
Appl. Math. Inf. Sci.9, No. 3, 1247-1257 (2015) 1247

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090318

A General Case for the Maximum Norm Analysis of an
Overlapping Schwarz Methods of Evolutionary HJB
Equation with Nonlinear Source Terms with the Mixed
Boundary Conditions

Salah Boulaaras1,2,∗ and Mohamed Haiour3

1 Department of Mathematics, Colleague of Science and Arts, Al-Ras, Al-Qassim University, Kingdom Of Saudi Arabia
2 Laboratory of Fundamental and Applied Mathematics, As-Sania University, Oran, Algeria
3 Department of Mathematics, Faculty of Science, Universityof Annaba, Box. 12, Annaba 23000. Algeria

Received: 19 Jul. 2014, Revised: 20 Oct. 2014, Accepted: 21 Oct. 2014
Published online: 1 May 2015
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1 Introduction

The main work of this paper is to extend the previous
numerical analysis results ([3], [4], [5]) to the following
new evolutionary HJB equations with mixed boundary
conditions and the general elliptic operator: findu(x, t)
such thatu ∈ L2 (0,T ;K (u)) , ut ∈ L2

(

0,T ;L2 (Ω)
)



































∂ui

∂ t
+ max

i=1,...,M

(

Aiu− f i (u)
)

= 0, in Σ ,

∂ui

∂η
= ψ i in Γ0, i = 1, ...,M,

ui = 0 in Γ /Γ0, ui (x,0) = ui
0 in Ω

(1)

whereΩ is a bounded smooth domain inRd , d ≥1 and
Σ is a set inR×R

d defined asΣ = [0, T ]×Ω with T <
+∞. Ai are the differential operators defined as follows

Ai = −
N

∑
j,k=1

∂
∂x j

ai
jk (x)

∂
∂xk

+
N

∑
k=1

bi
k (x)

∂
∂xk

+ai
0(x) (2)

and their bilinear forms are associated withAi; for
u,v ∈ H1

0 (Ω)

ai (u,v) =
∫

Ω

(

N

∑
j,k=1

ai
jk(x)

∂ u
∂ x j

∂ v
∂ xk

dx

)

+

+

∫

Ω

(

N

∑
j=1

bi
k (x)

∂u
∂x j

v+ ai
0(x)uvdx

)

,

(3)

assumed to be noncoercive.
and the smooth functionsai

k, j(x), bi
k (x) , ai

0(x) ∈
(

L∞ (Ω)∩C2
(

Ω̄
))M

, x ∈ Ω̄ ,1 ≤ k, j ≤ N are
sufficiently smooth coefficients and satisfy the following
conditions

ai
jk(x) = ai

k j(x); ai
0(x)≥ β > 0, β is a constant (4)

such that

N

∑
j,k=1

ai
jk(x)ξ jξk ≥ γ|ξ |2; ξ ∈ R

N , γ > 0, x ∈ Ω̄ (5)
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with the right hand sidef 1 (.) , f 2 (.) , ..., f M (.) areM
nonlinear and Lipschitz functions with Lipschitz constant
c and satisfying the following condition

f i ∈
(

L2 (0,T,L∞ (Ω))∩C1
(

0,T,H−1 (Ω)
))M

,

f i > 0 and also it’s increasing,

c < β .

(6)

We shall also need the following norm

∀ W =
(

w1,w2, .....,wM) ∈
M

∏
i=1

L∞ (Ω) , (7)

‖W‖∞ = max
1≤ i≤ M

∥

∥wi
∥

∥

∞ .

Γ0 is the part of the boundary defined by:

Γ0 =
{

x ∈ ∂Ω = Γ such that∀ξ > 0, x+ ξ /∈ Ω̄
}

,

where
∂ui

∂η
= ∇ui.

−→ηi , such that−→η i is the normal vector,

the symbol(., .)Γ0
stands for the inner product inL2(Γ0).

K (u) is an implicit convex set defined as follows

K
(

ui)=































(

u1,u2.....uM
h

)

∈
(

L2
(

0,T,H1
0 (Ω)

))M
,

ui (x)≤ l+ ui+1,
∂ui

∂η
= ψ i in Γ0,

ui = 0 in Γ /Γ0, ui (x,0) = ui
0 in Ω .

(8)

Finally,
∂u
∂η

=∇u.−→η , such that−→η is the normal vector.

The symbol(., .)Ω stands for the inner product inL2(Ω),
(., .)Γ0

stands for the inner product inL2(Γ0).

Domain decomposition ideas have been applied to a
wide variety of problems. We did not want to include all
these techniques in this work. For an extensive survey of
recent advances, we refer to the proceedings of the annual
domain decomposition meetings see. http
://www.ddm.org. Domain decomposition algorithms is
divided into two classes, those that use overlapping
domains, which refer to as Schwarz methods, and those
that use non-overlapping domains, which we refer to as
substructuring. Any domain decomposition method is
based on the assumption that the given computational
domain Ω is decomposed into subdomains
Ωi, i = 1, ...,M, which may or may not overlap. Next, the
original problem can be reformulated upon each
subdomainΩi, yielding a family of subproblems of
reduced size that are coupled one to another through the

values of the unknowns solution at subdomain interfaces.
Fruitful references can be found in [1], [2], [19], [20]. A
numerical study of elliptic and parabolic problems by the
finite element combined with a finite difference methods
([5], [6], [7],[8],[9], [10], [11], [12], [13], [15]) and by the
domain decomposition method combined with finite
element method was treated in [3], [4], [14], [16], [17],
[19], [20].

