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1 Introduction

The problem concerned in this paper is the following
variational inequalities, findu ∈ Ω such that:

(u′− u)T F(u)≥ 0, ∀ u′ ∈ Ω , (1)

with

u =

(

x
y

)

, F(u) =

(

f (x)
g(y)

)

, (2)

and

Ω = {(x,y)|x ∈ R
n
++,y ∈ R

m
++,Ax+By = b} (3)

whereA ∈ R
l×n,B ∈ R

l×m are given matrices,b ∈ R
l is

a given vector, andf : Rn
++ → Rn, g : Rm

++ → Rm are
given monotone operators. Studies and applications of
such problems can be found in [7,9,10,11,12,13,14]. By
attaching a Lagrange multiplier vectorλ ∈ R l to the
linear constraintsAx+By = b, the problem (1)-(3) can be
explained as findw ∈ W such that:

(w′−w)T Q(w)≥ 0, ∀w′ ∈ W , (4)

where

w =





x
y
λ



 Q(w) =





f (x)−AT λ
g(y)−BT λ
Ax+By− b



 , (5)

W = R
n
++×R

m
++×R

l. (6)

Problem (4)-(6) is referred to as SVI (structured
variational inequalities).

The alternating direction method (ADM) is a
powerful method for solving the structured problem
(4)-(6), since it decomposes the original problems into a
series subproblems with lower scale, which was originally
proposed by Gabay and Mercier [11] and Gabay [10].
The classical proximal alternating direction method
(PADM) [6,8,15] is an effective numerical approach for
solving variational inequalities with separable structure.
To make the PADM more efficient and practical, He et al.
[15] proposed a modified PADM as following. For given
(xk,yk,λ k) ∈ Rn

++ × Rm
++ × R l , the new iterative

(xk+1,yk+1,λ k+1) is obtained via the following steps:

Step 1.Solve the following inequality to obtainxk+1:

(x′− xk+1)T{ f (xk+1)−AT [λ k −Hk(Axk+1+Byk − b)]

+Rk(x
k+1− xk)} ≥ 0, ∀x′ ∈ R

n
++ (7)

Step 2.Solve the following inequality to obtainyk+1:

(y′− yk+1)T{g(yk+1)−BT [λ k −Hk(Axk+1+Byk+1− b)]

+Sk(y
k+1− yk)} ≥ 0, ∀y′ ∈ R

m
++ (8)
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Step 3.Updateλ k via

λ k+1 = λ k −Hk(Axk+1+Byk+1− b). (9)

Very recently, Yuan and Li [24] have proposed a new
type of ADM by substituting in the alternating directions
method (7)-(9) the term R(x − xk) and S(y − yk) by
R[(x − xk) + µ(xk − X2

k x−1)] and
S[(y − yk) + µ(yk − Y 2

k y−1)], respectively. The new
iterative (xk+1,yk+1,λ k+1) in [24] is obtained via the
following steps: For a given
wk = (xk,yk,λ k) ∈ R

n
++×R

m
++×R

l , andµ ∈ (0,1), the
new iterative(xk+1,yk+1,λ k+1) in [24] is obtained via
solving the following system:

f (x)−AT [λ k −H(Ax+Byk− b)]

+R[(x− xk)+ µ(xk −X2
k x−1)] = 0,

g(y)−BT [λ k −H(Axk+1+By− b)]

+S[(y− yk)+ µ(yk −Y 2
k y−1)] = 0,

λ k+1= λ k−H(Axk+Byk−b).

Motivated and inspired by the works of [24], we
proposed a new inexact alternating direction method for
SVI. Each iteration of the above method contains a
prediction and a correction, the predictor is obtained via
solving the LQP system approximately under
significantly relaxed accuracy criterion and new iterate is
obtained by a convex combination of the previous point
and the one generated by a projection type method along
the descent direction. Our results can be viewed as
significant extensions of the previously known results.

