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Abstract: Semi-quantum or full-quantum electromagnetically induced transparency has been fully studied for three-level atomsin a
weak field approximation method, where probe field is very weaker than the coupling field. The weak field approximation is not valid in
full-quantum model where the number of coupling photons is not so large. In the present article, the master equations forthe interaction
of two-mode photons with a three-levelΛ -type atom are exactly solved and the exact dispersion and absorption spectra for the probe
beam photons are also obtained analytically. The results ofthe exact scheme are compared with the corresponding results in the weak
field approximation method in full-quantum and semi-classical models.
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1 Introduction

Electromagnetically induced transparency (EIT) has been
theoretically introduced by O. Kocharovskaya [1] and
experimentally observed, by S. E. Harris et al. [2,3].
Recently, many authors have been interested in studying
EIT and its applications [4,5,6,7,8]. EIT is widely
studied for different systems, e.g. V,Λ and cascade
three-level atoms and many other atoms with more levels
[9,10]. Many alkali atoms, e.g., Rydberg Rubidium atom,
have been also experimentally applied for the generation
of EIT [11,12]. Properties of the electromagnetic fields
interacting with a three-levelΛ -type atom were studied in
the semi-classical [1,2,3,13,14] and full-quantum [15,
16] models by a weak field approximation (WFA)
method. The EIT with the quantized fields in opto-cavity
mechanics is another example for the full-quantum
approach which is studied by S. Huang and G. S. Agarwal
[16].

In this paper, a full-quantum model of EIT is
investigated for an ensemble ofΛ -type three-level atoms,
in which the probe and coupling fields are quantize.
Interaction of a Λ -type three-level atom with the
quantized electromagnetic fields is investigated using the
Jaynes-Cummings model. In this case, the exact master
equations are investigated and solved in a steady-state
without any WFA. An exact form of absorption and

dispersion spectra are obtained for a probe fields which
are not generally weaker than the coupling field. It is
shown that the EIT obtained for the probe fields is either
weaker or stronger than that of the coupling field. In
contrast to the semi-classical model, the EIT is also
obtained in the full-quantum model where the coupling
field is very weak and contained a few numbers of
photons. It is also shown that the EIT appeared even for a
vacuum coupling field.

2 Proposed Setup

Suppose an ensemble of -type three-level cold circular
Rydberg atoms trapped in a quantum cavity, pumped into
the high quantum number excited levels (e.g.,
n = 49,n = 50 andn = 51), interacting (resonantly or
non-resonantly) with the classical (or quantized) coupling
Electromagnetic fields [17]. There are many other alkali
atoms which are possible to apply in these experimental
setups, e.g.: Cesium [18], Sodium [19] and so on. In this
case, an ensemble of cold three-level atoms is prepared by
an optical pumping initially in the state|b〉. The quantum
cavity is filled with the three-level cold atoms as well as
the n2 number of coupling photons which are strongly
coupled with the quantum cavity electrodynamics. The
probe photons are individually injected into the absorptive
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Fig. 1: Fig. 1. (Color online) (a) AΛ -type three-level atom
interacting with two electromagnetic fields with frequencies ν1
andν2. The red spot is an ensemble of atoms trapped and strongly
coupled with the quantum cavity. The quantized probe photons
are passed through the cavity and counted by D1 after interaction
with the ensemble of atoms.

atoms in the cavity. Absorption of the probe photons is
controlled by the number of coupling photonsn2. The
quantum cavity illustrated in Fig. 1b, is made of
superconductor mirrors to reduce the cavity loss and the
absorption of the probe photons could be measured by the
detector D1.

3 Master Equations

Suppose that, in cavity quantum electrodynamics, the
quantized probe and coupling fields (photons) interact
with a three-level Λ -type atom (see Fig. 1a). The
interaction Hamiltonian of the system in the interaction
picture is given by:

V̂ = −h̄g1[σabâ1ei∆1t + â†
1σbae

−i∆1t ]

−h̄g2σacâ2ei∆2t + â†
2σcae

−i∆2t ], (1)

whereg1 andg2 are interaction strength of the probe and
coupling fields, respectively. ˆa1(â

†
1) and â2(â

†
2) are

annihilation (creation) operators for the probe and
coupling photons, respectively.σi j = |i〉〈 j| is atomic
transition operator from| j〉 → |i〉. In Eq. (1),∆1(∆2) is
detuning between the frequency of probe (coupling) and
the corresponding atomic transition frequency.