In [3] we treated the overlapping domain
decomposition method combined with a finite element
approximation for the elliptic quasi-variational
inequalities related with impulse control problem, where
it can be provided with a maximum norm analysis of an
overlapping Schwarz method on non-matching grids for
the elliptic quasi-variational inequalities related to
impulse control problem with respect to the mixed
boundary conditions for a simple operator∆ . Then, in [4]
we extended the last result for the parabolic quasi
variational with the previous similar conditions and using
the theta time scheme combined with a finite element
spatial approximation and proved that the discretization
on every subdomain converges in uniform norm.
Furthermore a result of asymptotic behavior in uniform
norm has been given by the following theorem, for the

first caseθ ≥
1
2

∥

∥

∥uθ ,p,2n
h − u∞

∥

∥

∥

∞
≤C

[

h2 |logh|3+
(

1
1+β θ∆ t

)p]

(9)

and
∥

∥

∥uθ ,p,2n
h − u∞

∥

∥

∥

∞
≤C

[

h2 |logh|3+
(

1
1+β θ∆ t

)p]

(10)

and for the second case 0≤ θ <
1
2

∥

∥

∥uθ ,p,2n+1
h − u∞

∥

∥

∥

∞
≤Ch2 |logh|3

+C

(

2
2+θ (1−2θ )ρ (A)

)p (11)

and
∥

∥

∥uθ ,p,2n
h − u∞

∥

∥

∥

∞
≤Ch2 |logh|3

+C

(

2
2+θ (1−2θ )ρ (A)

)p

,

(12)

whereC is a constant independent ofh, k anduθ
h (T,x) ,

the discrete solution calculated at the momentT = p∆ t
andu∞, the asymptotic continuous solution. andρ (A) is
the spectral radios of operatorA.

Moreover, in [5], we concerned with the system of
parabolic quasi-variational inequalities (PQVIs) related to
HJB equation with non linear source terms, our goal is to
show that evolutionary HJB equations can be properly
approximated by a semi- implicit time scheme combined
with a finite element spatial method which turns out to be
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quasi-optimally accurate in uniform norm. as we have
carried out before for HJB equation with linear source
terms. We approximate the HJB equation by a weakly
coupled system of parabolic quasi-variational inequalities
and introduce discrete iterative scheme which based in
Bensoussan-Lions’ algorithm. At the same time, we
proved its geometric convergence. Then, we established
an L∞-asymptotic behavior similar to that in, [14], [21]
which investigated the stationary and the evolutionary of
the free boundary problem and Hamilton-Jacobi-Bellman
equations with two cases: linear and nonlinear source
terms, and we gave the following estimate

∥

∥U p
h −U∞∥

∥

∞ = max
1≤ i ≤M

∥

∥

∥ui,p
h − ui,∞

∥

∥

∥

∞

≤C∗
[

h2 |logh|3+
(

1+kc
1+kβ

)p]

,

with C∗ a constant independent of bothh andk, where
U ,p

h =
(

u1
h, ...,u

p
h

)

, the discrete solution calculated at the
moment-end T = p∆ t for an index of the time
discretization k = 1, ..., p, and U∞, the asymptotic
continuous solution with respect the right hand side
condition.

We consider a domain which the union of two
overlapping sub-domains, where each sub-domain has its
own generated triangulation. The grid points on the
sub-domain boundaries need not much the grid points
from the other sub-domain. Under a discrete maximum
principle [9], we show that the discretization on each
sub-domain converges quasi-optimally in theL∞-norm .
For that purpose, further to the above arguments, our
main tool is a discreteL∞-stability property with respect
the obstacle, the right-hand side and the mixed boundary
conditions.

The outline of the paper is as follows. In Section 2, we
lay down some notations and assumptions needed through
out the paper and state both the continuous and discrete
parabolic quasi variational inequalities. In section 3, we
state the continuous alternating Schwarz sequence for
parabolic quasi-variational inequalities and define their
respective the theta scheme combined with a finite
element counterparts in the context of overlapping grids.
Then, we prove theL∞-stability analysis of theθ -scheme
for PVIs, and finally in Section 4, we associate the
discrete PQVIs problem with a fixed point mapping and
we use that in proving the existence of a unique discrete
solution, In section 5 the geometrical convergence is
established using the new iterative discrete algorithm
stands in theta scheme. Then, anL∞-asymptotic behavior
estimate for each sub-domain is derived in uniform norm.

2 The Schwarz method for the parabolic
Quasi-variational inequalities.

We begin by down some definitions and classical results
related to Quasi-variational inequalities.

2.1 The continuous parabolic quasi-variational
inequalities

The problem (1) can be approximated by the following
system of the continuous parabolic inequalities: find
(

u1,u2.....uM
h

)

∈
(

L2
(

0,T,H1
0 (Ω)

))M
solution to











































































∂ui

∂ t
+Aiui ≤ f i

(

ui
)

in Σ ,

ui ≤ l + ui+1, uM+1 = u1,

(

∂ui

∂ t
+Aiui − f i

(

ui
)

)

(

ui −
(

l+ ui+1
))

= 0,

ui (0,x) = ui
0 in Ω , i = 1, ...,M,

∂ui

∂η
= ψ i in Γ0 andui = 0 in Γ /Γ0,

, (13)

which is similar to that in [15] which investigated the
stationary Hamilton-Jacobi-Bellman equations.

