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1 Introduction and their bilinear forms are associated wih for
u,ve H(Q)
The main work of this paper is to extend the previous
numerical analysis results3]| [4], [5]) to the following N
new evolutionary HIB equations with mixed boundary a (u,v) :/ a (K)o dud de +
conditions and the general elliptic operator: fing,t) ’ Q j,;=1 d Xj 0 X«
such that € L?(0,T;K (u)), u € L?(0,T;L?(Q)) 3)
. (N au -
I . . bl = | d
[;_L:_’_ maxM (AIU— fi (U)) —0,in 2, +./Q <jzl k(X) 0XjV+aO(X)UV X,
i 1 assumed to be noncoercive. . _
d_u =y'inlpi=1,..M, (1) and the sTooth functions, ;(x), by (x), ay(x) €
d L=@nc2(@)", xe 1<k j<N are
U =0inr /o, u(x,0)=uin Q sufficiently smooth coefficients and satisfy the following
T 0 conditions
whereQ is a bounded smooth domaini, d > 1 and i i () Al i
5 is a set inlk x RY defined as® — [0, T] x O with T < i(X) = a;(X); ap(x) > B >0, Bisaconstant (4)
+o0. Al are the differential operators defined as follows such that
: N ) N _
+a(x) (2) a (& &> VIER EERN, y>0,xeQ  (5)
Z 0xJ dxk ; j‘g:l JKWYS)
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with the right hand sidé*(.), f2(.),...,fM(.) areM

values of the unknowns solution at subdomain interfaces.

nonlinear and Lipschitz functions with Lipschitz constant Fruitful references can be found ][ [2], [19], [20]. A

¢ and satisfying the following condition

fi e (L2(0,T,L>(Q))nC (0, T,H L (),
fi > 0 and also it's increasing (6)
c< .

We shall also need the following norm
M
YW= (wWhw?,.....wM) € rle(Q), 7
i=

W, = max W]l
o is the part of the boundary defined by:
lo={xcdQ =TI suchthat’d >0,x+&¢Q},

i .
Whereg—';; = Du'ﬁ), such thatﬁi is the normal vector,

the symbol(.,.), stands for the inner product i (o).
K (u) is an implicit convex set defined as follows

i i1 O i ;

u'(x) <1 +u+t —— = y'in o, (8)
on

u'=0inr /o, u'(x,0) = uin Q.

Finally, g—rt; = Du.ﬁ, such thaﬁ is the normal vector.

The symbol(.,.), stands for the inner product Ir?(Q),
(,-)r, stands for the inner product I (Io).

Domain decomposition ideas have been applied to a and
wide variety of problems. We did not want to include all
these techniques in this work. For an extensive survey of
recent advances, we refer to the proceedings of the annual
http
:/lwww.ddm.org. Domain decomposition algorithms is

domain decomposition meetings see.

numerical study of elliptic and parabolic problems by the
finite element combined with a finite difference methods
(51, [6l, [71.[8].[9]. [10], [11], [12], [13], [15]) and by the
domain decomposition method combined with finite
element method was treated i8],[[4], [14], [16], [17],
[19], [20].

In [3] we treated the overlapping domain
decomposition method combined with a finite element
approximation for the elliptic quasi-variational
inequalities related with impulse control problem, where
it can be provided with a maximum norm analysis of an
overlapping Schwarz method on non-matching grids for
the elliptic quasi-variational inequalities related to
impulse control problem with respect to the mixed
boundary conditions for a simple operatbrThen, in f]
we extended the last result for the parabolic quasi
variational with the previous similar conditions and using
the theta time scheme combined with a finite element
spatial approximation and proved that the discretization
on every subdomain converges in uniform norm.
Furthermore a result of asymptotic behavior in uniform
norm has been given by the following theorem, for the

' 1
first cased > >

g —w|| <c[wliogh®+ (b p} ©)
and

Huﬁ"‘”zn—u""Hoo <C {h2|logh|3jL (m) p} (10)

and for the second case<06 < %

Huﬁ“”*l— u°°H < Ch?|logh[®
0

) (11)

+C(2+6(1—29)p(A)>p

6.p,2n 2 3
Huh —u°°Hm§Ch llogh|

) (12)

