w: [g(a),g(b)] — R, be increasing and
geometrically nonconvex functions. Then

g(b)
m | 1(g0)dgix)Liw(g(a), w(g(b))
9(@)
g(b)
Ing Ing (a) (/)W< g(x )

xL[f(g(a)), f(g(b))]
g(b)

b)
“ra /] Tl ( )dg(x)
g(a>
+L[F(g(a))w(g(@). f(g(b)wia(b)]

Proof.Let f andw be geometrically nonconvex functions.
Then we have

f((g(@)* (a(0)") <I[f(g@)*[f(gb)]
w((g(@)'(9(0)*™") < [w(g(a))]'w(g(b))]*".

Now, using(X; — Xz,X3 — X4) > 0, (X1,X2,X3,X4 € R) and
X1 < Xo < X3 < X4, We have

f((9(@)* " (9(b))) W(g(@))] w(g(b))]*"
+w((g(a)'(9(0))* ") (g(@)]* [ f(g(b))]

< f((g(@)* " (g(b))")w((g(@)) (g(b)* )
+[f(g(a))]* " [f (9(b))] w(g(a))]' w(g(b)]* .

- Ing

Integrating above inequalities with respect tm [0, 1], we
have

/f((g(a))l*t(g(b))t)[W(g(a))]t[W(g(b))]l’tdt
0

1

+/W((9(a))t(9(b))1’t)[f(g(a))]l’t[f(g(b))]tdt

0

1
< [ ((g(a)**(g(b)! w((g(a)) (g(b)) el
0

1
+ [ (gt [ (g(b)) wig(a) ! fw(g(b)]* dt.
0

Now, sincef andw are increasing, we have

1 1
| (o)™ (@b))dt | wig(a)]*w(g(o))
0 0

1

+ [ wi(g(@) (a(b))* )t | [F(gta))* [ (g(b) e

0 0

l*tdt

1
< [ ((g())*(g(b))!w((g(a))'(g(b)) el
0
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1
+ / [f(g(a)]*"[f (g(b))]'[w(g(a))] w(g(b))]*"dt. we have
0 9(b)

is imoli 1 f(9(x))w(g(x))
This implies that N ing(®) Ing(a)g(/ o dg(x)
1
———— [ f(g(x))dg(x)L[w(g(a)),w(g(b))] 1
nalb) - '”g(a)g/@ = [ ((g@)" (g0))* w((g(a)" (glb)* et
g(b) 0
1 g(a)g(b) 1
+mmm—mgm@4W< 9 )d“” <§/{u«mmfmw»lm
<L[f(g(a), f(g(b))] ’ 2
7 g@ab) ), -HM@@W@m»kw]m
sﬁim§;m§@%£ (00w | FEr | de) 1
3 1
+L[f(g(a))w(g(a)), f(g(b))w(g(b))]. Sz/bf@@ﬂ+ﬂ—0fwmﬂ
This completes the proof.O0 0 5
Theorem 5.Let f and w be two GA-nonconvex functions. +tw(g(a)) + (1—t)W(9(b))] dt
If f and w are similarly ordered then the product fw is
again a GA-nonconvex function. 1 1
Proof. The proof is obvious. O 4_10/ lt{f( (@) +w(g(@)}
Theorem 6. Let f,w : [g(a),9(b)] — R be similarly
ordered GA-nonconvex functions. Then we have +(1-t){f(g(b)) +W(9(b))}]
g(b)
f W(g 1 2
Ing(b Ing A g(x) dg( ) %/ tA+(1 ] dt
g 0
f(g(a))w(g(a)) + f(g(b))w(g(b)) 1
s 2 ' %/ t2A2 1 (1—1)2B% + 2t(1— t)AB|dt
Proof. The proof directly follows from integrating 0

inequality (6) with respect tbon[0,1]. O 1

= |A°+B*+AB
Theorem 7.Let f,w: [g(a),g(b)] — R be GA-nonconvex 12
functions. Then

12, 2
<-|A°+B7].

