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1 Introduction

Convexity plays an important role in different fields of
pure and applied sciences. Knowing its importance, much
attention has been given to this field by many researchers.
Consequently the concept of convexity has been extended
and generalized in different dimensions using novel and
innovative techniques see [2–6,11–20,23,26–29].
Youness [28] introduced a new class of convex functions
with respect to an arbitrary function. This class of convex
functions is called the relative convex functions or
nonconvex functions. These nonconvex functions play an
important role in optimization theory. Noor [15] has
proved that the optimality condition for differentiable
relative convex functions on relative convex sets can be
characterized by a class of variational inequality which is
called as general variational inequality. For the
applications of relative convexity, see [13–15] and the
references therein. Recently Noor et al. [18] introduced
and investigated the concept of geometrically relative
convex functions, which also contains the class of relative
convex functions.
Let f : I ⊆ R → R be a convex function witha < b and
a,b∈ I . Then the following double inequality is known as

Hermite-Hadamard inequality in the literature.

f

(

a+b
2

)

≤ 1
b−a

b
∫

a

f (x)dx≤ f (a)+ f (b)
2

.

For some recent extensions and generalizations of
Hermite-Hadamard type inequalities,
see [1,3–6,9,11,12,17–20,22–27,29,30].
Inspired and motivated and by the ongoing research we
consider the class of geometrically nonconvex (relative
convex) functions. Several new Hermite-Hadamard type
inequalities for geometrically nonconvex functions and its
variant forms are obtained.
Several special cases are discussed. The interested readers
are encouraged to find the novel applications of the
geometrically nonconvex functions and their variant
forms in various areas of pure and applied sciences.

2 Preliminaries

In this section, we recall some previously known
concepts. In the sequel of the paper,R

n is the finite
dimensional euclidian space, whose inner product is
denoted by〈., .〉, G = [g(a),g(b)] ⊆ R+ = (0,∞) where
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g : R
n → R

n be arbitrary function, unless otherwise
specified.

Definition 1( [12]). Let I ⊆ R+. A geometrically convex
set is defined as

xty1−t ∈ I , ∀x,y∈ I , t ∈ [0,1].

Definition 2( [12]). A function f: I ⊆ R+ →R+ is said to
be geometrically convex, if

f (xty1−t)≤ ( f (x))t ( f (x))1−t
, ∀x,y∈ I , t ∈ [0,1].

We now define the concept of geometrically relative
convex set.

Definition 3( [18]). A setG is said to be geometrically
nonconvex (relative convex) set with respect to an
arbitrary function g : R

n → R
n and ∀x,y ∈ R

n if
g(x),g(y) ∈ G , then

(g(x))t(g(y))1−t ∈ G , t ∈ [0,1].

UsingAM−GM inequality, we have

(g(x))t(g(y))1−t ≤ tg(x)+ (1− t)g(y),

∀x,y∈ R
n : g(x),g(y) ∈ G , t ∈ [0,1]

Definition 4( [17, 28]). A set Mg ⊆ R
n is said to be a

nonconvex (relative convex) set with respect to arbitrary
function g: Rn →R

n, if

tg(x)+ (1− t)g(y)∈ Mg,

∀x,y∈ R
n : g(x),g(y) ∈ Mg, t ∈ [0,1]. (1)

It is proved in [8], that if Mg is a nonconvex set then it
is possible that it may not be a classical convex set. For
example, forMg = [−1,− 1

2]∪ [0,1] andg(x) = x2,∀x∈R.
Clearly, this is a nonconvex set but not classical convex
set. Another possibility may occur that nonconvex set may
be a classical convex set, for example ifMg = [−1,1] and
g(x) = 4

√

|x|,∀x∈ R.

Definition 5( [18]). A function f : G → R+ is said to be
geometrically nonconvex function (GG nonconvex
function) with respect to an arbitrary function
g : Rn →R

n and∀x,y∈R
n : g(x),g(y) ∈ G , t ∈ [0,1], if

f ((g(x))t (g(y))1−t)≤ ( f (g(x)))t ( f (g(y)))1−t
. (2)

From (2), it follows that

log f ((g(x))t (g(y))1−t)≤ t log f (g(x))+ (1− t) log f (g(y)),

∀x,y∈ R
n : g(x),g(y) ∈ G , t ∈ [0,1].

