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Abstract: In recent years, researchers interested in the field ofdieind related subjects have also begun using the concept of
fractional calculus in some of their investigations. Irstbaper, some interesting aspects and features of frabtiomaection derivatives

in differential manifold were discussed. In particulaartsformation of Christoffel symbols for fractional contieg, the torsion tensor

of a fractional connection, and difference tensor of twatinal connection are presented.
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1 Introduction For example the gamma functions (3 +n) and
I (3 —n) turn out to be multiples of/2 that is

In mathematics, there are several special functions which I (%) =2,
appear many applications. One of them is well known as

the Gamma function, see for exampl6].[The gamma r (1 ) (2n)1v/2
functionrl” (x) plays some significant roles in the theory of 2

integro-differential equations in particular fractional 1 4l
calculus. Thus we begin with some definitions, for the <_ —n) — &
details we refer to]] or [5]. 2 (2n)!

ant

In particular, some frequently encountered examples can
The Gamma function of a positive integeris again a  be given as follows:
positive integer, while the gamma functidn(—n) of a

negative integer changes to infinittes. The gamma (E’). -r <§+1>! — §,— (§> — E’,— (§+1>

function and As we known the Gamma function for any 2 2 2 \2 2 \2
positivea value is defined as follows: 15 /1 15
= = — —_ = —\/T—T
8 2 8
_ [Tra1gt r(-i+1
r(a) /0 191l tdt. ,-(_}) :w:_zr (1):_2\/&
2 -3 2
For I (a) can be demonstrated that: Two more useful properties of the gamma function are the
reflection and the duplication as follows:
ry=1r(a+1l)=afl(a),a>0 —T1esq 71X)
F(—x)= ————==
r(x+1)
I '=r 1). T (O (x+ 2
2V2
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The Gamma functionl (x) is considered as a
generalization of the factorial arfd(x) is usually defined
for x > 0 by the integral

reo= [ vtetar
0

. . r .
In the classical sense sin€€0) = L then it follows

that ™ (n) is not defined for integers < 0. However the
extension formula gives finite values fof (z), for
O(z) < 0 sincerl (z) is analytic everywhere except at
z=0,—-1,—-2,..., and the residue at= k is given by

(-1~
kK

Res_«[ (2) =
If we considerx > 0, then it follows that
[ (x+ 1) =xI (x). 1)

Now the equationk) can then be used to defifigx) for
X < 0 andx # —1,—-2,... and further this is one of the

most important formulas that was satisfied by the Gammgy, ;s \we can extend the definition to the whole real line

function.

equation
ro) =N—lim [ ttin"tetdt
e—~0J¢
o0 1
= / t*lln’te*tdtJr/ ttin"t[et — 1] dt,
1 0
r(—m =N-lm [ t™™In"te!dt

e—=0J¢

= / t~ ™ 1n"tetdt
1

+/01t‘m‘1lnrt le—‘—gmo(_i—!l)it‘} dt  (5)
S men

forr e Ngandme N. FLIITther, it is proved that
rin=""Ton- Ly @

forr=1,2,..., where

L1

where,

r=r'=-y,

Even though the gamma function is defined as a locally

summable function on the real line bi/]]

r(x) = / “plexdx x>0, @)
0

In the classical sensE(x) function was not defined for

wherey denotes Euler’s constant, seef].

For a functionf: U ¢ R — R with 0 € U the fractional
derivative of ordenr is defined by

d? 1

the negative integer thus there was an open problem to give

satisfactory definition. However, by using the neutrix imi
it has been shown inlp] that the gamma functior?f is
defined as follows:

N—lim [ tteldt,
e—~0J¢

r(x

®3)

for x#£ 0,—1,—2,..., and this function is also defined by
neutrix limit

r(-m=N-lim [ t™edt

e—-0J¢
:/wt*mfle*‘dt
1
Y L N B =
+/0t l[et—iZ)Ttldt—iZ)”(m_i), )

for me N. It was proven also in1[3] the existence ofth
derivative of the gamma function and defined it by the

t f(s) - £(0)
Wf(t):r(_a)/o iognads a<0 ®

da 1 d gt of(s)—f(0)
g0~ F—ayam Jy ogemetds @70 ©)

wheren is the first integer greater than or equabtoThe
relation @) gives a fractional integral and) gives a
fractional derivative.