+C<2+6(1—26)p(A)>p’

divided into two classes, those that use overlappingwhereC is a constant independent bf k andug (T,x),
domains, which refer to as Schwarz methods, and thoséhe discrete solution calculated at the mom&nt pAt
that use non-overlapping domains, which we refer to asandu®, the asymptotic continuous solution. apdA) is
substructuring. Any domain decomposition method isthe spectral radios of operatar

based on the assumption that the given computational

domain Q is decomposed into

Moreover, in p], we concerned with the system of

subdomains parabolic quasi-variational inequalities (PQVIs) rethte

Q;, i=1,...,M, which may or may not overlap. Next, the HJB equation with non linear source terms, our goal is to

original problem can be

reformulated upon eachshow that evolutionary HIJB equations can be properly

subdomain Q;, yielding a family of subproblems of approximated by a semi- implicit time scheme combined
reduced size that are coupled one to another through theith a finite element spatial method which turns out to be
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quasi-optimally accurate in uniform norm. as we have 2.1 The continuous parabolic quasi-variational

carried out before for HIB equation with linear source jnequalities

terms. We approximate the HJB equation by a weakly

coupled system of parabolic quasi-variational inequediti  The problem {) can be approximated by the following

and introduce discrete iterative scheme which based irsystem of the continuous parabolic inequalities: find

Bensoussan-Lions’ algorithm. At the same time, weéu17u2 ,,,,, UhM) c (|_2 (07T’H&(Q)))M50|ution to

proved its geometric convergence. Then, we establishe

an L”-asymptotic behavior similar to that in14], [21] aul o o

which investigated the stationary and the evolutionary of — AU < f! (u') inZ,

the free boundary problem and Hamilton-Jacobi-Bellman ot

equations with two cases: linear and nonlinear source i i1 Mal ol
. . u<l+u* u =u,

terms, and we gave the following estimate

UP—U=||, = max Hu'ﬁp—u"""H (‘Z—l:+A'u'—f'(u')) (U= (I4+u*))=0,, (13)

1<i <M o
<c [h2|logh|3+ (llj'gg)p} , U (0,X) =upin Q. i=1,..,M,
with C* a constant independent of bdttandk, where ou - _ _
Up” = (Uf,...uf)) , the discrete solution calculated at the | 7 =y'inloandu' =0inT" /o,
moment-end T = pAt for an index of the time n
discretization k = 1,....,p, and U®, the asymptotic which is similar to that in 15 which investigated the
continuous solution with respect the right hand sidestationary Hamilton-Jacobi-Bellman equations.
condition. So, after a simple mathematical development and by

_ _ _ . using the Riez presentation, the probleni3 )can be

We consider a domain which the union of two transformed into the following continuous parabolic
overlapping sub-domains, where each sub-domain has ituasi-variational inequalities: find
own generated triangulation. The grid points on the 1 2 M c (L2 (0.T.H: ()M solution of
sub-domain boundaries need not much the grid points( o v) € (L2 (0T, Hg (2))
from the other sub-domain. Under a discrete maximum oul
principle [9], we show that the discretization on each <E’
sub-domain converges quasi-optimally in th&norm .
For that purpose, further to the above arguments, our > (fi(4) Vi —u) — i
main tool is a discret&™-stability property with respect = (f (u ) X u) (q"’v u),.o,
the obstacle, the right-hand side and the mixed boundary

v —ui) +a (u,v —u)
0

conditions. u < uh V<4 u . (14)
The outline of the paper is as follows. In Section 2, we . . )

lay down some notations and assumptions needed through U (0,x)=upin Q,i=1,..M,

out the paper and state both the continuous and discrete _

parabolic quasi variational inequalities. In section 3, we ou Wi in pandd = 0in T /It

state the continuous alternating Schwarz sequence for on 0 B o

parabolic quasi-variational inequalities and define their  \\hore 4 (.,.) is the bilinear form associated with
respective the theta scheme combined with a ﬁ”iteoperatow defined in 8).

element counterparts in the context of overlapping grids. * 54

Then, we prove th&*-stability analysis of thé&-scheme

for PVIs, and finally in Section 4, we associate the f (U — [ () vd

discrete PQVIs problem with a fixed point mapping and ( (u ) ’V)Q _/ (u ) Vax

we use that in proving the existence of a unique discrete Q

solution, In section 5 the geometrical convergence is  With ,
established using the new iterative discrete algorithm (¢i,v)l_ :/¢.vdo.
stands in theta scheme. Then,ldirasymptotic behavior 0 o
estimate for each sub-domain is derived in uniform norm. 0

2.2 The discrete system of parabolic

2 The Schwarz method for the parabolic quasi-variational inequalities

Quasi-variational inequalities.