UsingAM−GM inequality, we have

f ((g(x))t (g(y))1−t) ≤ ( f (g(x)))t ( f (g(y)))1−t

≤ t f (g(x))+ (1− t) f (g(y)).

This shows that every geometrically nonconvex function
(that is GG nonconvex function) is alsoGA nonconvex
function, but the converse is not true see [12].

For t = 1
2 in (2), we have Jensen geometrically nonconvex

functions, that is

f

(

√

g(x)g(y)

)

≤
√

f (g(x)) f (g(y)).

Definition 6( [18]). Let I = [g(a),g(b)] ⊆ R+. Then f is
geometrically nonconvex function, if and only if,
∣

∣

∣

∣

∣

1 1 1
logg(a) logg(x) logg(b)

log f (g(a)) log f (g(x)) log f (g(b))

∣

∣

∣

∣

∣

≥ 0,

where g(a)≤ g(x)≤ g(b).

whereg(x) = g(a)tg(b)1−t ∈ I andt ∈ [0,1].
For g(x) = x Definition 6 reduces to the definition for
geometrically convex functions, see [12].

Definition 7( [18]). A function f : G →R is said to be GA
nonconvex function with respect to an arbitrary function
g : Rn →R

n, if

f ((g(x))t (g(y))1−t)≤ t f (g(x))+ (1− t) f (g(y)),

∀x,y∈ R
n : g(x),g(y) ∈ G , t ∈ [0,1]. (3)

From Definition 3 and Definition 5, it follows thatGG=⇒
GA, but the converse is not true.
We also note that forg(x) = ex in Definition 5, we have

f (etx+(1−t)y)≤ t f (ex)+ (1− t) f (ey),

∀x,y∈ G , t ∈ [0,1]. (4)

Again using theAM−GM inequality from Definition 3,
we have the following known concept of relative convex
functions.

Definition 8( [17, 28]). A function f is said to be a
nonconvex (relative convex) function (that is AA
nonconvex function) on a nonconvex (relative convex) set
Mg, there exists an arbitrary function g: Rn → R

n such
that,

f ((1− t)g(x)+ tg(y))≤ (1− t) f (g(x))+ t f (g(y)),

∀x,y∈ R
n : g(x),g(y) ∈ Mg, t ∈ [0,1]. (5)

It is known [28] that every convex functionf on a convex
set is a nonconvex function, but the converse is not true.
However, there are functions which are nonconvex
function but may not be a convex function in the classical
sense. For example, letMg ⊂ R be given as:

Mg = {(x,y) ∈R
2 : (x,y) = λ1(0,0)+λ2(0,3)+λ3(2,1)},

whereλi > 0, ∑3
i=1 λi = 1, and functiong : R2 → R

2 is
defined asg : (x,y) = (0,y), then the functionf : R2 → R

defined by

f (x,y) =

{

x3
, if y< 1,

xy3
, if y≥ 1.

is a nonconvex function but not a convex function.
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Definition 9( [10]). The left sided and right sided
Hadamard fractional integrals of orderα ∈ R

+ of
function f(x) are defined as:

(HJα
a+ f )(x) =

1
Γ (α)

x
∫

a

(

ln
x
t

)α−1

f (t)
dt
t
, a< x≤ b,

and

(HJα
b− f )(x) =

1
Γ (α)

b
∫

x

(

ln
x
t

)α−1

f (t)
dt
t
, a≤ x< b,

whereΓ (.) is the gamma function.

Lemma 1( [21]). For 0< σ ≤ 1 and0≤ a< b, we have

|aσ −bσ | ≤ (b−a)σ
.

Lemma 2( [21]). For all λ ,υ ,ω > 0, then for any t> 0,
we have

1
∫

0

(t − s)υ−1sλ−1eωsds

≤ max{1,21−υ}Γ (λ )

(

1+
λ
υ

)

ωλ tυ−1
.

3 Main Results

In this section, we derive our main results.

Theorem 1. Let f : [g(a),g(b)] → R+ be geometrically
nonconvex function. Then

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))
g(x)

dg(x)

≤ L(g(b),g(a))≤ A(g(a),g(b)).