We express some of the operators of a fractional

derivatives, see for example&,f,6,7,8,10].

dv o A4y ,a
L) = I'(1+y+a)t ,acRor(aeC)and
1d4n- ;é?xé 0,—-1, d,njrr;
9 o+ ho) = Lo+ 9 L
3-%?(1()4' 2( a—wl e 12
4'd7 (Cf(t)) = C? f(t), whereC is a constant
0 1By =BT f(B)
> ' PY =P fgppye PV

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 3, 1265-1272 (2015)www.naturalspublishing.com/Journals.asp

N SS ¥

1267

2 Fractional Differential Calculus on
Manifolds

Let M be ann-dimensional differential manifoldJ,x;) a
local coordinate system on M and
Up={xeU:0<x <b;,i=12,..,n} seeB.

For a functionf: Ug — R the fractional derivative with
respect to :

1
.a _
Y r(m—a)
am/xi f(X17~--7)<i—1737)<i+17--~7xn)_ f(xl7"'7Xi71707xl.+l7"'7xn)ds
% Jo (x —s)a—m+1
where
m_9 9 _ 9
I N N
(m times,i is fixed,a > 0).
Fora € (0,1),y > —1,
r(1+y) i
O (e \Y — -0 _ 5l
00 = Frr gy =4

A fractional vector fieldU C M is an object of the form
X% =X20%, whereX® € Oy (M) i=1,..,n.

We denote byx[ the fractional vector fields orl.x§ is
generated by the operatad§,i = 1,2,....n. If c: x=x(t),t €
is a parametrized curve id then the fractional tangent vector
field of cis 1
Xt)=———
® ril+a)
A fractional covariant derivative is given by

% (1)9¢

VY =X 98V + RV ) of (10)
where X9,Y% € x§ and I'“fj the functions defining the
coefficients of a fractional linear connection dh They are
determined by the relations

Voo =i of'

Since it it is important to study fractional vector fields on a
differentiable manifold M. FoR", there is an obvious way to do
this. Recall that x9(R") denotes the space of fractional
differentiable vector fields defined oR. Examples are the
fractional vector fields%7...7% determined by the natural
coordinate functionsiy, ..., up.

Now consider an arbitrary fractional vector fistd € x%(R");

in terms of (L0), we can write
'a 07 1 af\*
YOf =Y VYo f Yoo 2=
; oyl 2" (dui)

1—a)!
whereY,” e O(R").

Note that, in calculus the fractional vector figdd is frequently
identified with the n-tupl&;9, 1 <i < n. The obvious candidate

for the fractional derivative of ¢ in the direction of a fractional
vectorX? is then

V%aY? = (XOYT, . XAV,

For a general differentiable manifold, there is no autoocnaty
to differentiate fractional vector fields. Instead, we madt a
new element of structure:

Definition 1.A fractional connection or fractional covariant
derivative on a differentiable manifold M is a map

7T X% (M) x xT (M) = x¥ (M)
which forx® € x9(M) also defines a map
Uxa: X (M) = X% (M).
Then we have the following properties:

1-V?xn+gYa = f U%a +V¥a,

2.7%a (Y9 +2%) = 7% Y +7%aZ7,

3% (FYT) = (XTF)Y + f Uga YO,
for X9,Y?,Z9 € x¥(M) and f,g € O(M).

RemarkBy using the properties in Definitiorl) we easily can
see that

Ve (YT +bZ9) =ay%a Y +by%a 27
for X9,Y? 79 € x*(M) anda,b € R.
Now given any two factional vector field¥?,Y?% on M for
f € Oy (M), then we can consider the functioX$ (Y9 f) and
Y9 (X9f). In general, such operations do not lead to factional

vector fields, since they involve the derivatives of higheten
rather than one. Nevertheless, we can affirm the following.