This completes the proof.O0

g(b)
1 f(90))w(g(x)) dg(x) Now we prove some Hermite-Hadamard type inequalities
Ing(b) —Ing(a) 9(x) via fractional integrals. First of all, we present some
o) results which play a key role in proving our next results.
1 5 o Using essentially the technique of [24], one can prove the
<g|A+B7, following results.
where Lemma 3. Let f: [g(a),g(b)] — R be a differentiable
A—f function on (g(a),g(b)) with g(a) < g(b). Suppose
(9(2)) +w(g(@)), oL Tola) sl then
and F )
B = f(g(b)) +w(g(b)), a+1 o a
| BTGB gy |5 (90 +4 55 fo(@)
respectively.
_f(g(a)+g(b))
Proof. Let f andw be GA-nonconvex functions. Using 2
inequality 1
+(1-t)g(b))dt
Xy < %(X+y)2 VXY ER, O/w 90

(@© 2015 NSP
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1
_lng(b);mg(a) /[(1_t)a }etlng +(1-t)Ing(b) where A = g(b) _ g(a), A = g(b()y(ffZ) and
0 _ V/9(@gb)(Ing(b)—Ing(a)) ;

s (& olar A-Ying(b) g Az = G T) respectively.

where Proof. Using Lemma 3 and the fact thaf’ is
1, 0<t<3, nondecreasing, we have
Yt) = -1, %§t<1. ‘ r(a+1) [ 2 Hab) +n % f(g@)
+f(g(b)+ ~f(g(a
Lemma4. Let f: [g(a),g(b)] — R be a differentiable 2(In(g(b)) —In(g(a))) LH9@ H “g(b)
function on (g(a),g(b)) with g(a) < g(b). Suppose _f<g(a)+g(b)>’
f’ € L[g(a),g(b)], then then following identity holds: 2
[(a+1) a a Ing(b) —Ing(a
z(m(g(b))_,n(g(a))) 7 [ 1380 £(aD) +1 9 F(0(@)] /|f (ta(@) + (L~ t)g(b))[at "9~ 1N9E
—fv/o(
1
_ Ing(b) — |ng {/w eIng —t(Ing(b)—Ing(a)) X/Kl ta‘etlng +(1-t)ing(b ‘f (etlng +1-ing(b )‘dt
0
< /(a0 -ting(o)-nofa) < S 9@ (g
1 1
_/[(1 _ta]elng t(Ing(b)—Ing(a)) +|ng(b) lng /| 1 t ta‘etlng +(1-t)Ing(b |f ( ( ))‘dt
0

« §/(enalb)-t(Ing(b) - Ing<a>>)dt}

where Ing(b) —Ing(a) ;
Cf1, o<t<}, =22 (a0 - 1)@+ tingb) £ (g b)) | d
lﬂ(t)—{_L %§t<i. 2 o/
1
Lemmab. Let f: [g(a),g(b)] — R be a differentiable Ing(b) —Ing(a) n n
function on (g(a )[g(( ))) ENI)t]h g@) < g(b). Suppose T 2 /[ — (1- ) na@ U nabl £ (g(b)) dt
f/ € L[g(a),g(b)], then 3
(9

a)) +H Jg(a)+ f(g(b))] _9b) ; 9(@) | (g(b))|
0(2))" + (g(5)) (ng(b) ~ Ing(x))"
+ SOOI (g1 1.+ ) @

I'(a+1)[HJ" _f(g(
—[f(g( ))(Ing( )—In

1
_ B a1l Ing(x)+(1-t)Ing(b)
(Ing(b) —Ing(x)) 0/( 1)é where

(etlng +(1-1) Ing(b))dt %

1 @ = / [(1—1)% —t@]e tng(b)~Ing() g
—(Ing(x) — |ng(a))a+l/ (ta _ 1)etlng(x)+(l—t)lng(a) 5
0 1

o« f (etlng +(1-t)Ing( >)dt G = /[tor _ (1_t)a]e—t(lng(b)-&-lng(a))dt.
Now using above results, we derive our results via i

fractional integrals
Theorem 8. Let f: [g(a),g(b)] — R be a differentiable Now
g(b

function on(g(a),g(b)) with g(a) < g(b) where g is any 3
arbitrary function. Ifa € (0,1], f' € L[g(a),g(b)] and is @ — /[(1_t)a _a]gtlng(b)-Ing(@) gt
nondecreasing, then =
0
r(a+1) a a 1
I+ F(9(0) +H I - T(a(a 3
2ln((B) (@) L oty 1(90)) 1 gt 1161 ”] /2(1 1) st
(9@ +g(b) )
2 1
2
1 11
S “/(gz(b))' A A :E/(l_s)(aﬂ) 1g-3(Ing(b)—Ing(a))sy g
0
(@© 2015 NSP
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-1
1 —a 1 Ing(b) —Ing(a) g(b)—g(@) s g(b)(Ing(b) —Ing(a)) .,
< 5max(1,2 }(1+a+1>< 5 ) = S5 () + 2 |¥(9(b))|
a+2 ; i
= (@ ng®) (@) © 0/1 e )
and :
_[9b)—g@ , gb)(ing(b) ~Ing(a) l_iﬂ b
@ = [ [t~ (1—t)%e (ngbIng@)qy { z arl ( z )|/