We begin by down some definitions and classical resultd_et Q be decomposed into triangles angddenote the set
related to Quasi-variational inequalities. of all those elementh > 0 is the mesh size. We assume
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that the family 1, is regular and quasi-uniform. We

which implies

consider the usual basis of affine functiong,
I ={1,...,m(h)} defined by@, (Ms) = ds whereMs is a ik
vertex of the considered triangulation. We introduce the | [ Yn_ Vo—uk] +a (u vo— ) >
. . h e h h h »Yh
following discrete spaceg” of finite element At o
o _ gkl ) _ )
ve (L2(0,T,HE(@)) NC(0,T,HE ()", > (f'vk(uﬁ) + - ) ~ (¥ - iy
Q
such that
uk<ry (I +upt k) ut=ul 1 >0,
vh— vi|ke P, Ke Ty,
Kk ik .
u(.,0) = toin Q, U (0) = Ugkin Q, i =1,..,M,
_ ik
ou . - . oau* —wkin T
W:Lp' inpandu' =0inT /Iy, an W info,
(15) o
wherery, is the usual interpolation operator defined by \ U =01inT"/To, (18)
velL2(0,T,HE(Q))nC(0,T Hl(é)) Then, the probleifi8) can be reformulated into the
P o o ’ following coercive discrete system of elliptic
m(h) (16) guasi-variational inequalities (EQVIs)
rmv= 3 V(M) ¢i(x)
i=1
and P, denotes the space of polynomials with degree
at most 1. .
k— ik—1 k
In the sequel of the paper, we shall make use of the (f ( uy 1) AWM, )Q -
discrete maximum principle assumption (dmp). In other
words, we shall assume that the matrices B (llli vi Uk k) k ¢ (Vh)M
(A')pS: a(¢p, ¢s), 1 <i <M areM-matrices (cf. §]). ’ h
We discretize in space the probleii), i.e. that we - . (19)
approach the spaddg by a space discretization of finite U <rp (I +urt ) uMtt=ul 1 >0,
dimensionalV, C H3. Then we discretize the previous
semi discrete spatial problem with respect to time by uih’k(O) _ “io’rli iNQ.i=1..M
using the semi—implicit scheme. Therefore, we search a
M. _
sequence of elementsk € (H3 (Q)) which approaches ouk . .
u' (t), t = kAt, with initial datau'© = uj). on ¢'*infoandu'=0inl"/lo,
Thus, we have fok=1, ..., p,
such that
ul k ul k—1 ‘ P P
h_7“\/‘—u'> +a (u*vi—uk) >
h h h
(5 o ) o (e 1) = A (W v ) +
(iKY i ik i ik M
> (f'(u'h ),v‘h—u'h)g—(w',v'h—u'h )Fo’ +a (u};k,vh—u};k), uke (v, (20)
ik i+1k 1 1 7T
uy <rn(l+u ) = —==—k=1,...n
b (1) , A=a Tk ke Len
Vi, <rp (I+u'+1k), L .
2.3 Approximation of the HIB equation by a
WO(X) =Uyin Q, i=1,..,M, system of discrete PQVIs
ouik As we have defined befor&l denote the finite elements
aL = ¢Kinpandu =0inT /T, matrices defined by
n : .
(17) (A)=a (¢, ¢s) 1<i<M, 1<l s<m(h)
(@© 2015 NSP
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and letB' denote the finite elements matrices defined  Let (M¢&, o), (M E,dﬁ) be a pair of data, and

E=0(M¢&,9), E = O(M 5,@5) be the corresponding
(B')IS:b' (¢, ¢s) 1<i<M,1<I,s<m(h) (21) solutions to the following parabolic quasi-variational
inequalities (PQVI):

. . b'(f'v &) > (1 (&) +Awmv = &) 5+
b' (91, ds) =2 (¢, ds) +A (1, ¢s). +(hV &)
Now, in the light of the above definitions, notations,

and assumptions and according to the above discretization and
by the semi—implicit scheme, we are in position to define

by

respectively, where

the discrete HIB equation. This latter consists of solving b(f,v— 5) > (fg!k,v— E) +
the following semi discrete  problem: find Q
i Y
uke (H3(Q)) +(F,(v= ), W e HL(Q)
max (Bi uk—F'K (ui’k)) =0. (22)  Lemma 1.(cf.[3])Under the previous hypotheses and the
=iz M notation..