Lemma 1Given any differentiable manifold M, of dimension n,
for any two factional vector fields Xand Y® on M, there is a
unique factional vector fiel@X?,Y?] such that for all fe O(M)

X% YO)(F) = X (YO ) — Y (XIF).

Proof: First, we prove that ifX9, Y] exists, then it is unique.
Letme M and let¢ : U — M be a parametrization at, and let

X% =5 X797, andy® = 3 Y{of
whereX®,Y{" € Oy (M). Then forf € O(M) we have
XY ) = X797 (Y 0f' £) = X (7Y ) (0f' ) +X Y[ 9 of |
YI(XOf) = Yj"dj"(xi"di“f) :Yj“(dj"xi“)(di“ f) +Yj"><i"dj"di“f.
Sinced? 9 f = 0{'9 f, then we get
XAYE(F) =YI(XU(F)) = X (37Y[) (9] )+ Y (97 %) (a7 T)

= [Xf’di“Yj" —Yi"di"xj"}dj" f.

In order to show the existence, we use the above expression to
define [X9,Y%] for every chart(Ug, ¢g). By the uniqueness,

(X, Y% g = [X9,Y], on ¢ (Ug) N ¢y(Uy) which allows us to
define[X?,Y9] over entire manifoldv.

The fractional vector fieldX?,Y?] given by above lemma is
called the fractional brackgX?,Y?] = X9Yd —YIX* of X
andy?.
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Proposition 1If X%,Y?, and Z% are fractional vector fields on
M, forall f,ge O(M), then

1. (Anticommutativity)X?,Y%] = —[Y¥ X9].

2. (Linearity) [aX? +DbY?,Z9) =a[X",Z%]+b[Y?,Z],

abeR.
3.(Jacobi identity)
([X9,Y9], Z9] 4 [[Y 2, 29 X] + [[2%, X9], Y] = 0.
4[fXY gY9] = fg[X?, Y]+ X (g)YT —gYT(f)X.
Proof. (1) and (2) are immediate.
(3)
[[Xa>Ya]7Za] = [XaYu _Yaxa7za}
= XAY9Zz9 _yaxaza _zaxaya 4 zayaxa
[[Y(I7Z(I]7XC(] = [Yﬂza _ZUYU7XU}
= YIZIXT - ZOYIXT —XAYIZT 4 X970y
[[Za>xa]7Ya] = [Zaxa _Xaza7Ya}
— ZO{xOfYOf _XorzorYor _Yorzorxor +Yaxaza
then

X, Y9,z + (Y9, Z297, X9+ [[2%,X9], Y] = 0.
(4)
[fXY,gY] = (FXY)(gY?) — (gY“)(fX7)
= fgXaY? 4 X% (g)Y? —gYT(f)XT —gfYox?
= fgXo, Y9+ fXI(g)Y — gY?(f)X.

Now since
x" x"
- 99 0 0 PLE o
J dx‘]?’ dx" dx” dx" dx" i
axy .
and alsog = I 09 then it follows that
k]

,..j‘ g

xa a
Fl ~. 0X4 a (o ox
L0 Xk dxl ,— 1 a a( Xk) a

i
= s k) L
0x" dx“ Koxi ol oxt \ ox¥ | o

Then further we have
a a
P s e i Tl <0_> ol
i a a a a a a
ik dxk dx[ dxj dxf dxk oxy
Then the transformation law is given by

,—'"J an (9)(:1 0x ,:] 09 er an
ik 0x"’ X o 'k+ﬁ ox3 dx,“

where {I'ikj} are Christoffel symbols in coordinatgs;} and

(11)

{I}i} are Christoffel symbols in new coordinatgs}.

After define fractional connection we state the following
proposition.