2 The proposed method

In this section, we suggest and consider the new LQP
alternating direction method (LQP-ADM) for solving
SVI. In course we always make the following standard
assumptions:
Assumption A. f (x) is monotone with respect toRn

++
andg(y) is monotone with respect toRm

++,
Assumption B. The solution set of SVI, denoted byW ∗,
is nonempty.
Then the iterative scheme of the proposed method is given
as follows.
Prediction step: For a givenwk = (xk,yk,λ k) ∈ Rn

++×

Rm
++×R l, andµ ∈ (0,1), the predictor ˜wk =(x̃k, ỹk, λ̃ k)∈

Rn
++ ×Rm

++ ×R l is obtained via solving the following
system:

f (x)−AT [λ k −H(Ax+By− b)]+R[(x− xk)

+µ(xk −X2
k x−1)] =: ξ k

x ≈ 0, (10)

g(y)−BT [λ k −H(Ax+By− b)]

+S[(y− yk)+ µ(yk −Y 2
k y−1)] =: ξ k

y ≈ 0, (11)

λ̃ k = λ k −H(Ax̃k +Bỹk − b) (12)

where

‖G−1ξ k‖2
G ≤

1− µ
1+ µ

η2‖wk − w̃k‖2
G. η ∈ (0,1), (13)

ξ k =





ξ k
x

ξ k
y
0



 (14)

and

G =





(1+ µ)R
(1+ µ)S

H−1



 (15)

is a positive definite (block diagonal) matrix.
Correction step: The new iterate
wk+1 = (xk+1,yk+1,λ k+1) is given by:

wk+1 = ρwk +(1−ρ)PW [wk −αkdk], ρ ∈ (0,1) (16)

where

αk =
ϕk

‖dk‖
2
G

, (17)

ϕk := ‖xk − x̃k‖2
R + ‖yk − ỹk‖2

S + ‖λ k − λ̃ k‖2
H−1

+(wk − w̃k)T ξ k (18)

and

dk := wk − w̃k +G−1ξ k. (19)

Remark 2.1. Note that ifξ k
x = AT HB(y− yk) andξ k

y = 0
in (10) and (11), respectively, the new iterate in [24] is
produced via solving (10)-(12).
The main task of the prediction is to find an approximate
solution of the following equations

f (x)−AT [λ k −H(Ax+By− b)]

+R[(x− xk)+ µ(xk −X2
k x−1)] = 0, (20)

g(y)−BT [λ k −H(Ax+By− b)]

+S[(y− yk)+ µ(yk −Y2
k y−1)] = 0. (21)

The exact solution of

f (xk)−AT [λ k −H(Axk +Byk − b)]

+R[(x− xk)+ µ(xk −X2
k x−1)] = 0. (22)

denoted by ˜xk, as the approximate solution of (20). Then
the exact solution of

g(yk)−BT [λ k −H(Ax̃k +Byk − b)]

+S[(y− yk)+ µ(yk −Y2
k y−1)] = 0, (23)

denoted by ˜yk, as the approximate solution of (21).
It following from (10)-(12) and (22)- (23) that

ξ k =





ξ k
x

ξ k
y
0



 =





f (x̃k)− f (xk)+AT HA(x̃k −xk)+AT HB(ỹk −yk)

g(ỹk)−g(yk)+BT HB(ỹk −yk)
0




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Note that ifR = rI andS = sI, the positive solution of (22)- (23)
can be obtained explicitly by

x̃k
i =

(

sk
i +

√

(sk
i )

2+4µ(xk
i )

2

)

/2r (24)

ỹk
i =

(

pk
i +

√

(pk
i )

2+4µ(yk
i )

2

)

/2s (25)

with

sk = r(1−µ)xk − ( f (xk)−AT [λ k −H(Axk +Byk −b)]), (26)

pk = s(1−µ)yk − (g(yk)−BT [λ k −H(Ax̃k +Byk −b)]). (27)

It is easy to verify that ˜yk > 0, x̃k > 0 wheneveryk > 0,xk > 0.
We need the following result in the convergence analysis of

the proposed method.
Lemma 2.1[24] Let q(u) ∈ Rn be a monotone mapping ofu
with respect toRn

+ andR ∈ Rn×n be positive definite diagonal
matrix. For givenuk > 0, if we letUk := diag(uk

1,u
k
2, · · · ,u

k
n) and

u−1 be ann-vector whosej-th element is 1/u j , then the equation

q(u)+R[(u−uk)+µ(uk −U2
k u−1)] = 0 (28)

has a unique positive solutionu. Moreover, for anyv ≥ 0, we
have

(v−u)T q(u)≥ 1+µ
2

(

‖u−v‖2
R −‖uk −v‖2

R
)

+ 1−µ
2 ‖uk −u‖2

R.(29)

In the next theorem we show thatαk is lower bounded away
from zero and it is one of the keys to prove the global
convergence results.
Theorem 2.1 For given wk ∈ Rn