So, after a simple mathematical development and by
using the Riez presentation, the problem (13 )can be
transformed into the following continuous parabolic
quasi-variational inequalities: find
(

u1,u2.....uM
h

)

∈
(

L2
(

0,T,H1
0 (Ω)

))M
solution of







































































(

∂ui

∂ t
,vi − ui

)

Ω
+ ai

(

ui,vi − ui
)

≥
(

f i
(

ui
)

,vi − ui
)

−
(

ψ ,v− ui
)

Γ0
,

ui ≤ l + ui+1, vi ≤ l + ui+1,

ui (0,x) = ui
0 in Ω , i = 1, ...,M,

∂ui

∂η
= ψ i in Γ0 andui = 0 in Γ /Γ0,

, (14)

where ai (., .) is the bilinear form associated with
operatorAi defined in (3).

and

(

f i (ui) ,v
)

Ω =

∫

Ω

f i (ui) .vdx

with
(

ϕ i,v
)

Γ0
=

∫

Γ0

ϕ .vdσ .

2.2 The discrete system of parabolic
quasi-variational inequalities

Let Ω be decomposed into triangles andτh denote the set
of all those elementsh > 0 is the mesh size. We assume
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that the family τh is regular and quasi-uniform. We
consider the usual basis of affine functionsϕl ,
l = {1, ...,m(h)} defined byϕl (Ms) = δls whereMs is a
vertex of the considered triangulation. We introduce the
following discrete spacesV h of finite element

V h =



























































v ∈
(

L2
(

0,T,H1
0 (Ω)

)

∩C
(

0,T,H1
0

(

Ω̄
)))M

,

such that

v |K∈ P1, K ∈ τh,

u(.,0) = u0 in Ω ,

∂ui

∂η
= ψ i in Γ0 andui = 0 in Γ /Γ0,

,

(15)
whererh is the usual interpolation operator defined by

v ∈ L2
(

0,T,H1
0 (Ω)

)

∩C
(

0,T,H1
0

(

Ω̄
))

,

rhv =
m(h)

∑
i=1

v(Mi)ϕi (x)
(16)

andP1 denotes the space of polynomials with degree
at most 1.

In the sequel of the paper, we shall make use of the
discrete maximum principle assumption (dmp). In other
words, we shall assume that the matrices
(

Ai
)

ps = a(ϕp,ϕs) , 1≤ i ≤ M areM-matrices (cf. [9]).

We discretize in space the problem(14), i.e. that we
approach the spaceH1

0 by a space discretization of finite
dimensionalVh ⊂ H1

0 . Then we discretize the previous
semi discrete spatial problem with respect to time by
using the semi–implicit scheme. Therefore, we search a
sequence of elementsui,k ∈

(

H1
0 (Ω)

)M
which approaches

ui (tk) , tk = k∆ t, with initial dataui,0 = ui
0.

Thus, we have fork = 1, ..., p,



































































































(

ui,k
h − ui,k−1

h

∆ t
,vi

h − ui,k
h

)

Ω

+ ai
(

ui,k
h ,vi

h − ui,k
h

)

≥

≥
(

f i
(

ui,k
h

)

,vi
h − ui,k

h

)

Ω
−
(

ψ i,vi
h − ui,k

h

)

Γ0
,

ui,k
h ≤ rh

(

l + ui+1,k
h

)

,

vi
h ≤ rh

(

l + ui+1,k
h

)

,

ui,0 (x) = ui
0 in Ω , i = 1, ...,M,

∂ui,k

∂η
= ψ i,k in Γ0 andui = 0 in Γ /Γ0,

,

(17)

which implies







































































































(

ui,k
h

∆ t
,vi

h − ui,k
h

)

Ω

+ ai
(

ui,k
h ,vi

h − ui,k
h

)

≥

≥

(

f i,k
(

uk
h

)

+
ui,k−1

h

∆ t
,vi

h − ui,k
h

)

Ω

−
(

ψ i,vi
h − ui,k

h

)

Γ0
,

ui,k
h ≤ rh

(

l + ui+1,k
h

)

, uM+1
h = u1

h, l > 0,

ui,k
h (0) = ui,k

0h in Ω , i = 1, ...,M,

∂ui,k

∂η
= ψ i,k in Γ0,

ui = 0 in Γ /Γ0,

.

(18)
Then, the problem(18) can be reformulated into the

following coercive discrete system of elliptic
quasi-variational inequalities (EQVIs)































































































bi
(

ui,k
h ,vi

h − ui,k
h

)

≥

(

f
(

ui,k−1
h

)

+λ ui,k−1
h ,vi

h − ui,k
h

)

Ω
−

−
(

ψ i,vi
h − ui,k

h

)

Γ0
, ui,k

h ∈
(

V h
)M

ui,k
h ≤ rh

(

l + ui+1,k
h

)

, uM+1
h = u1

h, l > 0,

ui,k
h (0) = ui,k

0h in Ω , i = 1, ...,M

∂ui,k

∂η
= ϕ i,k in Γ0 andui = 0 in Γ /Γ0,

(19)

such that



































b
(

ui,k
h ,vi

h − ui,k
h

)

= λ
(

ui,k
h ,vi

h − ui,k
h

)

+

+ai
(

ui,k
h ,vi

h − ui,k
h

)

, ui,k
h ∈

(

V h
)M

,

λ =
1

∆ t
=

1
k
=

T
n
, k = 1, ...,n.