Additionally, according to the above discretization by -
the finite element approximation applleoKttA) and it can If¢ >¢.Theno (ME.9) >0 (Mf,(ﬁ) :

be easily reformulate®?2) as: foruh €W
Proposition 1.(cf.[3])Under the previous hypotheses, we

1<m§XM (Biuﬁ _ Fi,k(uih,k)) —0, (23) have the following inequality
|
U= 0| o) < (MU= MU (g,

where

R = (1 () +ad ™ 01) 119 =8llioo000): (24)
Lk suchthati # j, i,j = 1,2,
(W),
and T whereMu =1 +u.
)\ - ﬁ’ k: 1,...,n.

Thanks to 6], [11], [12], [13], [19], the problem(23) 3 The discrete Schwar z sequences.
can be approximated by the following system of discrete

elliptic quasi-variational inequalities (EQVIS): find The discrete maximum principle assumption (dmp)
(uﬁ ST k) € (vp])“" solution to ??. We assume the matrix whose coefficieatsp;, ¢;)
areM—matrix. For convenience in all the sequelswill

be a generic constant independenton

(Uh ,v'h_uh ) > As we have defined befor@ be a bounded open
. - 2 -
domain in R and we assume tha® is smooth and
K (yk k-1 Uik connected. . _
(f' ( )+’\Uh Vo ) Then we decompos€ in two sub-domaing2y,Q,
such that
I\ | k
(¥ )y 0=0,UQ, (25)
wk <, (I +'~'Ih+l k)’ . andu satisfies the local regularity condition
| ulg € L%(0,T,W2P () (26)
Ve <rp(l+ U|+lk , _ _ _ _
h h andwe denoteblf =0Q, 1 =0Q1, [,=0Q5, 1 =
0Q1NQy, Yo=00Q2,NQ, 91,2 =0Q1NQo.
T T IR T Y N Ford =1, 2 let ™ be a standard regular and
_ quasi-uniform finite element triangulation inQy;
auk . : . hi (hy = hp = h), being the meshsize. We assume that the

two triangulations are mutually independent @3 in

(@© 2015 NSP
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the sense that a triangle belonging to one triangulation anduih"“z”,vh evh ikzn_1y Such that
does not necessarily belong to the other. (“h )

Let VM be the space of continuous piecewise linear
functions onr which vanish o4 NaQj, p#1j, p, j = o
= ) b (k2 v 2
1, 2. Forwe C(0Qq) we define h o »Yh—Uq

0.k i,k—1,2n—2 i.k,2n
—(f * 4 Hug ,(vh—uh ))Qz

NSAALE Vh = Th, (W) 0nQqNaQ;j, —(‘I—'ripv—uiﬁk’zn) -0
n-

Vh (+,0) = Vo in Q,

Vi — N @) w2 — w21 on 90y vy = U on 9 Qy,
h .

—=yinly, . :

an v ulh,k,2n <1 (I _|_u|h+l,k,2n72)7

va=0inl/lo; d#£j, i, j=1 2, Jukan
U yininr
an y 0;

wherert,, denotes the interpolation operator 80y. uih*2n =0inT /Ip.

_ (30)
We consider the model obstacle problem: F'u‘lx;ﬁ €
Vhsuch that

_ 3.1 Existence and uniqueness for discrete
b (u'h’k,vh — u'h’k) > (f Ik (u'h’k) + U v — u',;k)Q PQVis.
ik ik
+ (wh,vh up )Fo’ Vh, U € Vh
(28) Next using the preceding assumptions, we shall prove the

We define the discrete counterparts of the dis;creteGXiStenCe of a’ur!ique sqlution for proble@8) by means
Schwarz sequences defined (28), respectively by of the Banach’s fixed point theorem.