Proof.Let f be geometrically nonconvex function. Then

f ((g(a))t (g(b))1−t) ≤ ( f (g(a)))t ( f (g(b)))1−t

= f (g(b))

[

f (g(a))
f (g(b))

]t

.

Integrating with respectt on [0,1], we have

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))
g(x)

dg(x)

≤ f (g(b))− f (g(a))
ln f (g(b))− ln f (g(a))

= L( f (g(b)), f (g(a)))

≤ f (g(a))+ f (g(b))
2

= A( f (g(a)), f (g(b))).

This completes the proof.⊓⊔

Theorem 2.Let f,w : [g(a),g(b)]→ R+ be geometrically
nonconvex functions. Then

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w(g(x))
g(x)

dg(x)

≤ L(g(b)g(b),g(a)g(a))≤ A(g(a)g(a),g(b)g(b)).

Proof.Let f andw be geometrically nonconvex functions.
Then

f ((g(a))t(g(b))1−t)w((g(a))t (g(b))1−t)

≤ ( f (g(a)))t( f (g(b)))1−t (w(g(a)))t(w(g(b)))1−t

= f (g(b))w(g(b))

[

f (g(a))w(g(a))
f (g(b))w(g(b))

]t

.

Integrating with respectt on [0,1], we have

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w(g(x))
g(x)

dg(x)

≤ f (g(b))w(g(b))− f (g(a))w(g(a))
ln f (g(b))w(g(b))− ln f (g(a))w(g(a))

= L( f (g(b))w(g(b)), f (g(a))w(g(a)))

≤ f (g(a))w(g(a))+ f (g(b))w(g(b))
2

= A( f (g(a))w(g(a)), f (g(b))w(g(b))).

This completes the proof.⊓⊔

Theorem 3.Let f,w : [g(a),g(b)]→ R+ be geometrically
nonconvex functions. Ifα +β = 1, then

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w(g(x))
g(x)

dg(x)

≤ α
f (g(a))+ f (g(b))

2

[

L( 1
α −1)( f (g(b)), f (g(a)))

]
1−α

α

+β
w(g(a))+w(g(b))

2

[

L( 1
β −1)(w(g(b)),w(g(a)))

]

1−β
β

.

Proof.Let f andw be geometrically nonconvex functions.
Using inequality,

xy≤ αx
1
α +βy

1
β , α,β > 0,α +β = 1,

we have

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w(g(x))
g(x)

dg(x)

=

1
∫

0

f ((g(a))t (g(b))1−t)w((g(a))t (g(b))1−t)dt
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≤
1
∫

0

{

α( f ((g(a))t (g(b))1−t)
1
α

+β (w((g(a))t(g(b))1−t)
1
β

}

dt

≤
1
∫

0

{

α[( f (g(a)))t ( f (g(b)))1−t ]
1
α

+β [(w(g(a)))t(w(g(b)))1−t ]
1
β

}

dt

= α( f (g(b)))
1
α

1
∫

0

(

f (g(a))
f (g(b))

) t
α

dt

+β (w(g(b)))
1
β

1
∫

0

(

w(g(a))
w(g(b))

)
t
β

dt

= α2( f (g(b)))
1
α

1
α
∫

0

(

f (g(a))
f (g(b))

)u

du

+β 2(w(g(b)))
1
β

1
β
∫

0

(

w(g(a))
w(g(b))

)v

dv

= α2 ( f (g(b)))
1
α − ( f (g(a)))

1
α

log f (g(b))− log f (g(a))

+β 2 (w(g(b)))
1
β − (w(g(a)))

1
β

logw(g(b))− logw(g(a))

= α2 ( f (g(b)))
1
α − ( f (g(a)))

1
α

f (g(b))− f (g(a))
L( f (g(b)), f (g(a)))

+β 2 (w(g(b)))
1
α − (w(g(a)))

1
β

w(g(b))−w(g(a))
L(w(g(b)),w(g(a)))

= α

[

L( 1
α −1)( f (g(b)), f (g(a)))

]
1−α

α

L( f (g(b)), f (g(a)))

+β

[

L( 1
β −1)(w(g(b)),w(g(a)))

]

1−β
β

L(w(g(b)),w(g(a)))

≤ α
f (g(a))+ f (g(b))

2

[

L( 1
α −1)( f (g(b)), f (g(a)))

]
1−α

α

+β
w(g(a))+w(g(b))

2

[

L( 1
β −1)(w(g(b)),w(g(a)))

]

1−β
β

.

