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1 Introduction W =B, x BT xR (6)
The problem concerned in this paper is the following Problem #)-(6) is referred to as SVI fructured
variational inequalities, find € Q such that: variational inequalities).

/ T / The alternating direction method (ADM) is a
(U —u)'Fu) =0, vu e, (1) powerful method for solving the structured problem
with (4)-(6), since it decomposes the original problems into a

X f(x) series subproblems with lower scale, which was originally
u= (y)’ F(u)= (g(y))’ (2)  proposed by Gabay and Merciet]] and Gabay 10].
The classical proximal alternating direction method
and (PADM) [6,8,15] is an effective numerical approach for
Q={(xy)xeZ . yc#T" ,Ax+By=b} (3) solving variational inequalities with separable struetur

. e ) i - To make the PADM more efficient and practical, He et al.
whereAe 7 *",B € # ™ are given matriceh € % is  [15] proposed a modified PADM as following. For given
a given vecttor. and :%L —g”{ig : %’TJ — %’m ?re Exk,yk,)\k) € BN, x AT, x #', the new iterative
given monotone operators. Studies and applications Of.k+1 \k+1 yk+1y i i i ; .
such problems can be found iA,9,10,11,12,13 14]. By XUy AR is obtained via the following steps:
attaching a Lagrange multiplier vectdr € %' to the Step 1.Solve the following inequality to obtaifi™:
linear constraintéx+ By = b, the problem 1)-(3) can be

explained as finav € # such that: (X =X TLE ) — ATAK — H (AXT + By — b)]
W-wTQW) >0, YWew, @) RO} >0, W e, )
where Step 2.Solve the following inequality to obtajfi*:
X f(X) — AT)\ (y’ _ yk+1)T{g(yk+1) _ BT [)\ k Hk(AXk+1—|— Byk+1 _ b)]
= = —B™A , 5 m
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Step 3.Updata X via AK = AKX H(AZ+ By*— b) (12)
ARFL — K Hy (AXKHL 1 BykHL ). (9)  Where

Very recently, Yuan and Li4] have proposed a new |G 1&¥||% < 1_—"l;72||vvk—v”vk|\(23. ne©1), (13)
type of ADM by substituting in the alternating directions 1+u

method {)-(9) the term R(x —x) and Sy — y¢) by £k

Rix — X9 + N( - X and Exk (14)

Sy — ¥) + p(y* — Y2y1)], respectively. The new g

iterative (xk+1,yk+1,)\k+1) in [24] is obtained via the

following steps: For a given and

WK = (XK YK AK) € 21, x #T, x %', andp € (0,1), the (14 p)R

new iterative (X1, y<t1 Akt1) in [24] is obtained via G= (1+ ) (15)

solving thefollowing system: H-1
f(x)— AT [A*— K H (Ax+ Byk b)] is a positive definite (block diagonal) matrix.
FRI(X— X+ p(¥— X2 =0, \S\Z/grr{e:ct|(())(Ir(1Jrl ykﬂe)p\)l.(H) . give-::]ht?y: new iterate
g(y) — BT A*—H(AX"* - By —b)] WL = oWt (1- p)Py W — aydd,  p e (0,1) (16)
+S(y -y + < - YAy =0, where

AR AR H (A4 By —b). oy = ¢k2, (17)

[[dlIG

Motivated and inspired by the works oP4], we
proposed a new inexact alternating direction method for ~
SVI. Each iteration of the above method contains adk := [[X<—&E|&+ |y — |5+ A% — AX|Z
prediction and a correction, the predictor is obtained via (Wk_wk)TEk (18)
solving the LQP system approximately under
significantly relaxed accuracy criterion and new iterate isand
obtained by a convex combination of the previous pomt 1¢k
and the one generated by a projection type method along =W W G (19)
the descent direction. Our results can be viewed afRemark 2.1. Note thatiféf = ATHB(y — y¥) and&y =
significant extensions of the previously known results.  in (10) and (1), respectively, the new iterate ir24] is

produced via solvingl(0)-(12).
The main task of the prediction is to find an approximate

2 The proposed method solution of the following equations

- . f(x) — AT[AK— H(Ax+ By —b)]
In this section, we suggest and consider the new LQP

alternating direction method (LQP-ADM) for solving HRIX =X+ p(x = XX )] =0, (20)
SVI. In course we always make the following standard Tk

assumptions: g(y) —B'[A" — H(Ax+By—b)]

Assumption A. f(x) is monotone with respect t&" , +9(y—y) +u(y<—Y2y b =o. (21)

andg(y) is monotone with respect t&'",

Assumption B. The solution set of SVI, denoted by*, ~ 1he exact solution of

is nonempty. T —ATAK - H(AX + By~ b)]
lgizg”t:v\e;slferatlve scheme of the proposed method is given FR((X— xk) n H(Xk - szx‘l)] o 22)

Prediction step: For a giverw® = (xX,y*,A¥) € . x  denoted by, as the approximate solution d@). Then
AT x ', andy € (0,1), the pred|ctowk xk,yk,/\ Kye  the exact solution of