THa VA Vaﬂ’“”)’ such that
h
3.1.1 A fixed point mapping associated with discrete
b (uih,k,2n+l’vh _ uﬁn+1) _ problem
ik (K i,k—1,2n—1 o k2n41
(1) 2 (k™)) M
; -+ o0 00
- (l,Ui . ui,k,2n+1) 0 We defined HT = i51L+ (Q), whereL? (Q) denotes the
e oo positive cone ofL® (Q). Now we define the following
ik2ntl k2 mapping
Ut = u M on gy, (29)
Vh = ui,;k’zn ondQs, y
Th:HT — (L*(Q))
uk2ntl (I _|_ui+17k,2n—1)
h =h h ’ Cgik (glk g2k M.k
w—Tw=gk= (& a* . a") 6
oui-k2n+1 _dinr q i,2n+1_o- rir _ _ )
T—W In Io anduy =0inl /lo, :0h(F'*k(W'),I+W*'+1),
@© 2015 NSP
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such thatf,i;k, Vi = 1,...,M is the solution of the

following problem

o (86> (14 () ),
- (wflvv{h_ Efi{k)l_oa V{h EVh,

EX <rn(l+wth),

Vi <r(l+wtl)i=12..M,

Mtk gtk k=1,..,p

du“‘

o~ Y'in Mo andu, =0in T /I,

(32)

4 An iterative discrete algorithm

We chooseuf as the solution of the following discrete
equation

b(u®,v) = (9%, wh) , Vh € V", (33)
whereg? is a regular function give.
Now we give the following discrete algorithm
Url1<,2n+l T uhk Lntly 1 o
ka1 6\,( . (34)
and
Url]<2n T, Uk L1 p
Uk V(thk}znﬂ) 7 (35)
WhereU k2n+l (uﬁ,k,2n+1 o uhM,k,2n+1) andU k2n _
(uﬁ kan kzn) are the solutions of the probler(34)
(resp(35))

Remark.We denote by
Q={WeH", suchthato< W <U°},

whereU®=U, = (4},...,u}).
Since f* (.) > 0, and u:° = u, > 0, combining

(36)

comparison results in variational inequalities with a

simple induction, it follows thatu* > 0, i.e.,

Uk>0, vk=1,...,pandTW > 0.
Furthermore, by35)and(36)we have

Ul,2n —TU 0,2n < UO,Z[‘I.

Similar to that in previous works], [5], [6], the mapping

T is a monotone increasing for the stationary HIB equation
with non linear source term. Then it can be easily verified
that

U2,2n — TU 1,2n < TU072n

— U172n < U072n
thus, inductively

U k+1,2n —TU k,2n <U k,2n

<. <UP wk=1..p
and also it can be seen the seque(té‘ve)k stays inQ.
Let

FIk (W) = fH () + AV,

G, (w) = f*(u) +Aaw e (L™ ()M
be the corresponding right-hand sides to the PQVIs.
Proposition 2.The mapping T, is Lipchitzon HTi.e,

I TaV = ThWlle < [V = W]l , VW EHT.

Proof.We clearly have

TV — TaW||,, = HTV‘—TW‘H -
[ThY — TaW||,, Jmax || (TaV) = (TaW )|

max
1<i<M

() - o)

where(T\W)' and(TiV)' denote thét" components of
the vector®V andV, respectively.
Setting

(||rh<|+v'+l>—rh<l+w‘+l>||«,,)
= max .

||Fi’k (Vih) ~ Gk (Wih)

¢

[
We have
i (1Y) <t (14 W) o+ ™ — w72

<rp(l+wth)+

Moreover, we have

i.0.k
Q@ .

FH (V) < G (W) + [FH (V) — G (w)|

00

(@© 2015 NSP
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Under the assumptio(rG) we have

FHE(V) < G (w) + C+A) [V + w],

B+A )\
< G (W) +agg + A,
it follows that
Oh (M, (u) 1+ w1
< 0h (G (W) +ag(x) @K+ 2,1 +wi ')
< 6h (G (W), I + W) + gk,
Therefore
TV < TaW + @K,

Similarly, interchanging the roles tm‘/)i and(w)i we also
get .
TaW < TV + @'-.