This completes the proof.O

(2t — 1)7e tng(b)~Ing(@) ¢ Theorem 10.Let f: [g(a),g(b)] — R be a differentiable

function on(g(a), g(b)) with g(a) < g(b), where g ia any
arbitrary function. Ifa € (0,1], f’ € L[g(a),g(b)] and is
nondecreasing, then

N

1
z 5 1 e 2('”9() Ing( ))SdS Fa+1)
2 a a
/ ]Z(m(g(b))_,n(g(a)))a |35y F(0(B) 1 3Gy T(0@)]
1
_ %e—ang(b)—lng(a)) / (1-1)7e" 2" ¥ 1 ~1(Va@ai))|
0

_ (g(b)(lng(b)—lng(a)))
- 2

1
%eilng(b)zlng(a) /(1—T)adT a2 @
) x |1+ + |¥/(g(b))].
g (a+1)(Ing(b)—Ing(a)) 2(a+1)
g(a
g(b)
:72((“_1)’ (9) Proof. Using Lemma 4 and the fact thaft’ is

B nondecreasing, we have
where we have utilized Lemma 1 and Lemma 2.

Combining {), (8) and @) completes the proof. O ra+1)

Theorem 9. Let f: [g(a),g(b)] — R be a differentiable ’2(|n(g(b))—|n(g(a)))ﬂ
function on(g(a),g(b)) with g(a) < g(b) where gisany  —f g(a)g(b)‘

[H‘]g(a)+ f(9(0) ++ Jgp)- F(9(a))

arbitrary function. Ifa € (0,1], f’' € L[g(a),g(b)] and is _
nondecreasing, then O3 9(@),9(0) < w
r (0!+1) a a
’2 in( ( >) (g(a))) 35 10000 41 5y (002 { / gna(b)-t(ng(b)-Ing(a) (gng(b)~t(ng(b)-Ingla)) i
{g(b) g( )+g(b)(lng(b)—lng(a)) (1_1” \#(g(b))| +/\ 1—t)9 —to|gna(b)-t(ing(b)-Ing(a))
2 a+1 29 '
Proof. Using Lemma 3 and the fact thaft’ is x ! (gnabtnabi et )|dt}
nondecreasing, we have _ Ing(b) — Ing(a)
ra+1) a a - 2
| 3inaB) (g LS f(90) 1 ) f(o(@)] X{ jg(b)lf,(g(b))|dt+ /1(1 ba o]
b o
_f<g(a);g( ))’ )
S g(b) ( )|f (g(b))‘ Xelng Ing Ing |f (elng Ing ) Ing )|dt:|
> g(b)(Ing(b) —Ing(a))
+i'”g( N9 1107 -t (g(bat < 2 ) .
0 a+2 % ,
g ingla) /l . [+ G aing) ing@) a5 @O
t
1 This completes the proof.O
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Theorem 11.Let f: [g(a),
function on(g(a),g(b)) with g(a) <

nondecreasing, then
‘ MNa+1)
2(In(g(b)) —In(g(a)))”
~1/g(@)g0)|

_ (g(b)(lng(b)—lng(a)))
2

[35(ay F(0D) +1 I f(0(@)]

Proof. Using Lemma 4 and the fact thaf’ is
nondecreasing the proof is obvious.

Theorem 12.Let f: [g(a),g9(b)] — R be a differentiable
with g(a) < g(b) and
g(b)]. Let f be GA-nonconvex function. Then Proof.Using Lemma 5, the fact that’|% is GA-nonconvex

function on (g(a),g(b))
f < [o(

a),
for [f'(g(x))| <M, g(x) € [g(a), g(b)] we have

17 (o + 1) 13 F(0(@) +1 3 f(g(b)]
“l1(g@)ing(y —ing 2))% + 1(g(b)) (Ing(b) ~ Ing(x))“]|
M(g(b)

[(Ing(b) ~Ing(x)?** + (Ing(x) ~ Ing(a)) ***].