++ × Rm
++ × R l, let w̃k be

generated by (10)-(12), then we have the following

2ϕk −‖dk‖
2
G ≥ 1−µ

1+µ (1−η2)‖wk − w̃k‖2
G (30)

and

αk ≥
1
2
. (31)

Proof. It follows from (18), (19) and under Condition (13), we
have

2ϕk = 2‖xk − x̃k‖2
R +2‖yk − ỹk‖2

S +2‖λ k − λ̃ k‖2
H−1

+2(wk − w̃k)T ξ k

= ‖wk − w̃k +G−1ξ k‖2
G −‖G−1ξ k‖2

G +(1−µ)‖xk − x̃k‖2
R

+(1−µ)‖yk − ỹk‖2
S +‖λ k − λ̃ k‖2

H−1

= ‖dk‖
2
G + 1−µ

1+µ ((1+µ)‖xk − x̃k‖2
R +(1+µ)‖yk − ỹk‖2

S

+‖λ k − λ̃ k‖2
H−1)−‖G−1ξ k‖2

G +
2µ

1+µ
‖λ k − λ̃ k‖2

H−1

≥ ‖dk‖
2
G + 1−µ

1+µ ‖wk − w̃k‖2
G −‖G−1ξ k‖2

G

≥ ‖dk‖
2
G + 1−µ

1+µ (1−η2)‖wk − w̃k‖2
G.

Therefore, it follows from (17) and (30) that

αk ≥
1
2
.⊓⊔

3 Main Results

In this section, we prove some basic properties, which will be
used to establish the sufficient and necessary conditions for the
convergence of the proposed method. The first result is due to
applying Lemma 2.1 to the LQP systems in prediction step of the
proposed method.
Theorem 3.1 For givenwk = (xk,yk,λ k) ∈ Rn

++×Rm
++×R l ,

let w̃k be generated by (10)-(12). Then for anyw∗ =(x∗,y∗,λ ∗)∈
W ∗, we have

(wk −w∗)T Gdk ≥ ϕk. (32)

Proof. Applying Lemma 2.1 to (10) by setting
uk = xk,u = x̃k,v = x∗ in (29)) and

q(u) = f (x̃k)−AT [λ k −H(Ax̃k +Bỹk −b)]−ξ k
x ,

we get

(x∗− x̃k)T
{

f (x̃k)−AT [λ k −H(Ax̃k +Bỹk −b)]−ξ k
x

}

≥ 1+µ
2

(

‖x̃k −x∗‖2
R −‖xk −x∗‖2

R

)

+ 1−µ
2 ‖xk − x̃k‖2

R. (33)

Recall

(x∗− x̃k)T R(xk − x̃k) =
1
2

(

‖x̃k −x∗‖2
R −‖xk −x∗‖2

R

)

+
1
2
‖xk − x̃k‖2

R.

(34)

Adding (33) and (34), we obtain

(x∗− x̃k)T
{

(1+µ)R(xk − x̃k)− f (x̃k)+AT λ̃ k +ξ k
x

}

≤ µ‖xk − x̃k‖2
R.

(35)

Similarly, applying Lemma 2.1 to (11), substitutinguk = yk, u =
ỹk, v = y∗ and replacingR, n with S, m respectively in (29) and

q(u) = g(ỹk)−BT [λ k −H(Ax̃k +Bỹk −b)]−ξ k
y ,

we get

(y∗− ỹk)T{g(ỹk)−BT [λ k −H(Ax̃k +Bỹk −b)]−ξ k
y
}

≥ 1+µ
2

(

‖ỹk −y∗‖2
S −‖yk −y∗‖2

S

)

+ 1−µ
2 ‖yk − ỹk‖2

S. (36)

Recall

(y∗− ỹk)T S(yk − ỹk) =
1
2

(

‖ỹk −y∗‖2
S −‖yk −y∗‖2

S

)

+
1
2
‖yk − ỹk‖2

S.