RN x ZT, x " is obtained via solving the following g(y¥) — BT[AK — H (AR + By — b)]
system:

o . +S[(y -y + (= Y2y H] =0, (23)
) _kA A"—H (Axt By —b)] +R{(x—x) denoted by*; as the approximate solution df{).
+u(xk—x2x1) =&k ~0, (10) It following from (10)-(12) and @2)- (23) that
BTk &k f(K) — £ (xXK) + ATHA(RK — XK) + ATHB(JK — y¥)
g(y) BT[A H(AX+ZBE’1 o g | = o) — g(y¥) + BTHB( — %)
Y=Y+ u(y - | =& ~0, (12) 0 0
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Note that ifR=rl andS= dl, the positive solution 0f22)- (23)
can be obtained explicitly by

: :<s1k+\/<s1k T ap ))/Zr (24)
g = (pik+ <pik>2+4u<yik>2) /25 (25)
with

K= r(1— )X — (F(X) —ATAK—H(AXE+ By —b)]), (26)
P =s(1— )y — (gy¥) —BTAK—H(AK +By* ~b)]).  (27)

Itis easy to verify thay> 0,% > 0 wheneverX > 0,x< > 0.

We need the following result in the convergence analysis of

the proposed method.

Lemma 2.124] Let g(u) € Z" be a monotone mapping of
with respect toZ"! andR € Z"™" be positive definite diagonal
matrix. For giveruX > 0, if we letUy := diag(uf, uk, -, uk) and
u~1 be ann-vector whosg-th element is 1uj, then the equation

A(u) +R{(u—u) + p(u ~Ugu )] =0 (28)

has a unique positive solutiam Moreover, for anyw > 0, we
have
—Ul|3(29)

(v—u)Tq(u) > 1K

T (Iu—vIE— | ~VIE) +
In the next theorem we show thay is lower bounded away

from zero and it is one of the keys to prove the global

convergence results.

Theorem 2.1 For givenw € Z27, x ZT, x %', let W* be

generated by1(0)-(12), then we have the following

20— ||dk|3 > T5h (1—n?) W< — |13 (30)
and
1
a5 (31)

Proof. It follows from (18), (19) and under Condition13), we
have

20y = 2| — K|+ 2]y — 513+ 2 A - AK|A L
+2(WK —WK)T gk
= WKWK+ GLENZ — |G LEKZ + (1 )X — =43
F(L— pllyE = FKIE+ A= AK12
= [|cklIZ + T (1+p) X<~ ”"H%+ 1+u )Iy< =913
A=Ak ) — G 2ENZ + uAk AN
> [|ok]|E + Tk W< — i3 — |G 15 HG
> [|ok1d + T8 (1— n?)[wk — WK 3.

Therefore, it follows from 17) and @0) that

o> .0

I\Jll—‘

3 Main Results

In this section, we prove some basic properties, which véll b
used to establish the sufficient and necessary conditianhéo
convergence of the proposed method. The first result is due to
applying Lemma 2.1 to the LQP systems in prediction stepef th
proposed method.

Theorem 3.1 For givenwX = (X,y¥ AK) € 27, x ZT x %',

letWK be generated byL()-(12). Then for anyw* = (x*,y*,A*) €
W, we have

(W<~ w")TGel > ¢ (32)
Proof. Applying Lemma 2.1 to 10) by setting

Uk =xK u= v=x*in (29) and

Q(u) = (%)~ AT[AK — H (AR + B~ b)) - &,
we get
(x*—)?k)T{f(ik)—AT[Ak—H(Aik-i—Byk—b)]—E>'(‘}
> B (IR xR XX R) + S X - R (33)
Recall
(¢~ RTROE -2 = 2 (IR~ [~ [ - R) + 50— 2

(34)

Adding (33) and (34), we obtain

O¢ = R)T{ (24 RO = %) — £(2) + ATAK+ £} < %)%
(35)

Similarly, applying Lemma 2.1 tal(l), substitutingu = y, u =
¥, v=y* and replacindR, n with S, mrespectively in 29) and

a(u) = g(#) ~ BT (AK— -,
we get
(v = )T {o(5¥) — BT [A* — H(AR + BF — b)) — &'}
> LB (- y B Iy -y ) + S IV - 542
Recall

(v =9 TSy ) =

H (AR + By — b)]

(36)

2 (I 13— I -y I12) + 2 I~ 13
(37)

Adding (36) and @7), we have

v =T {1+ S~ )~ o) + BTAK+ & | < iy~ I,

(38)

Since(x*,y*,A*) is a solution of SVIX* € 7, andy* € %™,
we have
(RE—x)T(f(x*) —ATA*) >0,

(9(y’) ~BTA") >0,

=
|
%,

and
AX" +By*—b=0.
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Using the monotonicity of andg, we obtain

geox \ T /(R —ATAK
(y“—y* ) (g(ifk)—BTA")
AK—2* ARK+BJF —b

Rx \ T/ f(x) — ATA*
> -y g(y")—BTA*
Ak A+ AX* +By* —Db

>0. (39)
Adding 35), (38) and @9), we get
W — W) TGdy = (W — W) TGk — WK + G 1K)
= (X =) T((1+ PR — %) + &)
Y =) T (A4 SV -7 + &)
+(A* = 2T (AR 4+ BFK —b)
< pXE =R R+ plye - 913 (40)

It follows from (40) that
(WK —w) TG > (WK — W) Gl — [ — =& — mlly* — §(13
> X = R R+ Iy = FE+ [AK = AKF

(WKW T EK,

Using the definitions oy the assertion of this theorem is proved.