. (20)

2.3 Approximation of the HJB equation by a
system of discrete PQVIs

As we have defined before,Ai denote the finite elements
matrices defined by

(

Ai)

ls = ai (ϕl , ϕs) 1≤ i ≤ M, 1≤ l, s ≤ m(h)
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and letBi denote the finite elements matrices defined
by
(

Bi)

ls = bi (ϕl , ϕs) 1≤ i ≤ M, 1≤ l, s ≤ m(h) (21)

respectively, where

bi (ϕl , ϕs) = ai (ϕl , ϕs)+λ (ϕl , ϕs) .

Now, in the light of the above definitions, notations,
and assumptions and according to the above discretization
by the semi–implicit scheme, we are in position to define
the discrete HJB equation. This latter consists of solving
the following semi discrete problem: find
ui,k ∈

(

H1
0 (Ω)

)M

max
1≤ i≤ M

(

Biuk −F i,k
(

ui,k
))

= 0. (22)

Additionally, according to the above discretization by
the finite element approximation applied to(14), and it can
be easily reformulated(22) as: forui,k

h ∈Vh

max
1≤ i≤ M

(

Biuk
h −F i,k(ui,k

h )
)

= 0, (23)

where

F i,k
l (uk

h) =
(

f i,k
(

ui,k
h

)

+λ uk−1
h , ϕl

)

Ω

−
(

ψ i,vi
h − ui,k

h

)

Γ0

and

λ =
T
n
, k = 1, ...,n.

Thanks to [6], [11], [12], [13], [15], the problem(23)
can be approximated by the following system of discrete
elliptic quasi-variational inequalities (EQVIs): find
(

u1,k
h ,u2,k

h .....uM,k
h

)

∈
(

V i
h

)M
solution to



















































































































bi
(

ui,k
h ,vi

h − ui,k
h

)

≥

(

f i,k
(

ui,k
h

)

+λ ui,k−1
h ,vi

h − ui,k
h

)

Ω

−
(

ψ i,vi
h − ui,k

h

)

Γ0
,

ui,k
h ≤ rh

(

l + ui+1,k
h

)

,

vi
h ≤ rh

(

l + ui+1,k
h

)

,

uM+1,k
h = u1,k

h , i = 1, ...,M,

∂ui,k

∂η
= ψ i in Γ0 andui

h = 0 in Γ /Γ0.

.

Let (Mξ ,ϕ) ,
(

M ξ̃ , ϕ̃
)

be a pair of data, and

ξ = σ (Mξ ,ϕ) , ξ̃ = σ
(

M ξ̃ , ϕ̃
)

be the corresponding

solutions to the following parabolic quasi-variational
inequalities (PQVI):

bi
(

ξ i,v− ξ i
)

≥
(

f i,
(

ξ i
)

+λ w,vi − ξ i
)

Ω +
+
(

ϕ i,vi − ξ i
)

Γ0

and










b
(

ξ̃ ,v− ξ̃
)

≥
(

f θ ,k,v− ξ̃
)

Ω
+

+(ϕ̃ ,(v− ξ ))Γ0
,∀v ∈ H1(Ω)

.

Lemma 1.(cf.[3])Under the previous hypotheses and the
notation..

If ϕ ≥ ϕ̃ .Then σ (Mξ ,ϕ)≥ σ
(

Mξ̃ , ϕ̃
)

.

Proposition 1.(cf.[3])Under the previous hypotheses, we
have the following inequality

‖u− ũ‖L∞(Ωi)
≤ ‖Mu−Mũ‖L∞(Ωi)

+‖ϕ − ϕ̃‖L∞(∂Ωi∩Ω j) ,

such that i 6= j, i, j = 1,2,

(24)

where Mu = l + u.

3 The discrete Schwarz sequences.

The discrete maximum principle assumption (dmp)
??: We assume the matrix whose coefficientsa(ϕi,ϕ j)
areM−matrix. For convenience in all the sequels,C will
be a generic constant independent onh.

As we have defined beforeΩ be a bounded open
domain in R

2 and we assume thatΩ is smooth and
connected.

Then we decomposeΩ in two sub-domainsΩ1,Ω2
such that

Ω = Ω1∪Ω2 (25)

andu satisfies the local regularity condition

u |Ωi∈ L2(0,T,W 2,p (Ωi)) (26)

and we denote byΓ = ∂Ω , Γ1 = ∂Ω1, Γ2 = ∂Ω2, γ1 =
∂Ω1∩Ω2, γ2 = ∂Ω2∩Ω1, Ω1,2 = Ω1∩Ω2.

For d = 1, 2, let τhd be a standard regular and
quasi-uniform finite element triangulation inΩd ;
hi (h1 = h2 = h) , being the meshsize. We assume that the
two triangulations are mutually independent onΩ1,2 in
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the sense that a triangle belonging to one triangulation
does not necessarily belong to the other.