Assume the initial state of total system is given by
|b,n1,n2〉. By an atom-field interaction, absorption of one
probe photon changes the state to|a,n1−1,n2〉 and a
coupling photon emission, change it into
|c,n1−1,n2+1〉. Therefore, a time evolution of initial
state is given by a linear combination of these states

|ψ〉 =Ca(t)|a,n1−1,n2〉+Cb(t)|b,n1,n2〉
+Cc(t)|c,n1−1,n2+1〉. (2)

Application of Eq.(2) intoρ̂s = |ψ〉〈ψ | gives the total
density operator:

ρ̂ = ρaa|a,n1−1,n2〉〈a,n1−1,n2|
+ ρbb|b,n1,n2〉〈b,n1,n2|
+ ρcc|c,n1−1,n2+1〉〈c,n1−1,n2+1|
+ (ρab|a,n1−1,n2〉〈b,n1,n2|
+ ρac|a,n1−1,n2〉〈a,n1−1,n2+1|
+ ρbc|b,n1,n2〉〈c,n1−1,n2+1|+C.C.), (3)

where ρi j = Ci(t)C∗
j (t). The exact dynamical equations

(master equations) are given by:

˙̃ρaa= −(γ1+ γ2)ρ̃aa+ ig1
√

n1(ρ̃ab− ρ̃ba)

+ig2

√

n2+1(ρ̃ca− ρ̃ac), (4)
˙̃ρbb= γ1ρ̃aa+ γ3ρ̃cc+ ig1

√
n1(ρ̃ab− ρ̃ba), (5)

˙̃ρcc = γ2ρ̃aa− γ3ρ̃cc+ ig2

√

n2+1(ρ̃ac− ρ̃ca), (6)
˙̃ρab= − 1

2(γ1+2i∆1)ρ̃ab+ ig1
√

n1(ρ̃bb− ρ̃aa)

+ig2

√

n2+1ρ̃cb, (7)
˙̃ρac = − 1

2(γ1+2i∆2)ρ̃ac+ ig1
√

n1ρ̃bc

+ig2

√

n2+1(ρ̃cc− ρ̃aa), (8)
˙̃ρbc = − 1

2(γ3−2i(∆2−∆1))ρ̃bc+ ig1
√

n1ρ̃ac

−ig2

√

n2+1ρ̃ba. (9)

Master equations are obtained from̂̇ρ = 1
ih̄

[

V̂, ρ̂
]

+L(ρ̂s)
where
L(ρ̂s) =−Γi j

2 (σ̂+i j σ̂−i j ρ̂s−2σ̂−i j ρ̂sσ̂+i j + ρ̂sσ̂+i j σ̂−i j )
is the Lindblad relaxation term and
{i j} ∈ {{ab},{ac},{bc}}. σ̂+i j = |i〉〈 j|, σ̂−i j = | j〉〈i| and
Γi j are spontaneous transition rates between the statesi
and j. γ1 = Γab,γ2 = Γacandγ3 = Γcb are also spontaneous
decay rates. To obtain master equations (4)-(9), the
rotating frame transformations: ρ̃ab = ρabe−i∆1t ,
ρ̃ac = ρace−i∆2t andρ̃cb = ρcbei(∆ 2−∆1)t are applied.

In this article, a few numbers of photons are
investigated for the probe and coupling fields. Hereafter,
the phrase ”the weak field” would mean”the number of
probe photons is very smaller than the number of
coupling photons”. Therefore, the weak field
approximation (WFA) is used where the number of
coupling photons are very larger than the number of probe
photons; e.g.n2 ≥ 100. It is assumed that a probe beam is
a train of individual photons so that atoms are interacted
with one photon at each moment; thus, the detector would
only measure absorption of one photon at each moment.
Therefore the number of probe photons would be set to
one for all examples. Clearly it violates the WFA.

In WFA, the density matrix elements in Eqs. (4)-(9)
are expanded up to the first order of electric field
amplitude. In this case, the population of atomic levels
transfers to the lowest levelb which can be assumed to be
as an initial state. The dispersion and absorption of probe
photon are obtained from the real and imaginary parts of
the probe coherence term̃ρab which could be derived
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Fig. 2: Fig. 2. (Color online) (a) and (b) are the real and
imaginary parts of̃ρab in the full-quantum (and semi-classical)
model. They are, respectively, proportional to dispersionand
absorption of the probe field. In this case, the WFA is used
where the probe field is very weaker than the coupling field.
They are plotted versus detuning of probe field∆1 where other
parameters areγ1 = γ2 = 0.1, γ3 = 0.001, n1 = 1, ∆2 = 0 and
g1 = g2 = 1 andn2 = {50,100,150} for the plots (a) and (b) and
n2 = {0,2,4,6,8,10}for (c) and (d).