- a+1

Proof. Using Lemma 5 and the fact thaf’ is
GA-nonconvex function, we have

I (a+ D3, F(9@) +1 3y F((b))]
~[f(g(@)(INg(x) ~ Ing(@)) + F(g(b)) (Ing(b) — Ing(x))°]

1

< (|ng(b)_|ng(x))a+1/(1_ta)etlng(x)+(l—t)lng(b)
0

><|f ( tlng() +(1-t)Ing(b )|dt
1

+(Ing(x) —Ing(a) ‘”1/ (1—t%)nge+(1-t)Ing(a)
0

X“(tlng +(1-t)Ing(a )| t

= (Ing(b) —Ing(x ))‘”1/(1 t)(g(x))" (g(0)) "

0

x| £((g09)" (g(b)*)ldt

1

+(Ing(x) —In @J(a))‘”l/(1—t")(Q(X))t(g(r’v‘))l’t

0
x| F((9(x)) (g(a))*)|dt
1
< (Ing(b) —Ing(x ))‘Hl/(l t)(902)" (g(b))
[t (g(x))| + (1 - t)|f/(9( b))|]dt
1
+(Ing(x) —Ing(a))?** [ (1—t%)(
/

X[t/ f(g9(x)) + (21—
<M(g(b))[(Ing(b) —

1) f'(g(a))]dt

Ing(x) @+t

g(b)] — R be a differentiable
g(b), where g ia any
arbitrary function. Ifa € (0,1], ' € L[g(a),g(b)] and is

14 ail(l—ziaﬂ 11(g(b))]

1
+(Ing(x) —Ing(a) ‘”1/ t(1—t%)+
0

_ aM(g(b))
- oa+1

(1—t)(1—t)]dt

[(Ing(b) ~Ing(x))*** + (Ing(x) ~ Ing(a)) ***].

This completes the proof.O

Theorem 13.Let f: [g(a),g9(b)] — R be a differentiable
function on (g(a),g(b)) with g(a) < g(b) and
f’ € |g(a),g(b)]. Let |f/|9 be GA-nonconvex function.
Then for|f'(g(x))| < M, g(x) € [g(a),g(b)], we have

I (a+ D[ Igg- F(9(@) ++ I+ (9(0))]
—[f ( (@)(Ing(x) —Ing(a))* + f(g(b))(Ing(b) —Ing(x))“]]
M(g(b))

[(Ing(b) ~Ing(x))?** + (Ing(x) ~ Ing(a)) ***].

GH—l

function and well known Power mean inequality, we have

M (@ +1)[n 35 F(9(@) ++ I F(9(b)]

—[f(g(a))(Ing(x) —Ing(a))” + f(g(b))(Ing(b) —Ing(x))*]|
1

< (Ing(b) ~ Ing(x))+* [ |1 )¢ M -3V nale
0

+(1-t)Ing(b) )|dt
1

+(|ng( ) |ng a+1/ 1— ta etlng +(1-t)Ing(a)
0

x| /(e ingx)+

+(1-t)Ing(a)

x|/ (eingx)+ dt

1
< (Ing(b) - Ing(x))*g(b) [ (1-1)
0
<I£/((g00)! (gb) )t
1
+(Ing(x) —Ing(a))?*g (1—t9)
o]

x| f'((9()" (g(a)* )|t
< (Ing(b) ~Ing(x)***g(b)

1 -3 /1
x(/(l—t“)dt) (/(1—t")
0 0

X|‘”((@J(X))t(g(b))lt)th) q
+(Ing(x) — Ing(a))***g(b)

1. g1
x(/(l—t”)dt) (/(1—t”)

0 0
1

x|f’<<g<x>>t<g<a>>1t)‘*dt) q
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x[(Ing(b) —Ing(x))* 1 + (Ing(x) — Ing(a))¥ Y] [15] M. A. Noor, New approximation schemes for general

1 ! variational inequalities, J. Math. Anal. Appl. 251, 217922

H(1—t9) 4 (1—t)(1—t%)]dt (2000).

X(/[( )+( I ) ) [16] M. A. Noor, Some developments in general variational

0 inequalities, Appl. Math. Comput. 152, 199-277, (2004).
< aM(g(b)) [(Ing(b) —Ing(x))9 L+ (Ing(x) — Ing(a))* 1. [17] MA Noor, Projection methods for nonconvex variational
oo+l inequalities, Optimization Letters, 3, 411-418, Springer

This completes the proof.O0 (2009). o
[18] Z Kang, Y Luo, Non-probabilistic reliability-basedgology
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