This completes the proof.⊓⊔

Theorem 4.Let f,w : [g(a),g(b)]→R+ be increasing and
geometrically nonconvex functions. Then

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))dg(x)L[w(g(a)),w(g(b))]

+
1

lng(b)− lng(a)

g(b)
∫

g(a)

w

(

g(a)g(b)
g(x)

)

dg(x)

×L[ f (g(a)), f (g(b))]

≤ 1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w

(

g(a)g(b)
g(x)

)

dg(x)

+L[ f (g(a))w(g(a)), f (g(b))w(g(b))].

Proof.Let f andw be geometrically nonconvex functions.
Then we have

f ((g(a))1−t (g(b))t) ≤ [ f (g(a))]1−t [ f (g(b))]t

w((g(a))t(g(b))1−t) ≤ [w(g(a))]t [w(g(b))]1−t
.

Now, using〈x1 − x2,x3 − x4〉 ≥ 0, (x1,x2,x3,x4 ∈ R) and
x1 < x2 < x3 < x4, we have

f ((g(a))1−t(g(b))t)[w(g(a))]t [w(g(b))]1−t

+w((g(a))t(g(b))1−t)[ f (g(a))]1−t [ f (g(b))]t

≤ f ((g(a))1−t(g(b))t)w((g(a))t (g(b))1−t)

+[ f (g(a))]1−t [ f (g(b))]t [w(g(a))]t [w(g(b))]1−t
.

Integrating above inequalities with respect tot on [0,1], we
have

1
∫

0

f ((g(a))1−t(g(b))t)[w(g(a))]t [w(g(b))]1−tdt

+

1
∫

0

w((g(a))t(g(b))1−t)[ f (g(a))]1−t [ f (g(b))]tdt

≤
1
∫

0

f ((g(a))1−t(g(b))t)w((g(a))t (g(b))1−t)dt

+

1
∫

0

[ f (g(a))]1−t [ f (g(b))]t [w(g(a))]t [w(g(b))]1−tdt.

Now, sincef andw are increasing, we have

1
∫

0

f ((g(a))1−t(g(b))t)dt

1
∫

0

[w(g(a))]t [w(g(b))]1−tdt

+

1
∫

0

w((g(a))t(g(b))1−t)dt

1
∫

0

[ f (g(a))]1−t [ f (g(b))]tdt

≤
1
∫

0

f ((g(a))1−t(g(b))t)w((g(a))t (g(b))1−t)dt

c© 2015 NSP
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+

1
∫

0

[ f (g(a))]1−t [ f (g(b))]t [w(g(a))]t [w(g(b))]1−tdt.

This implies that

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))dg(x)L[w(g(a)),w(g(b))]

+
1

lng(b)− lng(a)

g(b)
∫

g(a)

w

(

g(a)g(b)
g(x)

)

dg(x)

×L[ f (g(a)), f (g(b))]

≤ 1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w

(

g(a)g(b)
g(x)

)

dg(x)

+L[ f (g(a))w(g(a)), f (g(b))w(g(b))].

This completes the proof.⊓⊔

Theorem 5.Let f and w be two GA-nonconvex functions.
If f and w are similarly ordered then the product f w is
again a GA-nonconvex function.

Proof.The proof is obvious. ⊓⊔

Theorem 6. Let f,w : [g(a),g(b)] → R be similarly
ordered GA-nonconvex functions. Then we have

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w(g(x))
g(x)

dg(x)

≤ f (g(a))w(g(a))+ f (g(b))w(g(b))
2

.

Proof. The proof directly follows from integrating
inequality (6) with respect tot on [0,1]. ⊓⊔

Theorem 7.Let f,w : [g(a),g(b)]→ R be GA-nonconvex
functions. Then

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w(g(x))
g(x)

dg(x)

≤ 1
8

(

A2+B2

)

,

where
A= f (g(a))+w(g(a)),

and
B= f (g(b))+w(g(b)),

respectively.