Proposition 2 Christoffel symbols are equal to zero in these
cartesian coordinate$x; }

ke —0 [k_—
Let 79 be a fractional connection on manifoM. Let {I; k} be Jg'€j = Fj&=0, if=0.
Christoffel symbols of this connection in given local cooates 2%
{x}. Then we have Proof: Since aga’ = I]Q<then
Ve =X 00V + 1Y) of o) oeyy _ 07ej defy
oJe? o e, 0
where ‘ e def ofg &
joa .
fdft = vge ok = geg (9o
We calculate Christoffel symbols in new coordinaf&s and we 9%
obtain _ _eJ(,—,kqda
Flos — .60 oe "
ik = Vor % _0
since o Ao ~k
29 _ 0% o' _ o' thenr;j¢ = 0.
I oxd gxd dx" 3
then : Note that the relationl)) means that
I—Jda _ vaa (9«0 v;.(an = Xia (d,“YJa)d]“ (12)
k™) 2
Ix in coordinates; }.
- k g2
vﬁ" (a a Yk ) .. . .
X Proposition 3In a coordinate systenfU.,x;), the Christoffel
ox9 0% X symbols of fractional connectioy? are symmetric if and only
= K V5 O+ o g (5 )08 is
oxs ox? dxl‘(’
B axk " o, 090X [)g“,x;’}:vgax;’—v;'{jm“:o, Vi,j=1,..,n
_dxavdx dad +(9Xg(ag)ak
3 P 0% Proof:
ox7 ox q 09 0 0= —9,X7 a ya
= —F —F a — (== —V.ﬂx‘_v .“><i
X ox¢ Vor K+ Py (axg) K AR
= ko2 — koo
B axk (7)(1 ~jaa L (%)dlf - r|]~|fk ~[JI (9k
- a
X oxd Fic de" oxd = (K=o
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thenl’ I'k Now we letrs) — ), we have = ﬂ(g)"ﬂ o (0y) or?
- k= ki o 9gaor’ oxa T a¢aar’ oy
£l %%ﬁ,:,+ o (0x§”)‘3x = 101 [(=1)%a%cos’ ¢sin ¢ + 1 10{ ;a%sin” ¢ cos’ ¢
ik oxT ox7 ox{l ik 0x" oxI’ oxg ( _1 ) (1-a)t
= a%[(=1)7 + 1] cod ¢ sin® ¢
a . a 1-a)!
Fi_ 00 og O 5 o0 oxe O R
ki oxT oxI oxT ki oxZ " ox¥ " oxf - Ta a® 9"+ 1] cod ¢ sin ¢.
since 9% oxd 2% ox?
o (o) 7 o (o)
k i i k Fro_ oY (0x) ard 99 (0y) ord
then o 90~ 997 99’ 9xT ' 99% 9p’ ayT
Ei F
Mo 7 T :;‘(_1)%%%0520% 1 (D)% sir? ¢
Note that ifa = 1 then (1-a) (1-a)
1
- = (=1)9r% (a% coS? ¢ +sir?? ¢)
Mg =T (1-a)!
1 ; .
Example 1Calculate the fractional connection in = (1_a)|é”"r“(a"cosz"¢+sm2”¢).
coordinates, ¢ ’
X = cos¢ r=+/x2+y2
y=rsing. ¢ = arctary. £ _ ﬁ(%)amp“ _(_y)aaq&f’
T gratar’ gxa T gra‘ar’ gy@
1 _ o
X _ cosp, —rsing - (1—a)1(°°SH T OO s 9)
ar a¢ .
ina—a? —-a
d_y = sing, _:rcosd) +(1_a)!(sm )(O)(r C0§7¢)
ar a9
ar ar =0
5(:cos«j), ay = sing
09 1. 9p 1 =g 09 X 409° « 09
x = o Gy = o fro = dr“(dda) oxa dr“(aq&) oya
According (L1) and since Christoffel symbols are equal to zero — 1 (- )2“ 7 sirt? ¢
in cartesian coordinates, then (1-a)!
1 a,.—a a
i PL (0xr)a‘9x? +(1_a)|or r—9cos? ¢
k= o ox) oxd
X0K % - (1_1(])|r*"[(—l)z"sinz"’¢+or"’c052"r ¢]
we have 1 ' ‘ )
e 0% 0x G0 0y 0t = (1_a),r*“[ez'“"sin2”¢+a“co§”¢}:F#}.
" 0rf’(0r) oxa dr“(dr) ay?
1
= & ¢)19.0.cod
d—ay o9 cos’ ¢ s 0 0% 09 (99 1a08°
oo — a\34 a a\g4
ta 1a)l(sin“¢)1’“.0.sin"¢ ‘9"’1 097 0x¢ 097 09" oy
—a)! _ _1\20 £ 0 ojn@
_0 77(1_‘1)!( 1)“@a%sin® ¢ cos” ¢
1 .
Ao ﬁ(ﬁ)aﬁ ﬁ(ﬂ)aﬁ +(1_a)!(—1)”a“cos"¢sm"¢
T 9ra 99’ axa | ar?'gg’ 9y@ T . et g
= a?((=1)*" +(-1)")cos’ ¢ sin
- 1a)l(—1)”r"*azsin"¢cos"¢ @qy® (FVT (D jcosTgsinte
e 1 o 20T jar g
1 4 a2 4 = 4o (297 1) cod ¢ sin® ¢.
+7(1_a)!r cod ¢sin? ¢ ( )
. 1 a—a?;_q\a - q Hence we have that the fractional covariant derivatii/2) (n
B (1—or)!r [(=1)% + 1 cos” psirt” ¢ polar coordinates have the following appearance
1 —a?r . . .
= mra a [e'“"+1] CO§I¢S|nG¢. vgara :I—rﬁdra +I_rl?dg —-0. (13)
(@© 2015 NSP
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= aan ra@-a*[damy 1) cod ¢ sin® po¢