(37)

Adding (36) and (37), we have

(y∗− ỹk)T
{

(1+µ)S(yk − ỹk)−g(ỹk)+BT λ̃ k +ξ k
y

}

≤ µ‖yk − ỹk‖2
S,

(38)

Since(x∗,y∗,λ ∗) is a solution of SVI, ˜xk ∈ Rn
++ andỹk ∈ Rm

++,
we have

(x̃k −x∗)T ( f (x∗)−AT λ ∗)≥ 0,

(ỹk −y∗)T (g(y∗)−BT λ ∗)≥ 0,

and
Ax∗+By∗−b = 0.
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Using the monotonicity off andg, we obtain




x̃k −x∗

ỹk −y∗

λ̃ k −λ ∗





T 



f (x̃k)−AT λ̃ k

g(ỹk)−BT λ̃ k

Ax̃k +Bỹk −b





≥





x̃k −x∗

ỹk −y∗

λ̃ k −λ ∗





T 



f (x∗)−AT λ ∗

g(y∗)−BT λ ∗

Ax∗+By∗−b





≥ 0. (39)

Adding (35), (38) and (39), we get

(w∗− w̃k)T Gdk = (w∗− w̃k)T G(wk − w̃k +G−1ξ k)

= (x∗− x̃k)T ((1+µ)R(xk − x̃k)+ξ k
x )

+(y∗− ỹk)T ((1+µ)S(yk − ỹk)+ξ k
y )

+(λ ∗− λ̃ k)T (Ax̃k +Bỹk −b)

≤ µ‖xk − x̃k‖2
R +µ‖yk − ỹk‖2

S. (40)

It follows from (40) that

(wk −w∗)T Gdk ≥ (wk − w̃k)T Gdk −µ‖xk − x̃k‖2
R −µ‖yk − ỹk‖2

S

≥ ‖xk − x̃k‖2
R +‖yk − ỹk‖2

S +‖λ k − λ̃ k‖2
H−1

+(wk − w̃k)T ξ k.

Using the definitions ofϕk the assertion of this theorem is proved.
⊓⊔

Theorem 3.2 Let w∗ ∈ W ∗ be a solution of SVI and letwk+1 be
defined by (16). Thenwk andw̃k are bounded, and

‖wk+1−w∗‖2
G ≤ ‖wk −w∗‖2

G −c‖wk − w̃k‖2
G (41)

where
c := (1−µ)(1−ρ)(1−η2)

4(1+µ) > 0.

Proof. It follows from (16), (32), (30) and (31) that

‖wk+1−w∗‖2
G = ‖ρ(wk −w∗)+(1−ρ)(PW [wk −αkdk]−w∗)‖2

G

≤ ρ‖wk −w∗‖2
G +(1−ρ)‖PW [wk −αkdk]−w∗‖2

G

≤ ρ‖wk −w∗‖2
G +(1−ρ)‖wk −w∗−αkdk‖

2
G

= ‖wk −w∗‖2
G −2(1−ρ)αk(w

k −w∗)T Gdk

+(1−ρ)α2
k ‖dk‖

2
G

≤ ‖wk −w∗‖2
G −αk(1−ρ)ϕk

≤ ‖wk −w∗‖2
G −

(1−µ)(1−ρ)(1−η2)
4(1+µ) ‖wk − w̃k‖2

G.

Sinceγ ∈ [1,2) we have

‖wk+1−w∗‖ ≤ ‖wk −w∗‖ ≤ . . .≤ ‖w0−w∗‖

and thus{wk} is a bounded sequence.
It follows from (41) that

∞

∑
k=0

c‖wk − w̃k‖2
G <+∞.

which means that

lim
k→∞

‖wk − w̃k‖G = 0. (42)

Since{wk} is a bounded sequence, we conclude that{w̃k} is also
bounded. ⊓⊔

4 Convergence of the proposed method

In this section, we prove the global convergence of the proposed
method. The following results can be proved by using the
technique of Lemma 5.1 and Theorem 5.1 in [2].

Lemma 4.1 For givenwk = (xk,yk,λ k) ∈ Rn
++ ×Rm

++ ×R l,

let w̃k = (x̃k, ỹk, λ̃ k) be generated by (10)-(12). Then for anyw =
(x,y,λ ) ∈ W , we have

(x− x̃k)T ( f (x̃k)−AT λ̃ k −ξ k
x )≥ (xk − x̃k)T R

{

(1+µ)x− (µxk + x̃k)
}

(43)

and

(y− ỹk)T (g(ỹk)−BT λ̃ k −ξ k
y )≥ (yk − ỹk)T S

{

(1+µ)y− (µyk + ỹk)
}

.(44)

Proof. Applying Lemma 2.1 to Step 1 of LQP-ADM ( by setting
uk = xk,u = x̃k,q(u) = f (x̃k)−AT λ̃ k −ξ k

x andv = x in (29)), it
follows that

(x− x̃k)T ( f (x̃k)−AT λ̃ k −ξ k
x ) ≥

1+µ
2

(

‖x̃k −x‖2
R −‖xk −x‖2

R
)

+ 1−µ
2 ‖xk − x̃k‖2

R.