Proof. Let f and w be GA-nonconvex functions. Using
inequality

xy≤ 1
4
(x+ y)2 ∀x,y∈ R,

we have

1
lng(b)− lng(a)

g(b)
∫

g(a)

f (g(x))w(g(x))
g(x)

dg(x)

=

1
∫

0

f ((g(a))t (g(b))1−t)w((g(a))t (g(b))1−t)dt

≤ 1
4

1
∫

0

[

( f ((g(a))t (g(b))1−t))

+(w((g(a))t(g(b))1−t))

]2

dt

≤ 1
4

1
∫

0

[

t f (g(a))+ (1− t) f (g(b))

+tw(g(a))+ (1− t)w(g(b))

]2

dt

=
1
4

1
∫

0

[

t{ f (g(a))+w(g(a))}

+(1− t){ f (g(b))+w(g(b))}
]

=
1
4

1
∫

0

[

tA+(1− t)B

]2

dt

=
1
4

1
∫

0

[

t2A2+(1− t)2B2+2t(1− t)AB

]

dt

=
1
12

[

A2+B2+AB

]

≤ 1
8

(

A2+B2

)

.

This completes the proof.⊓⊔

Now we prove some Hermite-Hadamard type inequalities
via fractional integrals. First of all, we present some
results which play a key role in proving our next results.
Using essentially the technique of [24], one can prove the
following results.

Lemma 3. Let f : [g(a),g(b)] → R be a differentiable
function on (g(a),g(b)) with g(a) < g(b). Suppose
f ′ ∈ L[g(a),g(b)], then

Γ (α +1)
2(ln(g(b))− ln(g(a)))α

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
(g(a)+g(b)

2

)

=
g(b)−g(a)

2

1
∫

0

ψ(t) f ′(tg(a)+(1− t)g(b))dt

c© 2015 NSP
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− lng(b)− lng(a)
2

1
∫

0

[(1− t)α − tα ]et lng(a)+(1−t) lng(b)

× f ′(et lng(a)+(1−t) lng(b))dt,

where

ψ(t) =

{

1, 0≤ t < 1
2,

−1, 1
2 ≤ t < 1.

Lemma 4. Let f : [g(a),g(b)] → R be a differentiable
function on (g(a),g(b)) with g(a) < g(b). Suppose
f ′ ∈ L[g(a),g(b)], then then following identity holds:

Γ (α +1)
2(ln(g(b))− ln(g(a)))α

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
√

g(a)g(b)

=
lng(b)− lng(a)

2

[
1
∫

0

ψ(t)elng(b)−t(lng(b)−lng(a))

× f ′(elng(b)−t(lng(b)−lng(a)))dt

−
1
∫

0

[(1− t)α − tα ]elng(b)−t(lng(b)−lng(a))

× f ′(elng(b)−t(lng(b)−lng(a)))dt

]

,

where

ψ(t) =

{

1, 0≤ t < 1
2,

−1, 1
2 ≤ t < 1.

Lemma 5. Let f : [g(a),g(b)] → R be a differentiable
function on (g(a),g(b)) with g(a) < g(b). Suppose
f ′ ∈ L[g(a),g(b)], then

Γ (α +1)[HJα
g(b)− f (g(a))+H Jα

g(a)+ f (g(b))]

−[ f (g(a))(lng(x)− lng(a))α + f (g(b))(lng(b)− lng(x))α ]

= (lng(b)− lng(x))α+1
1
∫

0

(tα −1)et lng(x)+(1−t) lng(b)

× f ′(et lng(x)+(1−t) lng(b))dt

−(lng(x)− lng(a))α+1
1
∫

0

(tα −1)et lng(x)+(1−t) lng(a)

× f ′(et lng(x)+(1−t) lng(a))dt

Now using above results, we derive our results via
fractional integrals

Theorem 8. Let f : [g(a),g(b)] → R be a differentiable
function on(g(a),g(b)) with g(a) < g(b) where g is any
arbitrary function. Ifα ∈ (0,1], f ′ ∈ L[g(a),g(b)] and is
nondecreasing, then
∣

∣

∣

∣

∣

Γ (α +1)
2(ln(g(b))− ln(g(a)))

[

H

Jα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))

]

− f

(

g(a)+g(b)
2

)
∣

∣

∣

∣

∣

≤ | f ′(g(b))|
2

[

A1+A2+A3

]

,

where A1 = g(b) − g(a), A2 = g(b)(α+2)
α+1 and

A3 =

√
g(a)g(b)(lng(b)−lng(a))

2(α+1) respectively.