Let V hd be the space of continuous piecewise linear
functions onτhd which vanish onΩd ∩∂Ω j, p 6= j, p, j =
1, 2. Forw ∈C

(

∂Ω̄d
)

we define

V hd
w =











































vh ∈V hd : vh = πhd (w) onΩd ∩∂Ω j,

vh (.,0) = vh0 in Ω ,

∂vh

∂η
= ψ in Γ0 ,

vh = 0 in Γ /Γ0; d 6= j, i, j = 1, 2,

, (27)

whereπhd denotes the interpolation operator on∂Ωd .

We consider the model obstacle problem: Findui,k
h ∈

Vhsuch that

bi
(

ui,k
h ,vh − ui,k

h

)

≥
(

f i,k
(

ui,k
h

)

+ µuk−1
h ,vh − ui,k

h

)

Ω

+
(

ψ i
h,vh − ui,k

h

)

Γ0
, vh, ui,k

h ∈Vh

(28)

We define the discrete counterparts of the discrete
Schwarz sequences defined in(28), respectively by
ui,k,2n+1

h , vh ∈V h
(

ui,k,2n
h

), such that















































































































b
(

ui,k,2n+1
h ,vh − u2n+1

h

)

−

(

f i,k
(

ui,k
h

)

+ µui,k−1,2n−1
h ,

(

vh − ui,k,2n+1
h

))

Ω1

−
(

ψ i
h,v− ui,k,2n+1

h

)

Γ0
≥ 0,

ui,k,2n+1
h = ui,k,2n

h on ∂Ω1,

vh = ui,k,2n
h on ∂Ω1,

ui,k,2n+1
h ≤ rh

(

l + ui+1,k,2n−1
h

)

,

∂ui,k,2n+1

∂η
= ψ i in Γ0 andui,2n+1

h = 0 in Γ /Γ0,

(29)

andui,k,2n
h ,vh ∈V h

(

ui,k,2n−1
h

) such that















































































































b
(

ui,k,2n
h ,vh − u2n

h

)

−
(

f θ ,k + µui,k−1,2n−2
h ,

(

vh − ui,k,2n
h

))

Ω2

−
(

ψ i
h,v− ui,k,2n

h

)

Γ0
≥ 0,

ui,k,2n
h = ui,k,2n−1

h on ∂Ω2, vh = ui,k,2n−1
h on ∂Ω2,

ui,k,2n
h ≤ rh

(

l + ui+1,k,2n−2
h

)

,

∂ui,k,2n

∂η
= ψ i,2n in Γ0,

ui,2n
h = 0 in Γ /Γ0.

(30)

3.1 Existence and uniqueness for discrete
PQVIs.

Next using the preceding assumptions, we shall prove the
existence of a unique solution for problem(23) by means
of the Banach’s fixed point theorem.

3.1.1 A fixed point mapping associated with discrete
problem

We defined :H+ =
M
∏
i=1

L∞
+ (Ω), whereL∞

+ (Ω) denotes the

positive cone ofL∞ (Ω). Now we define the following
mapping

Th : H+ −→ (L∞ (Ω))M

W −→ TW = ξ i,k
h =

(

ξ 1,k
h ,ξ 2,k

h , ...,ξ M,k
h

)

= ∂h
(

F i,k
(

wi
)

, l +w,i+1
)

,

(31)
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such thatξ i,k
h , ∀i = 1, ...,M is the solution of the

following problem























































































bi
(

ξ i,k
h ,vi

h − ζ i,k
h

)

≥
(

f i,k
(

ξ i,k
h

)

+λ wi,vi
h − ξ i,k

h

)

Ω

−
(

ψ i
h,v

i
h − ξ i,k

h

)

Γ0
, vi

h ∈Vh,

ξ i,k
h ≤ rh

(

l +wi+1
)

,

vi
h ≤ rh

(

l +wi+1
)

, i = 1,2, ...,M,

ξ M+1,k
h = ξ 1,k

h . k = 1, ..., p,

∂ui,k

∂η
= ψ i in Γ0 andui

h = 0 in Γ /Γ0,

.

(32)

4 An iterative discrete algorithm

We chooseu0
h as the solution of the following discrete

equation

b(ui,0
h ,vh) =

(

gi,0,vh
)

, vh ∈V h, (33)

whereg0 is a regular function give.

Now we give the following discrete algorithm

Uk,2n+1
h = Thui,k−1,2n+1

h ,k = 1, .., p,

Uk,2n+1
h ∈V h

(

ui,k,2n
h

),
(34)

and

Uk,2n
h = ThUk−1,2n

h ,k = 1, .., p,

Uk,2n
h ∈V h

(

ui,k,2n−1
h

),
(35)

whereUk,2n+1
h =

(

u1,k,2n+1
h , ...,uM,k,2n+1

h

)

andUk,2n
h =

(

u1,k,2n
h , ...,uM,k,2n

h

)

are the solutions of the problems(34)

(resp(35))

Remark.We denote by

Q =
{

W ∈ H+, such that 0≤W ≤U0} , (36)

whereU0 =U0 =
(

u1
0, ...,u

M
0

)

.

Since f i,k (.) ≥ 0, and ui,0
h = ui

h0 ≥ 0, combining
comparison results in variational inequalities with a
simple induction, it follows that ui,k ≥ 0, i.e.,

Uk ≥ 0, ∀k = 1, ..., p andTW ≥ 0.
Furthermore, by(35)and(36)we have

U1,2n = TU0,2n ≤U0,2n.