Thus
W — Tk |, = max [|(Taw)' — ()| =
ik i1\ ik i1
1§mia§xMHdh (F' N +VT ) Oh (G' N +wT )Hoo

Then, we can easily deduce

[ThY = TaW|,, <
_ rn (V) = (W) [,
< max

[P,

e (Vi) = (W)
< max i

(2t5) -],

<V =W,
Remark.If we only use the right hand side properties (see
[5]), we get the the mappingy is contraction with the

. 1+ke . .
rate of contractlonH—k.Therefore,'l'hA admits a unique
fixed point which coincides with the solution of EQVIs
(28).

Proposition 3.Under the previous hypotheses and
notations, we have the following estimate of convergent

1+ke

11KB (37)

k (o]
) U Ui

C isa constant independent of h and k.

Jor-uil, = (

Proof.We have _ _
i,00 i,00
Up = ThUy

i1 Qe i.0
Ju* =], = I

i,0 i,00
u. — ug
7( )H h h Hoo

and also we have

Tui*°°H
hYhp ©

1+ke
1+kB

|k+l i,k—1 i 00
[t I LT
1tke ik
< (it -]l
Then _ _
max Hu',;k”—u'h"”H <
1<i< M )
k+1 . .
0 i,00
< (1+"C) max Hu" —uy H
— \ 1+kB 1<i< M h h o
thus
k
1+ke
k =) )
Jor-ui] = (255 105 Ul

5 L”-Asymptotic Behavior

5.1 Convergence proof via the maximum
principlefor a system of elliptic quasi
variational inequalitieswith non linear source
terms: non coercive case

We introduce the sets
u|2n€VI2n L ut +Aiu2n§ f i (ui72n) ’

ui72n _ ui,2n—1 on 0927

T = U2 < |+ U220nQ,,
u2"=0inr /o,
u2" = ¢'in Iy
and
ui,2n-~-1 c VLTZ” :
u12n+1—|—Ai u2n+1 < f i (ui72n+1) ’
. i _ ul 2n+1 ul ,2n on 0.(21,

ui,2n-~-1 < |+ ui72n—1 on Q;,

u2l=0inr /o,

ul 2n qjl in To.

(@© 2015 NSP
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Lemma2[20]If A is the M—matrice and u®

(resp. up™™™) is the solution (29)(resp. (30)). Then u;"

(resp.uiHZ”*l) isthe minimal of T"2" (resp.T'2"+1),

Then the
) is monotone;

Theorem 1.Let uj, be a solution of (18).
i,2n i,2n41

iterative sequence {uh }(rasp. {uh
that is, ™ € T' (rep.up®™™* e T'21) and

i i,2n42 i,2n i,0
up <upE S <L <

Proof.We takeu = up | Q2 such thatA'ud = f,.We know
that if uy® < I +u,™ then (u? -+ Alud — ' (u')) [, < O.

Therefore, using the Riez presentation, it can be deduced

that

0, (119, (o),

(v (), 2o

Thus o
u’ e 1.

From Lemma(2) we know thatuih’2 is the minimal
element ofT"%. So

U <rp (I + UIHO) :

we yields that _ _
u? < u®.
By induction, for indexh we obtain

i,2n i,2n—2

i,2 i0 i
<L Swt S =
We know that if

U < rpMupt,

then o .
(L&3+A'u',;3— f (u')) 10,<0
thatis

bl (uih’3, Vi — uih’3) 0~ (f (uh, (vh — uih’3))Ql
o (), 20 |

Thereforeuih’3 € T'3. Also from Lemma(2), we know that

Lemma3lf A = (&j), ={L.N} is the M-matrix. Then
there exists two constants kq, kp

ki = sup{wy (x), X€ y»} € (0,1)

and
ki = sup{wy (X), xe 1} € (0,1),
such that
sup|up — uA"| < kysup|un — ud" (38)
v v
and
syl;p\ Up — UA"] < kzszp\ Un — U"|. (39)

Remark.The demonstration of Lemmg8) is an adaptation
of the one in RQ]) given for the problem of variational
inequality.

Remark.The Lemmg&3) remains true for the coercive case.