from the master equations in the steady-state:

0= − 1
2(γ1+ γ2+2i∆2)ρ̃ab+ ig1

√
n1

+ig2

√

n2+1ρ̃cb, (10)

0= − 1
2(γ2+ γ3−2i(∆2−∆1))ρ̃cb− ig1

√
n1ρ̃ac

+ig2

√

n2+1ρ̃ba, (11)

According to Eqs. (10) and (11), the probe coherence term
is obtained as:

ρ̃ab=
2g1

√
n1(iγ3+2(∆2−∆1))

(λ1+2i∆1)(γ3−2i(∆2−∆1))+4g2
2(n2+1)

.

(12)
The real and imaginary parts ofρ̃ab are proportional

to the dispersion and absorption of probe photons, as
plotted in Figs. 2a and 2b for the full-quantum model in
WFA. To obtain the coherence term in the semi-classical
model in a shortcut way, insertg1

√
n1 → Ωprand

g2
√

n2+1 → Ωpu in Eq. (12), whereΩpr and Ωpu are
Rabi frequencies of the probe and coupling fields,
respectively. The absorption and dispersion spectra of
semi-classical model are exactly similar to plots in Figs.
2a and 2b, for different coupling Rabi frequencies
corresponding to the large number of coupling photons.
In this case, the coupling field is supposed to be stronger
than the probe field and WFA is used. Both of the applied
models (semi- and full-quantum models) show the effect
of EIT for aΛ -type atom.

The dispersion and absorption of the probe photons
are also plotted in Figs. 2c and 2d for small number of
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Fig. 3: Fig. 3. (Color online) A comparison between dispersions
(a) and absorptions (b) of the probe field for vacuum coupling
fields is shown. The solid (green) line and dashed (blue) lineare
plotted for the semi-classical and full-quantum models of atom-
field interaction, respectively. The EIT appears even wherethe
coupling field is in the vacuum state (wheren1 = 1 andn2 = 0);
but, in the semi-classical model (whereΩpu = 0 andΩpr = 1), it
is disappeared. In this case other conventional parametersare the
same as what is selected in Fig. 2.

coupling photons, it is known that Eqs. (12) and (13) are
not valid for the coupling field, which are not very
stronger than probe field, because the WFA is used in
their derivations.

There is a main difference between the absorption
spectra of probe field for the coupling field in the vacuum
state and zero coupling field strength in semi-classical
model. In the vacuum coupling field the EIT is appeared
in full-quantum model but it is disappeared for the zero
coupling field strength. It is due to the interaction of atom
with the vacuum electromagnetic field. This difference is
shown in Figs. 3a and 3b.

To obtain the more correct dispersion and absorption
spectra, where the coupling field is not stronger than the
probe field, the exact form of the coherence term for the
probe photons must be obtained without the WFA.

4 Exact Solution

The exact solution of master equations is found for the
coherence term in the steady-state without weak field
approximation. The master equations (4)-(9) are exactly
solved in the steady-state to obtain the exact coherence
term ρ̃ab. Using MATHEMATICA software, the
coherence term was obtained analytically. It was more
complicated than the corresponding one in WFA. The
numerator and denominator of coherence term are
individually expanded in terms of the probe detuning
while the coupling detuning is set to be zero. A compact
form of the exact coherence term is obtained as:

ρ̃ab =
2g1

√
n1(iZ0+Z1∆1+ iZ2∆2

1 +Z3∆3
1)

K0+K2∆2
1 +K4∆4

1

, (13)
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Fig. 4: Fig. 4. (Color online) (a) and (b) are the exact dispersion
and absorption of the probe field in terms of its detuning for
large number of coupling photons (n2 = 50,100,150); (c) and
(d) for small number of coupling photons (n2 = 0,1,2,3,4,5).
Other parameters are chosen similar to the corresponding one in
WFA.

where

Z0 = γ3(4g2
1n1γ1+4g2

2γ2(n2+1)+ γ1γ2γ3)

×(4g2
2(γ1+ γ3)(n2+1)+ (γ1+ γ2)(4g2

1n1+ γ2γ3), (14)

Z1 = (−32g4
2(n2+1)2γ2(γ1+ γ3)+2γ3(γ1+ γ2)