Similar to that in previous works [4], [5], [6], the mapping
T is a monotone increasing for the stationary HJB equation
with non linear source term. Then it can be easily verified
that

U2,2n = TU1,2n ≤ TU0,2n

= U1,2n ≤U0,2n,

thus, inductively

Uk+1,2n = TUk,2n ≤Uk,2n

≤ ...≤U0,2n, ∀k = 1, ..., p

and also it can be seen the sequence
(

uk
)

k stays inQ.

Let

F i,k (vi) = f i,k (ui)+λ vi,

Gi,k (w) = f i,k (ui)+λ wi ∈ (L∞ (Ω))M

be the corresponding right-hand sides to the PQVIs.

Proposition 2.The mapping Th is Lipchitz on H+i.e.,

‖ThV −ThW‖∞ ≤ ‖V −W‖∞ ,V,W ∈ H+.

Proof.We clearly have

‖ThV −ThW‖∞ = max
1≤i≤M

∥

∥

∥(ThV )i − (ThW )i
∥

∥

∥

∞
=

max
1≤i≤M

∥

∥

∥∂h

(

F i,k,Mvi,k−1
h

)

− ∂h

(

Gi,k,Mwi,k−1
h

)∥

∥

∥

∞
,

where(ThW )i and(ThV )i denote theith components of
the vectorsW andV , respectively.

Setting

φ i,k = max





∥

∥rh
(

l + vi+1
)

− rh
(

l +wi+1
)∥

∥

∞ ,

∥

∥F i,k
(

vi
h

)

−Gi,k
(

wi
h

)∥

∥

∞



 .

We have

rh
(

l + vi+1) ≤ rh
(

l +wi+1)+
∥

∥rhvi+1
h − rhwi+1

∥

∥

∞

≤ rh
(

l +wi+1)+φ i,θ ,k.

Moreover, we have

F i,k (vi)≤ Gi,k (wi)+
∥

∥

∥F i,k (vi)−Gi;k (wi)
∥

∥

∥

∞
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Under the assumption(6), we have

F i,k (vi) ≤ Gi,k (wi)+
a0

β +λ
(c+λ )

∥

∥vi + wi
∥

∥

∞

≤ Gi,k (wi)+ a0φ i,k +λ ,

it follows that






















∂h
(

F i,k
(

ui
)

, l +wi+1
)

≤ ∂h
(

Gi,k
(

wi
)

+ a0(x)φ i,k +λ , l+wi+1
)

≤ ∂h
(

Gi
(

wi
)

, l +wi+1
)

+φ i,k,

Therefore

ThV ≤ ThW +φ i,k.

Similarly, interchanging the roles of(v)i and(w)i we also
get

ThW ≤ ThV +φ i,k.

Thus

∥

∥ThW −ThW̃
∥

∥

∞ = max
1≤ i ≤M

∥

∥

∥(ThW )i −
(

ThW̃
)i
∥

∥

∥

∞
=

max
1≤ i ≤M

∥

∥

∥∂h

(

F i,k, l + vi+1
)

− ∂h

(

Gi,k, l +wi+1
)∥

∥

∥

∞
.

Then, we can easily deduce







































































‖ThV −ThW‖∞ ≤

≤ max





∥

∥rh
(

l + vi+1
h

)

− rh
(

l +wi+1
h

)∥

∥

∞ ,

∥

∥F i,k −Gi,k
∥

∥

∞





≤ max







∥

∥rh
(

l + vi+1
h

)

− rh
(

l +wi+1
h

)∥

∥

∞ ,

(

1+kc
1+kβ

)∥

∥

∥vi,k
h −wi,k

h

∥

∥

∥

∞







≤ ‖V −W‖∞

Remark.If we only use the right hand side properties (see
[5]), we get the the mappingTh is contraction with the

rate of contraction
1+ kc
1+ kβ

.Therefore,Thλ admits a unique

fixed point which coincides with the solution of EQVIs
(28).

Proposition 3.Under the previous hypotheses and
notations, we have the following estimate of convergent

∥

∥

∥Uk
h −U∞

h

∥

∥

∥

∞
≤
(

1+kc
1+kβ

)k ∥
∥U∞

h −Uh0

∥

∥

∞ . (37)

C is a constant independent of h and k.

Proof.We have
ui,∞

h = Thui,∞
h ,

∥

∥

∥ui,1
h − ui,∞

h

∥

∥

∥

∞
=
∥

∥

∥Thui,0
h −Thui,∞

h

∥

∥

∥

∞

≤
(

1+kc
1+kβ

)∥

∥

∥ui,0
h − ui,∞

h

∥

∥

∥

∞
and also we have
∥

∥

∥
ui,k+1

h − ui,∞
h

∥

∥

∥

∞
=
∥

∥

∥
Thui,k−1

h −Thui,∞
h

∥

∥

∥

∞

≤
(

1+kc
1+kβ

)∥

∥

∥ui,k
h − ui,∞

h

∥

∥

∥

∞
.