1
tazay

= I:¢rr(7ra +I:¢¢r(7g

r9e?sintY ¢ + a® co?] g

V49
-1)%+ 1) cos” ¢ sin? g7

—1)%sinf? ¢ + a cos™]ay

a®[d"+ 1) cos” ¢ sin? pa7

—0 [R2AATT ;20 a a1 A0
T ay” [€Tsin?? ¢ + a® cos®]0g
V40§ = [§y0f +T o5

- (1_1(1)1 (=1)r%(a” cos? ¢ +sin’® )08

a%((—1)% sin® ¢ cos’ ¢ (14)

+ =
++(
= (1_10)! UM% (% cos ¢ +sir’® ¢)of"
1
Tz
+€Tcod ¢ sin” $)og.
Notice that, as expected, when= 1, one recovers the classical
formula.

a)l

—1)%cos ¢ sin” ¢)9g

a®(297sin® ¢ co ¢ (15)

Proposition 4. Consider A, =
for A is given by

,=|kj then the transformation law

oxa 99 ax? oK
A = dx“Am+dx“(dxk)dxf“'
Proof:
- _Fi
A =T
- ox i 9XoX T ﬁ(%)g
B dx" dx" dx" i oxT " ox oxf
a
:diaiai,:l ﬂ(%)dﬁ
9x{' Ox¥ ox¢ kT oxe OXI " 0xE
Sincej—ﬁg—i? = 6}‘, then
i
A = ik
= (5k)a% - ﬁ(%)di
Voox@ kT oxa dx‘? ox
aXI 9% 9xa dx

dx“ Mt o oxd (dx" ) oa dx,“ ’

£l

R TIN
Let'l'i\k_ll'ik— i
then
i 0o O ny o ok O
ik dx" dx" dx" kT oxe ox” oxd
B axk (9)(:1 (7X ,:J L (dxr“ (9X
0x"’ rd 0x" o oxd dx,“
a
_ 0xg ox7 9% | 1) 20
- an 0X(I an ik ik
a
B axk qu (7X (fl)
B 0x"’ dx“ oxa ik

3 The Torsion Tensor of a Fractional
Connection

Definition 2.0n a differential manifold M with a fractional
connectiorry?, the expression

%Y — 79X — X9 Y] =T (X?,YY)

called the torsion (or the torsion tensor) of the fractional
connectior/9.