The main convergence result is given by the following
theorem:

Theorem 2.[3] The sequences (u',f”*l) : (u',;zn), n>0
produced by the Schwarz alternating method converge
geometrically to the solution u of the stationary obstacle
problem. More precisely, there exist ki, kp € (0,1) which
depend only respectively of (Q1,y,) and (Q,y1) such
thatall n> 0.

i,2n+1

sup‘ uj,—uy ‘ < K'KJsup (40)
_(31 i

U, — u'h"o‘

and

i,2n

sup|u, — Uj (41)
Q

< k?k’z“lsup’ uh — UIH()’ .
Vo

Theorem 3.[16]Under the previous assumptions, and the
maximum principle assumption, there exists a constant C
independent of h such that

- ,
Hu'7°°—u'h°°Hm§Ch2|Iogh| ,

where u” is an asymptotic continuous solution.

5.2 Error estimate for the EQVIs.

Theorem 4.Let u be a solution of the stationary problem
of (14). Then thereexists a constant C independent of both
h and n such that

i3 - i . i i.2n+1 2 3

u® is the minimal element of 3. We yields thatu® < HUI — U H,_w(él) < Ch”logh| (42)
ut.
By induction, for indexh we obtain and
i i,2n 2 3

i 2n+1 i2n—1 i1 HUI — Uy _ < Ch?|loghl|”. 43
Tt <u T <L <u hll=(2y) llogh (43)
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Proof.Setting herd = k; = kp, and using Theoreif8) and where f' (") is a bounded oL () )™ andV ¢

Theorem(4), we have

LI' u|2n+lH < ui_ui /s
H h () || hHL (Q1)
i,2n+1
+ -k Lo (@)
< |lu =uh]] . +k2” ul —U’OH
el et
< ch?[loghf? + k2" ||u, — u}°
L®(n)

< Ch?|logh|?

+k2n (Hu —Uhl[ Loy + Hu —uf
Thus we can deduce

_ < Ch?|logh|? +Ch%?" logh|?
|, (g, = CHFllogh*-+Creic®logh

and also setting

i,2n+1
| =i

k?" < [logh,
we get

Hu’ w2 <ch?jlogh)®.

H L°(Q1)

Thus, we can deduce

HU2n+l Uoon _ 1§”}a§XM HuiHZnJrl_ui,ooH

[ee]

< Ch?|logh|®.
The proof of thg43) case is similar.

5.3 Asymptotic behavior for the PQVIs

This section is devoted to the proof of main result of the
present paper, where we prove the theorem of the

asymptotic behavior in  L%®-norm

Hamilton-Jacobi-Billman.

Now we evaluate the variation itL® (Q) )™-norm
betweenUy, (T,x), the discrete solution calculated at the
moment T = nAt and u"®, the following asymptotic

continuous solution
bl (U Vi —U®) >

> (L (U=) + AU v —u'),

i i+1
ul7°° S | +UI+ 700’

V<I+uthe =1 M,

; (44)

Hp (Q).

Theorem 5.Under the previous hypotheses and notations,
we have

Ju-u=||_ <cr [wiioghf+ (1) p] (45)

p
Hu 204Lp oo H <c [h2||ogh| n (1115;) ] (46)
whereC* = max(1,C)
Proof.Using Theoreni4) and Propositiori3), we get

Huih’zn’p—uwHoo <C* [h2|logh|3+ (”"C)p}

T+kB
and also it can be easily found

oo v = ma, -]
1<i <M

[ee]

p
<c* [R2llogh®+ (£45)7].
which completes the proof.
The proof of @6) case is similar.
Remark.It can be seen that in the previous estimates
p
(49and @6) (llj'k‘g) tends to 0 wherp approaches to

infinity. Therefore, #], [5], thanks to Theorem §), the
convergence order for the both cases: the coercive and
noncoercive problems are:

U~ Ug?|| . ) < Ch?[logh[®

6 Conclusion

In this paper, we have introduced a new approach of an
overlapping Schwarz method on non-matching grids for
parabolic quasi-variational inequalities related to itspu
control problem with respect to the mixed boundary

conditions and with a general case for the elliptic
operator where we have established the asymptotic
behavior in uniform norm similar to that in the previous
published paper3 regarding the overlapping Schwarz
method for the stationary free boundary problems,. The
type of estimation, which we have obtained here, is
important for the calculus of quasi-stationary state fer th
simulation of petroleum or gaseous deposit.
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