×(4g2
1n1+ γ2γ3)

28g2
2(n2+1)(γ2(γ2+ γ3)γ3(γ1+ γ2+ γ3)

×4g2
1n1(−γ2

2 + γ3(γ1+ γ2)+ γ2
3))), (15)

Z2 = 4γ1γ2(γ2γ3(γ1+ γ2)+4g2
2(n2+1)(γ1+ γ3)), (16)

Z3 = 8γ2(−γ2γ3(γ1+ γ2)−4g2
2(n2+1)(γ1+ γ3)), (17)

K0 = (4g2
1n1γ1+4g2

2γ2(n2+1)+ γ1γ2γ3)

×(16g4
2(n2+1)2(γ1+ γ3)+ (4g2

1n1+ γ2γ3)(γ1γ3(γ1+ γ2)

+4g2
1n1(γ2+2γ3))+4g2

2(n2+1)(4g2
1n1(γ1+ γ2)

+γ3(γ2
1 + γ2

2 + γ1(γ2+ γ3)))), (18)

K2 = 4(16g4
1n

2
1γ3(γ1+ γ2)−32g4

2(n2+1)2γ2(γ1+ γ3)

+γ2
2(γ1+ γ2)γ3(γ2

1 + γ2
3)+4g2

1n1γ2(γ2
2γ1+2γ1γ2γ3

+2(γ1+ γ2γ2
3)+4g2

2(n2+1)(γ2(γ3
1 + γ2

1γ3−2γ2
2γ3+ γ3

3)

+γ1γ3(−2γ2+ γ3))+4g2
1n1(−γ2

2 +3γ2γ3+ γ2
3

+γ1(2γ2+ γ3)))), (19)

K4 = 16γ2(γ2γ3(γ1+ γ2)+4g2
2(n2+1)(γ1+ γ3)), (20)

are real parameters. Dispersion and absorption of the
coherence term are proportional to

Re[ρ̃ab] =
2g1

√
n1(Z1∆1+Z3∆3

1)

K0+K2∆2
1 +K4∆4

1

, (21)

Im[ρ̃ab] =
2g1

√
n1(Z0∆1+Z2∆2

1)

K0+K2∆2
1 +K4∆4

1

, (22)
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Fig. 5: Fig.5. (Color online) Comparison between exact
dispersions and absorptions of the probe field for the vacuum
coupling fields in a) exact methods and b) WFA, showing their
differences. The solid (green) line and dashed (blue) line show
the dispersion and absorption, respectively.

respectively.
The exact real and imaginary parts ofρ̃ab are plotted

in Figs. 4a-4d for large and small numbers of coupling
photons. Similar to the full-quantum model with WFA,
for the large and small numbers of coupling photons, the
EIT effect is also appeared at zero detuning of the probe
field. The comparison between the exact dispersion and
absorption spectra in Fig. 4 and the approximate
dispersion and absorption spectra in Fig. 2 demonstrate
that the exact dispersion and absorption peaks are smaller
and their breadth of peaks are wider that the
corresponding one in WFA. Furthermore, the EIT effect
not only appears for the larger number of coupling
photons but also it appears for the small (or even zero)
number of coupling photons. Detuning of the absorption
peaks∆1, increases with increasing the number of
coupling photons. Although the EIT is appeared either in
the semi-classical and full-quantum models in WFA; or
the exact methods in full-quantum model, they have a
serious difference where coupling photons are in the
vacuum state. A comparison between the exact and WFA
plots for the absorption and dispersion spectra, is
presented in Fig. 5. Furthermore, for the exact method,
the absolute value of the dispersion slope at zero detuning
is more than the WFA method.

5 Conclousions

In this paper, the master equations forΛ -type three-level
atom interacting with two-mode quantized
electromagnetic field was investigated. The coherence
terms for the probe photons were analytically and exactly
obtained. The EIT effect was obtained for the strong,
weak and even vacuum coupling photons. The absorption
and dispersion spectra of the system were compared in
the exact and WFA methods. The following results were
obtained: 1- The weak field approximation is not suitable
for full-quantum model where the number of coupling
photons is small or where it is in the vacuum state.
Therefore an exact scheme is needed. The master
equations for three-level -type system is solved exactly in
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the steady-state where the detuning of coupling photons
are vanishes. 2- The profile of the absorption and
dispersion spectra for the exact and WFA methods are
compared. Their magnitudes in the exact method were
weaker and their peaks were wider than the
corresponding one in the WFA. 3- As well as the WFA
method, in the exact scheme the EIT is also appeared in
the absorption and dispersion spectra. 4- In spite of the
semi-classical model, the EIT appeared even for the
vacuum coupling photons in full-quantum model either in
exact or WFA methods. 5- Furthermore, for the exact
method, the absolute value of the dispersion slope at zero
detuning is very larger than the WFA method.