One can easily see the following properties
T(XY%) = —T(Y9,x9),
T(XT4Y9,2%) = T(X?,2%) +T (Y%, z%)

TEXYY) = 9¥aY? — e FXT —[FXY,Y9]
= f%a YT — (YO )X
—f %0 XT 4 (YT )X — £]X%, Y]
= f(UxaY? = U¥aX? = [X, Y1)
= fT(X9,Y%).
Remarkf T? =0, thensy¥ is symmetric.

Similarly, for fractional vector fieldX? andY? we define the
difference tensor

BXY,Y%) = ixa Y — xaY .

Proposition 5. 1.The linearity of8 is trivial from properties of
the fractional connection.
2.

é()(a7 fYa) = vgxa fYa - vgxa fYa
= (Xa f)Ya + f vgxa Ya —
= f(vgana - Vgana)
= fB(X%,Y%).

(XT )Y — £ 7% Y

3.LetB(X, YY) = § (X, YY) +$(X?, YY) where

S(X9,Y%) = %[é(x“,va) +B(YY, X,

(@© 2015 NSP
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Table 1: c= cosp,s= sing

a= 1 2 3
rr 0 0 0
% 1.0398r 0%i + 1jc1s? 2.1474r T8¢ 252 1.1005%1[i + 1]c3s®
I .8259i + 1Jctst 1.5564?s? .7668i + 1]c?s?
I 1.0398ir 1(.794%2 +s2) | 1.0737r2(.724&% +s%) | 1.10053(.6931c® +s%)
i 0 0 0
s =gr | 1.0398 [s?+.794%:?] | 1.0737 ?[s* +.724&7] | 1.1005 3[s® + .696&°]
oo .8259(1+ip1sT 1.55642s2 .7668(i+1r3s3
Table 2: c= cosp,s=sing
a= 4 5 6
[ 0 0 0
% 2.2384c%s? 1.1284r2%i + 1Jc°s® 2.2542 2%c 855
I 1.5514%s% 79791 +1]c°s® 1.659L°s®
Foo 1.1192r%(.6931c®+s8) | 1.1284°(.707&c+s) | 1.127%5(.736&12+sM29)
o 0 0 0
[ =lgr | 1.1192%[s®+.6931c®] | 1.1284 5[—s+.707%k] | 1.1271 5[s'2+ 736c17]
oo 1.5514%s* 7979-1+i]cs® 1.659L°s®
Table 3: ¢ = cosp,s=sing.
a= 7 8 9 1
[ 0 0 0 0
Y 1.1142r i+ 1c’s” 2.1782r16c858 1.0511 99 4 1]c%° 0
I .8681i +1]c’s’ 1.821@8s8 .95598i + 1]c9s” 0
oo 1.1142ir 7(.779c® + s¥) 1.08918(.83651° +sM0) | 1.0514r9(.909518 +&M8) | —r
I 0 0 0 0
My =g | 11142 7[s"%+ 7791 | 1.0891 8[—s'®+ 83651°] | 1.0511 9[s®+ 909518 | 1
oo .8681i +1Jc’s’ 1.82218s8 .95598i + 1)c9s” 0
and [2] Guy Jumarie. Riemann-christoffel Tensor in Differmtia
. 1. . Geometry of Fractional Order Application to Fractal Space-
S(X%,Y%) = Z[B(XO’,Y") —B(Y%,X%)]. Time. Fractals, Vol. 21, No.1 (2013), 1350004 (27 pages).

Actually, we can expres$(X%,Y%) in terms of the torsion
tensors'T and?T of /¢ and /4, respectively as follows

25(X%,Y%)

<] NI

B(XY,YY) —B(YY,X%)

gqua — vgqua — vaaX" +nga Xa
T(XO,Y9) +[XT, Y9 2T (X, YY) — [X9, Y]
=1T(X%,y%) 2T (X9, Y9).

=
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