Proof. Using Lemma 3 and the fact thatf ′ is
nondecreasing, we have
∣

∣

∣

Γ (α +1)
2(ln(g(b))− ln(g(a)))

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
(g(a)+g(b)

2

)
∣

∣

∣

≤ g(b)−g(a)
2

1
∫

0

| f ′(tg(a)+(1− t)g(b))|dt+
lng(b)− lng(a)

2

×
1
∫

0

|(1− t)α − tα |et lng(a)+(1−t) lng(b)| f ′(et lng(a)+(1−t) lng(b))|dt

≤ g(b)−g(a)
2

| f ′(g(b))|

+
lng(b)− lng(a)

2

1
∫

0

|(1− t)α − tα |et lng(a)+(1−t) lng(b)| f ′(g(b))|dt

=
g(b)−g(a)

2
| f ′(g(b))|

+
lng(b)− lng(a)

2

1
2
∫

0

[(1− t)α − tα ]et lng(a)+(1−t) lng(b)| f ′(g(b))|dt

+
lng(b)− lng(a)

2

1
∫

1
2

[tα − (1− t)α ]et lng(a)+(1−t) lng(b)| f ′(g(b))|dt

=
g(b)−g(a)

2
| f ′(g(b))|

+
g(b)(lng(b)− lng(a))

2
| f ′(g(b))|(C1+C2), (7)

where

C1 =

1
2
∫

0

[(1− t)α − tα ]e−t(lng(b)−lng(a))dt.

C2 =

1
∫

1
2

[tα − (1− t)α]e−t(lng(b)+lng(a))dt.

Now

C1 =

1
2
∫

0

[(1− t)α − tα ]e−t(lng(b)−lng(a))dt

≤

1
2
∫

0

(1−2t)αe−t(lng(b)−lng(a))dt

=
1
2

1
2
∫

0

(1− s)(α+1)−1e−
1
2 (lng(b)−lng(a))sds
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≤ 1
2

max{1,2−α}
(

1+
1

α +1

)(

lng(b)− lng(a)
2

)−1

≤ α +2
(α +1)(lng(b)− lng(a))

, (8)

and

C2 =

1
∫

1
2

[tα − (1− t)α]e−t(lng(b)+lng(a))dt

≤
1
∫

1
2

(2t −1)αe−t(lng(b)−lng(a))dt

=
1
2

2
∫

1

(s−1)αe−
1
2 (lng(b)−lng(a))sds

=
1
2

e−(lng(b)−lng(a))

1
∫

0

(1− τ)αe
lng(b)−lng(a)

2 τdτ

≤ 1
2

e−
lng(b)−lng(a)

2

1
∫

0

(1− τ)αdτ

=

√

g(a)
g(b)

2(α +1)
, (9)

where we have utilized Lemma 1 and Lemma 2.
Combining (7), (8) and (9) completes the proof.⊓⊔

Theorem 9. Let f : [g(a),g(b)] → R be a differentiable
function on(g(a),g(b)) with g(a) < g(b) where g is any
arbitrary function. Ifα ∈ (0,1], f ′ ∈ L[g(a),g(b)] and is
nondecreasing, then
∣

∣

∣

Γ (α +1)
2(ln(g(b))− ln(g(a)))

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
(g(a)+g(b)

2

)
∣

∣

∣

≤
[

g(b)−g(a)
2

+
g(b)(lng(b)− lng(a))

α +1

(

1− 1
2α

)]

| f ′(g(b))|.