References

[1] H. Eleuch and R. Bennaceur, J. Opt. A : Pure Appl. Opt.5,
528-533 (2003).

[2] N .Boutabba, H. Eleuch and H. Bouchriha, Synthetic Metals
159, 1239 (2009).

[3] H. Eleuch, D. Elser et Raouf Bennaceur, Laser Phys. Lett.1,
391 (2004).

[4] A. Sargsyan, C. Leroy, Y. Pashayan, D. Sarkisian, D. Slavov,
S. Cartaleva, Optics Communications,285, 2090-2095
(2012).

[5] W. Hong-Wei, Mi Xian-Wu, Chinese Phys. B,21, 107102
(2012).

[6] L. Deng, M. G. Payne, Physical Review A,71, 011803
(2005).

[7] Y. Chenguang, J. Zhang, “Electromagnetically induced
transparency-like effect in the degenerate triple-resonant
optical parametric amplifier”, Optics Letters,33, 1911-1913
(2008).

[8] D. Jafari, M. Sahrai, H. Motavali, and M. Mahmoudi,
Physical Review A,84, 063811 (2011).

[9] Z. Bai, C. Hang, G. Huang, Optics Communications,291,
253–258 (2013).

[10] A. Joshi, M. Xiao, Physics Letters A,317, 370–377 (2003).
[11] D. Petrosyan, J. Otterbach, M. Fleischhauer, Phys. Rev.

Lett.,107, 213601 (2011).
[12] J. Wang, L.B. Kong, X.H. Tu, K.J. Jiang, K. Li, H.W. Xiong,

Yifu Zhu, M.S. Zhana, Physics Letters A,328, 437–443
(2004).

[13] H. Eleuch, S. Guerin, H. R. Jauslin, Phys. Rev. A85, 013830
(2012).

[14] A. Dantan, M. Albert, M. Drewsen, Phys. Rev. A,85 013840
(2012).

[15] D. Akamatsu, K. Akiba, M. Kozuma, Phys. Rev. Lett.,
92,203602 (2004).

[16] S. Huang, G. S. Agarwal, Phys. Rev. A,83, 043826 (2011).
[17] C. C. Gray, P. L. Knight, Introductory Quantum Optics, first

ed., Cambridge, New York, 2005.
[18] A. Wickenbrock, P. Phoonthong and F. Renzoni, Journal of

Modern Optics,58, 1310-1316 (2011).
[19] R. Fleischhaker, T. N. Dey, J. Evers, Phys. Rev. A,82,

013815 (2010).

Siamak Khademi
received his BSc. degree
in applied Physics at Isfahan
University and his MSc.
and PhD degrees in Physics
at Shiraz University in Iran.
His research interests are
in the areas of fundamental
quantum mechanics, quantum
phase space, quantum

information, entangled systems and quantum optics. He
works in the University of Zanjan since 2001.

Ghasem Naeimi was
born in Arak, in the center
of Iran. He recived BSc.
degree in applied physics at
Arak University, MSc. degree
in particle physics and PhD.
degree in quantum optics
at the University of Zanjn,
Zanjan -Iran. He works as
an assistant professor in the

Islamic Azad University, Qazvin Branch in Qazvin city in
the North-West of Iran science 2013. His research interest
is in quantum, quantum optics, quantum mechanics in the
phase space and quantum entanglement.

Samira Alipour
received her BSc. and MSc.
degrees in Atomic Physics
at Khaje-Nasir and Amirkabir
Univeristy of Technology
at Tehran, respectively.
Now, she is PhD student in
Quantum Optics at University
of Zanjan. Her research
interests are Quantum optics,

Laser Physics, Nonlinear Optics and Photonic band gap
materials.

Shoaib Mirzaei received
his BSc. degree in Applied
Mathematics at Payame-Noor
University and his MSc.
degree in atomic and
molecular physics at
the University of Zanjan,
in Iran. His research interests
are Quantum optics, Quantum
information, phase space

quantum mechanics, Laser Physics and Bose Einstein
Condensation.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Proposed Setup
	Master Equations
	Exact Solution
	Conclousions