By a simple manipulation, we have

1+µ
2

(

‖x̃k −x‖2
R −‖xk −x‖2

R
)

+ 1−µ
2 ‖xk − x̃k‖2

R

= (1+µ)xT Rxk − (1+µ)xT Rx̃k − (1−µ)(x̃k)T Rxk −µ‖xk‖2
R +‖x̃k‖2

R

= (1+µ)xT R(xk − x̃k)− (xk − x̃k)T R(µxk + x̃k)

= (xk − x̃k)T R
{

(1+µ)x−
(

µxk + x̃k)},

and the assertion (43) is proved. Similarly we can prove the
assertion (44). ⊓⊔

Now, we are ready to prove the convergence of the proposed
method.

Theorem 4.1 The sequence{wk} generated by the proposed
method converges to somew∞ which is a solution of SVI.

Proof. It follows from (42) that

lim
k→∞

‖xk − x̃k‖R = 0, lim
k→∞

‖yk − ỹk‖S = 0 (45)

and

lim
k→∞

‖λ k − λ̃ k‖H−1 = lim
k→∞

‖Ax̃k +Bỹk −b‖H = 0. (46)

Moreover, (43) and (44) imply that

(x− x̃k)T ( f (x̃k)−AT λ̃ k) ≥ (xk − x̃k)T R
{

(1+µ)x− (µxk + x̃k)
}

+(x− x̃k)T ξ k
x (47)

and

(y− ỹk)T (g(ỹk)−BT λ̃ k) ≥ (yk − ỹk)T S
{

(1+µ)y− (µyk + ỹk)
}

+(y− ỹk)T ξ k
y . (48)

We deduce from (13) and (45) that
{

limk→∞(x− x̃k)T { f (x̃k)−AT λ̃ k} ≥ 0, ∀x ∈ R
n
++,

limk→∞(y− ỹk)T{g(ỹk)−BT λ̃ k} ≥ 0, ∀y ∈ R
m
++.

(49)

c© 2015 NSP
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Since{wk} is bounded, so it has at least one cluster point. Letw∞

be a cluster point of{wk} and the subsequence{wk j} converges
to w∞. It follows from (46) and (49) that














lim j→∞(x−xk j )T{ f (xk j )−AT λ k j} ≥ 0, ∀x ∈ Rn
++,

lim j→∞(y−yk j )T {g(yk j )−BT λ k j ≥ 0, ∀y ∈ Rm
++,

lim j→∞(Axk j +Byk j −b) = 0.

and consequently














(x−x∞)T { f (x∞)−AT λ ∞} ≥ 0, ∀x ∈ Rn
++,

(y−y∞)T {g(y∞)−BT λ ∞} ≥ 0, ∀y ∈ Rm
++,

Ax∞ +By∞ −b = 0,

which means thatw∞ is a solution of SVI.
Now we prove that the sequence{wk} converges tow∞.

Since

lim
k→∞

‖wk − w̃k‖G = 0, and {w̃k j}→ w∞,

for anyε > 0, there exists anl > 0 such that

‖w̃kl −w∞‖<
ε
2

and ‖wkl − w̃kl‖<
ε
2
. (50)

Therefore, for anyk ≥ kl , it follows from (41) and (50) that

‖wk −w∞‖ ≤ ‖wkl −w∞‖ ≤ ‖wkl − w̃kl‖+‖w̃kl −w∞‖< ε.

This implies that the sequence{wk} converges tow∞ which is a
solution of SVI. ⊓⊔

5 Conclusions

In this paper, we propose a new modified logarithmic-quadratic
proximal alternating direction method (LQP-ADM) for solving
structured variational inequalities. Each iteration of the new
LQP-ADM contains a prediction and a correction, the predictor
is obtained via solving the LQP system approximately under
significantly relaxed accuracy criterion and new iterate is
obtained by a convex combination of the previous point and the
one generated by a projection type method along the descent
direction. Global convergence of the proposed method is proved
under mild assumptions.
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