Proof. Using Lemma 3 and the fact thatf ′ is
nondecreasing, we have
∣

∣

∣

Γ (α +1)
2(ln(g(b))− ln(g(a)))

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
(g(a)+g(b)

2

)
∣

∣

∣

≤ g(b)−g(a)
2

| f ′(g(b))|

+
lng(b)− lng(a)

2

1
2
∫

0

[(1− t)α − tα ]| f ′(g(b))|dt

+
lng(b)− lng(a)

2

1
∫

1
2

[tα − (1− t)α ]| f ′(g(b))|dt

=
g(b)−g(a)

2
| f ′(g(b))|+ g(b)(lng(b)− lng(a))

2
| f ′(g(b))|

×
(

1
2
∫

0

[(1− t)α − tα ]dt+

1
∫

1
2

[tα − (1− t)α ]dt
)

=

[

g(b)−g(a)
2

+
g(b)(lng(b)− lng(a))

α +1

(

1− 1
2α

)]

| f ′(g(b))|.

This completes the proof.⊓⊔

Theorem 10.Let f : [g(a),g(b)] → R be a differentiable
function on(g(a),g(b)) with g(a) < g(b), where g ia any
arbitrary function. Ifα ∈ (0,1], f ′ ∈ L[g(a),g(b)] and is
nondecreasing, then

∣

∣

∣

Γ (α +1)
2(ln(g(b))− ln(g(a)))α

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
(

√

g(a)g(b)
)
∣

∣

∣

≤
(

g(b)(lng(b)− lng(a))
2

)

×
[

1+
α +2

(α +1)(lng(b)− lng(a))
+

√

g(a)
g(b)

2(α +1)

]

| f ′(g(b))|.

Proof. Using Lemma 4 and the fact thatf ′ is
nondecreasing, we have

∣

∣

∣

Γ (α +1)
2(ln(g(b))− ln(g(a)))α

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
√

g(a)g(b)
∣

∣

∣

≤ lng(b)− lng(a)
2

×
[

1
∫

0

elng(b)−t(lng(b)−lng(a))| f ′(elng(b)−t(lng(b)−lng(a)))|dt

+

1
∫

0

|(1− t)α − tα |elng(b)−t(lng(b)−lng(a))|

× f ′(elng(b)−t(lng(b)−lng(a)))|dt

]

≤ lng(b)− lng(a)
2

×
[

1
∫

0

g(b)| f ′(g(b))|dt+

1
∫

0

|(1− t)α − tα |

×elng(b)−t(lng(b)−lng(a))| f ′(elng(b)−t(lng(b)−lng(a)))|dt

]

≤
(g(b)(lng(b)− lng(a))

2

)

×
[

1+
α +2

(α +1)(lng(b)− lng(a))
+

√

g(a)
g(b)

2(α +1)

]

| f ′(g(b))|.

This completes the proof.⊓⊔
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Theorem 11.Let f : [g(a),g(b)] → R be a differentiable
function on(g(a),g(b)) with g(a)< g(b), where g ia any
arbitrary function. Ifα ∈ (0,1], f ′ ∈ L[g(a),g(b)] and is
nondecreasing, then
∣

∣

∣

Γ (α +1)
2(ln(g(b))− ln(g(a)))α

[

HJα
g(a)+ f (g(b))+H Jα

g(b)− f (g(a))
]

− f
√

g(a)g(b)
∣

∣

∣

≤
(

g(b)(lng(b)− lng(a))
2

)[

1+
2

α +1

(

1− 1
2α

)]

| f ′(g(b))|.

Proof. Using Lemma 4 and the fact thatf ′ is
nondecreasing the proof is obvious.

Theorem 12.Let f : [g(a),g(b)] → R be a differentiable
function on (g(a),g(b)) with g(a) < g(b) and
f ′ ∈ [g(a),g(b)]. Let f′ be GA-nonconvex function. Then
for | f ′(g(x))| ≤ M, g(x) ∈ [g(a),g(b)] we have

|Γ (α +1)[HJα
g(x)− f (g(a))+H Jα

g(x)+ f (g(b))]

−[ f (g(a))(lng(x)− lng(a))α + f (g(b))(lng(b)− lng(x))α ]|

≤ αM(g(b))
α +1

[(lng(b)− lng(x))α+1+(lng(x)− lng(a))α+1].