0

Theorem 3.2 Letw* € #* be a solution of SVI and let**1 be
defined by 16). ThenwX andw* are bounded, and

I — WG < WE I — e - (41)
where (A-wI-p)1-n?)
ci= SR >0,
Proof. It follows from (16), (32), (30) and @1) that
I —w B = (WK —w) + (1— p) (Rw [WF — adk] —w*) |

< pIWS — W[ + (L p)|Rw [W — aech] — w1
< Pl — W& + (L p) W< —w* — aredE
= Wk —w(|E —2(1 - p)ak (W' —w*)T G

+(1-p)agckE
< WK — w3 — (1 p) g
< [k — w3 — RAERIAT) k  2,

Sincey € [1,2) we have

WAL —w | < [Jwk —wr | <<l —w|

and thus{wK} is a bounded sequence.
It follows from (41) that

Y WK —WK§ < oo,
k=0
which means that

lim ([ W<~ g = 0. (42)

Since{wK} is a bounded sequence, we conclude {ki#t} is also
bounded. o

4 Convergence of the proposed method

In this section, we prove the global convergence of the sego
method. The following results can be proved by using the
technique of Lemma 5.1 and Theorem 5.12h [

Lemma 4.1 For givenwK = (X<,yK,AK) € 21, x Z#T, x %',

let Wk = (%K, §% A¥) be generated byl0)-(12). Then for anyw =
(x,y,A) € #', we have

(x— 2T (F(R) — ATAK = £ > (& = ) TR{ (L4 p)x — (uxk + %9}
(43)

and

(Y= )T (9(5) —BTAK — &) > (Y  —9)TS{ (1 + p)y — (uy< + )}
(44)

Proof. Applying Lemma 2.1 to Step 1 of LQP-ADM ( by setting

uk = xK u= 5K q(u) = f () — ATAK— &k andv = x in (29)), it

foIIowsthat

(x=R)T(F(R)—ATAK = &) > T (IR~ xR~ X~ x]R)
+ 1 e — =2

By a simple manipulation, we have

1 Sl 1—

(IR = xR = X = x|R) + T X — %I

= (14 )X R — (14 p)XT R — (1— ) (R) TR — XK R+ %1
= (14 p)X" RO — %) — (X — ) TR(ux* 4 %€)
= K =) TR{ (14 p)x— (X + %)},

and the assertion4B) is proved. Similarly we can prove the
assertion44). O

Now, we are ready to prove the convergence of the proposed
method.

Theorem 4.1 The sequence{wk} generated by the proposed
method converges to somé& which is a solution of SVI.

Proof. It follows from (42) that

lim X ~%r=0,  Jim [y ~#|s=0 (45)
and
lim AK =22 = lim AR+ B§* ~ bl =0. (46)
Moreover, é3) and @4) imply that
(x—R)T(F(2) = ATAK) > (K=K TR{(1+ p)x— (ux+ %)}
+H(x—R)TES 7)
and
(Y=99T(9(5) —BTAK) > (= F)TS{(1+ )y — (uy*+§)}
+Hy—§)T & (48)
We deduce fromi3) and @5) that
{nmkﬁw( —R)T{F(R)—ATAK} >0, wxeZ),, )
Mo (y—$)T{o(#) -B"AK} >0, wyezT,.
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Since{wK} is bounded, so it has at least one cluster pointwet
be a cluster point ofw¥} and the subsequend@i } converges
tow™. It follows from (46) and @9) that

lim e (x—X)T{E(X) —ATAK} >0, wxe ],
limje(y—y9)T{gy) -BTAK >0, wyeZ].,
lim j_eo (AXKS + ByN —b) = 0.
and consequently
(x—x*)T{f(x*)—ATA®} >0,  VxeZ},,
(y=¥")T{g(y*) -B"A"} >0, vy e #T,,

AX® +By® —b =0,

which means that™ is a solution of SVI.
Now we prove that the sequend@X} converges ton™.
Since

dmnwk—wkHG:q and {WKi} —w”,
for anye > 0, there exists ah> 0 such that
K —W°°H<; and WK —w'ﬂu<§ (50)
Therefore, for ank > k;, it follows from (41) and 60) that
[ = < W =W < - <

This implies that the sequenc{wk} converges tav® which is a
solution of SVI. a

5 Conclusions
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