Then
max

1≤ i≤ M

∥

∥

∥ui,k+1
h − ui,∞

h

∥

∥

∥

∞
≤

≤
(

1+kc
1+kβ

)k+1
max

1≤ i≤ M

∥

∥

∥ui,0
h − ui,∞

h

∥

∥

∥

∞
,

thus
∥

∥

∥Uk
h −U∞

h

∥

∥

∥

∞
≤

(

1+ kc
1+ kβ

)k
∥

∥U∞
h −Uh0

∥

∥

∞ .

5 L∞-Asymptotic Behavior

5.1 Convergence proof via the maximum
principle for a system of elliptic quasi
variational inequalities with non linear source
terms: non coercive case

We introduce the sets

T i,2n =



















































ui,2n ∈V h
ui,2n−1 : u2n

t +Aiu2n ≤ f i
(

ui,2n
)

,

ui,2n = ui,2n−1 on ∂Ω2,

ui,2n ≤ l + ui,2n−2 on Ω2,

ui,2n = 0 in Γ /Γ0,

ui,2n = ψ i in Γ0

and

T i,2n+1 =



































































ui,2n+1 ∈V h
u2n :

u2n+1
t +Aiu2n+1 ≤ f i

(

ui,2n+1
)

,

ui,2n+1 = ui,2n on ∂Ω1,

ui,2n+1 ≤ l + ui,2n−1 on Ω1,

ui,2n+1 = 0 in Γ /Γ0,

ui,2n = ψ i in Γ0.
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Lemma 2.[20]If A is the M−matrice and ui,2n
h

(resp. ui,2n+1
h ) is the solution (29)(resp. (30)). Then ui,2n

h

(resp.ui,2n+1
h ) is the minimal of T i,2n (resp.T i,2n+1).

Theorem 1.Let ui
h be a solution of ( 18). Then the

iterative sequence
{

ui,2n
h

}

(resp.
{

ui,2n+1
h

}

) is monotone;

that is, ui,2n
h ∈ T i,2n (resp.ui,2n+1

h ∈ T i,2n+1) and

ui
h ≤ ui,2n+2

h ≤ ui,2n
h ≤ ....≤ ui,0

h .

Proof.We takeu0
h = uh | Ω2 such thatAiu0

h = f ,.We know

that if ui,0
h ≤ l + ui+1,0

h then
(

u0
t +Aiu0

h − f i
(

ui
))

|Ω2≤ 0.
Therefore, using the Riez presentation, it can be deduced
that

bi
(

ui,0
h , vh − ui,0

h

)

Ω2
−
(

f
(

ui
)

,
(

vh − ui,0
h

))

Ω2

−
(

ψ i,
(

v− ui,0
h

))

Γ0
≥ 0.

.

Thus
ui,0

h ∈ T i,0.

From Lemma(2) we know thatui,2
h is the minimal

element ofT i,0. So

ui,2
h ≤ rh

(

l + ui,0
h

)

,

we yields that
ui,2

h ≤ ui,0
h .

By induction, for indexn we obtain

ui,2n
h ≤ ui,2n−2

h ≤ ...≤ ui,2
h ≤ ui,0

h = ui
h.

We know that if

ui,3
h ≤ rhMui,1

h ,

then
(

u3
t +Aiui,3

h − f
(

ui)
)

|Ω1≤ 0

that is















bi
(

ui,3
h , vh − ui,3

h

)

Ω1
−
(

f
(

ui
)

,
(

vh − ui,3
h

))

Ω1

−
(

ψ i,
(

v− ui,3
h

))

Γ0
≥ 0.

.

Thereforeui,3
h ∈ T i,3. Also from Lemma(2), we know that

ui,3
h is the minimal element ofT i,3.We yields thatui,3

h ≤

ui,1
h .

By induction, for indexn we obtain

ui,2n+1
h ≤ ui,2n−1

h ≤ ...≤ ui,1
h .

Lemma 3.If A = (ai j)i, j={1....N} is the M-matrix. Then
there exists two constants k1, k2

k1 = sup{wh (x) , x ∈ γ2} ∈ (0,1)

and

k1 = sup{wh (x) , x ∈ γ1} ∈ (0,1) ,

such that

sup
γ1

∣

∣uh − u2n+1
h

∣

∣≤ k1sup
γ1

∣

∣uh − u2n
h

∣

∣ (38)

and

sup
γ2

∣

∣uh − u2n+1
h

∣

∣≤ k2sup
γ2

∣

∣uh − u2n
h

∣

∣ . (39)

Remark.The demonstration of Lemma(3) is an adaptation
of the one in [20]) given for the problem of variational
inequality.

Remark.The Lemma(3) remains true for the coercive case.

The main convergence result is given by the following
theorem:

Theorem 2.[3]The sequences
(

ui,2n+1
h

)

;
(

ui,2n
h

)

, n ≥ 0

produced by the Schwarz alternating method converge
geometrically to the solution u of the stationary obstacle
problem. More precisely, there exist k1, k2 ∈ (0,1) which
depend only respectively of (Ω1,γ2) and (Ω2,γ1) such
that all n ≥ 0.

sup
Ω̄1

∣

∣

∣ui
h − ui,2n+1

h

∣

∣

∣≤ kn
1kn

2sup
γ1

∣

∣

∣ui
h − ui,0

h

∣

∣

∣ (40)

and

sup
Ω̄2

∣

∣

∣ui
h − ui,2n

h

∣

∣

∣≤ kn
1kn−1

2 sup
γ2

∣

∣

∣ui
h − ui,0

h

∣

∣

∣ . (41)

Theorem 3.[16]Under the previous assumptions, and the
maximum principle assumption, there exists a constant C
independent of h such that

∥

∥

∥
ui,∞ − ui,∞

h

∥

∥

∥

∞
≤Ch2 |logh|3 ,

where u∞ is an asymptotic continuous solution.