Proof. Using Lemma 5 and the fact thatf ′ is
GA-nonconvex function, we have

|Γ (α +1)[HJα
g(x)− f (g(a))+H Jα

g(x)+ f (g(b))]

−[ f (g(a))(lng(x)− lng(a))α + f (g(b))(lng(b)− lng(x))α ]|

≤ (lng(b)− lng(x))α+1
1
∫

0

(1− tα )et lng(x)+(1−t) lng(b)

×| f ′(et lng(x)+(1−t) lng(b))|dt

+(lng(x)− lng(a))α+1
1
∫

0

(1− tα )et lng(x)+(1−t) lng(a)

×| f ′(et lng(x)+(1−t) lng(a))|dt

= (lng(b)− lng(x))α+1
1
∫

0

(1− tα )(g(x))t(g(b))1−t

×| f ′((g(x))t(g(b))1−t )|dt

+(lng(x)− lng(a))α+1
1
∫

0

(1− tα )(g(x))t(g(a))1−t

×| f ′((g(x))t(g(a))1−t )|dt

≤ (lng(b)− lng(x))α+1
1
∫

0

(1− tα )(g(x))t(g(b))1−t

×[t| f ′(g(x))|+(1− t)| f ′(g(b))|]dt

+(lng(x)− lng(a))α+1
1
∫

0

(1− tα )(g(x))t(g(a))1−t

×[t| f ′(g(x))|+(1− t)| f ′(g(a))|]dt

≤ M(g(b))[(lng(b)− lng(x))α+1

+(lng(x)− lng(a))α+1]

1
∫

0

[t(1− tα )+(1− t)(1− tα )]dt

≤ αM(g(b))
α +1

[(lng(b)− lng(x))α+1+(lng(x)− lng(a))α+1].

This completes the proof.⊓⊔

Theorem 13.Let f : [g(a),g(b)] → R be a differentiable
function on (g(a),g(b)) with g(a) < g(b) and
f ′ ∈ [g(a),g(b)]. Let | f ′|q be GA-nonconvex function.
Then for| f ′(g(x))| ≤ M, g(x) ∈ [g(a),g(b)], we have

|Γ (α +1)[HJα
g(x)− f (g(a))+H Jα

g(x)+ f (g(b))]

−[ f (g(a))(lng(x)− lng(a))α + f (g(b))(lng(b)− lng(x))α ]|

≤ αM(g(b))
α +1

[(lng(b)− lng(x))α+1+(lng(x)− lng(a))α+1].

Proof.Using Lemma 5, the fact that| f ′|q is GA-nonconvex
function and well known Power mean inequality, we have

|Γ (α +1)[HJα
g(x)− f (g(a))+H Jα

g(x)+ f (g(b))]

−[ f (g(a))(lng(x)− lng(a))α + f (g(b))(lng(b)− lng(x))α ]|

≤ (lng(b)− lng(x))α+1
1
∫

0

|1− tα )et lng(x)+(1−t) lng(b)

×| f ′(et lng(x)+(1−t) lng(b))|dt

+(lng(x)− lng(a))α+1
1
∫

0

(1− tα )et lng(x)+(1−t) lng(a)

×| f ′(et lng(x)+(1−t) lng(a))|dt

≤ (lng(b)− lng(x))α+1g(b)

1
∫

0

(1− tα )

×| f ′((g(x))t (g(b))1−t )|dt

+(lng(x)− lng(a))α+1g(b)

1
∫

0

(1− tα )

×| f ′((g(x))t (g(a))1−t )|dt

≤ (lng(b)− lng(x))α+1g(b)

×
( 1
∫

0

(1− tα )dt

)1− 1
q
( 1
∫

0

(1− tα )

×| f ′((g(x))t (g(b))1−t )|qdt

)
1
q

+(lng(x)− lng(a))α+1g(b)

×
( 1
∫

0

(1− tα )dt

)1− 1
q
( 1
∫

0

(1− tα )

×| f ′((g(x))t (g(a))1−t )|qdt

)
1
q

≤ M(g(b))

(

α
α +1

)1− 1
q
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×[(lng(b)− lng(x))α+1+(lng(x)− lng(a))α+1]

×
( 1
∫

0

[t(1− tα )+(1− t)(1− tα )]dt

)
1
q

≤ αM(g(b))
α +1

[(lng(b)− lng(x))α+1+(lng(x)− lng(a))α+1].

This completes the proof.⊓⊔
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