5.2 Error estimate for the EQVIs.

Theorem 4.Let u be a solution of the stationary problem
of (14). Then there exists a constant C independent of both
h and n such that

∥

∥

∥
ui − ui,2n+1

h

∥

∥

∥

L∞(Ω̄1)
≤Ch2 |logh|3 (42)

and
∥

∥

∥ui − ui,2n
h

∥

∥

∥

L∞(Ω̄2)
≤Ch2 |logh|3 . (43)
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Proof.Setting herek = k1 = k2, and using Theorem(3) and
Theorem(4), we have

∥

∥

∥ui − ui,2n+1
h

∥

∥

∥

L∞(Ω̄1)
≤
∥

∥ui − ui
h

∥

∥

L∞(Ω̄1)

+
∥

∥

∥ui
h − ui,2n+1

h

∥

∥

∥

L∞(Ω̄1)

≤
∥

∥ui − ui
h

∥

∥

L∞(Ω̄1)
+ k2n

∥

∥

∥ui
h − ui,0

h

∥

∥

∥

L∞(γ1)

≤ Ch2 |logh|2+ k2n
∥

∥

∥ui
h − ui,0

h

∥

∥

∥

L∞(γ1)

≤ Ch2 |logh|2

+k2n
(

∥

∥ui − ui
h

∥

∥

L∞(γ1)
+
∥

∥

∥ui − ui,0
h

∥

∥

∥

L∞(γ1)

)

Thus we can deduce
∥

∥

∥ui − ui,2n+1
h

∥

∥

∥

L∞(Ω̄1)
≤Ch2 |logh|2+Ch2k2n |logh|2

and also setting

k2n ≤ |logh| ,

we get
∥

∥

∥ui − ui,2n+1
h

∥

∥

∥

L∞(Ω̄1)
≤Ch2 |logh|3 .

Thus, we can deduce

∥

∥U2n+1
h −U∞∥

∥

∞ = max
1≤ i ≤M

∥

∥

∥ui,2n+1
h − ui,∞

∥

∥

∥

∞

≤ Ch2 |logh|3 .

The proof of the(43) case is similar.

5.3 Asymptotic behavior for the PQVIs

This section is devoted to the proof of main result of the
present paper, where we prove the theorem of the
asymptotic behavior in L∞-norm for
Hamilton-Jacobi-Billman.

Now we evaluate the variation in(L∞ (Ω) )M-norm
betweenUh (T,x) , the discrete solution calculated at the
moment T = n∆ t and ui,∞, the following asymptotic
continuous solution



































bi
(

ui,∞,vi −U∞)≥

≥
(

f i
(

ui,∞)+λ ui,∞,vi − ui,∞) ,

ui,∞ ≤ l + ui+1,∞,

vi ≤ l + ui+1,∞, i = 1, ...,M,

, (44)

where f i
(

ui,∞) is a bounded on(L∞ (Ω) )M andvi ∈

H1
0 (Ω) .

Theorem 5.Under the previous hypotheses and notations,
we have

∥

∥

∥U ,2n
h −U∞

∥

∥

∥

∞
≤C∗

[

h2 |logh|3+
(

1+kc
1+kβ

)p]

(45)

∥

∥

∥U ,2n+1,p
h −U∞

∥

∥

∥

∞
≤C∗

[

h2 |logh|3+
(

1+kc
1+kβ

)p]

(46)

where C∗ = max(1,C)

Proof.Using Theorem(4) and Proposition(3), we get
∥

∥

∥ui,2n,p
h − u∞

∥

∥

∥

∞
≤C∗

[

h2 |logh|3+
(

1+kc
1+kβ

)p]

and also it can be easily found

∥

∥

∥U2n,p
h −U∞

∥

∥

∥

∞
= max

1≤ i ≤M

∥

∥

∥ui,2n,p
h − ui,∞

∥

∥

∥

∞

≤C∗
[

h2 |logh|3+
(

1+kc
1+kβ

)p]

,

which completes the proof.
The proof of (46) case is similar.

Remark.It can be seen that in the previous estimates

(45)and (46)
(

1+kc
1+kβ

)p
tends to 0 whenp approaches to

infinity. Therefore, [4], [5], thanks to Theorem (5), the
convergence order for the both cases: the coercive and
noncoercive problems are:

∥

∥U2n,∞−U∞
h

∥

∥

L∞(Ω)
≤Ch2 |logh|3

6 Conclusion

In this paper, we have introduced a new approach of an
overlapping Schwarz method on non-matching grids for
parabolic quasi-variational inequalities related to impulse
control problem with respect to the mixed boundary
conditions and with a general case for the elliptic
operator, where we have established the asymptotic
behavior in uniform norm similar to that in the previous
published paper [3] regarding the overlapping Schwarz
method for the stationary free boundary problems,. The
type of estimation, which we have obtained here, is
important for the calculus of quasi-stationary state for the
simulation of petroleum or gaseous deposit.
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