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Abstract: Generalizing a previous result by two of the authors (MSA andAAA) for an infinite sheet with one insertion, we derive
two coupled linear Fredholm integral equations of the second kind on two coplanar contours for the determination of the magnetic field
due to an infinite plane electrical conducting sheet with twonon-overlapping insertions, permeated by a uniform, parallel electric field.
These equations are solved numerically to provide solutions for new problems involving two elliptic insertions. The level lines for the
current function in the sheet are plotted and the results arediscussed to assess the efficiency of the numerical method. The conclusions
are relevant to non-destructive testing of electrical conducting sheets and to the evaluation of magnetic fields on the earth’s surface
around islands. Generalization to any finite number of insertions is straightforward.
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1 Introduction

The problem of excitation of electric currents and
magnetic fields in non-uniform electrical conducting
sheets by electric fields has many applications. In
Technology, the holes, the islands and the adhesives in
metallic chips used in industry may considerably affect
the performance of these chips, and the correct
determination of the magnetic field variations due to such
insertions is of primordial interest in non-destructive
testing. In Geophysics, the solar eclipses and meteors
may affect the electrical conductivity in large areas of the
Earth’s surface and thus create unwanted magnetic
disturbances. Also, the islands in the vast ocean may be
modeled as inclusions of different electrical conductivity
in an infinite water current sheet. Due to its importance,
this topic was investigated since many decades. Ashour
and Chapman [1] found the components of the magnetic
field due to an infinite plane current sheet of uniform
conductivity, except for a circular disc of different
uniform conductivity, placed in an initially uniform,
parallel electric field. The elliptic insertion was also
considered, but the components of the additional
magnetic field could not be obtained due to the
complexity of the formulae. The same authors [2]

investigated the sudden creation of conductivity in
connection with what is known as the meteor
geomagnetic effects. Ashour [3] investigated induction in
finite thin sheets. Later on, Ashour [4] generalized
previous work to cover any number of insertions with
arbitrary boundaries, and obtained the additional
magnetic field as a summation of linear integrals along
these boundaries. The integrand in each integral involves
only a certain combination of the limiting values of the
electric potential at both sides of the corresponding
boundary. The author applied this idea to solve the case of
an elliptic insertion, but the problem remained partially
unsolved. In [5] Ashour solved the problem of two
non-overlapping circular insertions and presented
numerical results when the insertions have zero electrical
conductivity. According to this formulation, if a certain
combination of the boundary values of the additional
electric potential is known, then one may find the
components of the additional magnetic field everywhere
in space without recurring to the solution of Laplace’s
equation. Abou-Dina and Ashour [6] took an important
step towards the complete resolution of the problem for
one insertion of arbitrary shape by deriving a linear
Fredholm integral equation of the second kind on a plane
contour which divides the infinite plane conducting sheet
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into two regions of different uniform conductivities. This
integral equation admits exact solutions in closed form for
the cases of circular or elliptic insertions, and its
numerical solution for arbitrarily shaped boundaries
allows to resolve the problem completely within
boundary techniques. The authors applied the method to a
square insertion of zero electrical conductivity. Exact
solutions for other two-dimensional problems of
induction in thin non-uniform sheets were considered in
[7]. The numerous advantages of the boundary integral
techniques were recognized long ago. In the past few
decades, these methods acquired even more interest as
they could be easily implemented for rather arbitrary
shapes of the domain of solution. In the numerical
solution of boundary-value problems by integral equation
methods, the main sources of error reside in the
approximation of the contour by a broken line, and in the
application of the resulting discretized integral equation at
only a finite number of points. In spite of this, the
obtained numerical results are generally accurate enough.
Like in many other branches such as the Theory of
Elasticity or Hydrodynamics, the use of boundary integral
techniques found wide application in solving linear and
nonlinear electrostatic problems. Cade [8] studies a
general two-dimensional electrostatic system consisting
of any finite number of conducting and dielectric bodies
whose surfaces are circular cylinders each outside of the
others, influenced by an arbitrary given field. The system
is described by a set of simultaneous integral equations,
in which the unknown functions are the densities of the
induced electric charges on the surfaces of the
conductors. This work generalizes previous investigations
by Durand. Sellier [9] uses boundary integrals to solve the
problem of a slender dielectric body embedded in an
arbitrary external potential. Shail [10] and Cade ([8],
[11]) investigate the problem of a slender torus. The
discontinuous solutions of the integral equations of
electrostatics are discussed by Cade [12]. The use of
integral equations in three-dimensional modeling of
electromagnetism is investigated in [13]. There is
abundant literature about non-uniform electrical
conducting sheets and the mathematical methods used in
resolving such problems, especially when the external
field is time dependent. We briefly quote here some of
these references for geophysical applications and in
Technology, mainly in the field of non-destructive testing
of metal sheets: [3], [14], [15], [7], [16], [17], [18], [19],
[20], [21]. The present paper is devoted to the study of
infinite electrical conducting plane sheets with
non-homogeneous electrical conductivity, permeated by a
uniform, parallel electric field. More precisely, the sheet
is assumed to have homogeneous conductivity
everywhere, except for two ”islands” of different uniform
conductivities and arbitrary shapes. The problem is
resolved for the current function and the additional
magnetic field components within a boundary integral
formulation developed earlier for one inclusion, thus
avoiding the solution of Laplace’s equation in space. The

results may be easily generalized to any finite number of
insertions. The paper is organized into five sections and
an appendix: Section 1 is an introduction about the
history of the problem and the organization of the paper;
Section 2 is devoted to the description of the
mathematical model; in Section 3 we present the main
integral formulae for the calculation of the current
function in the sheet and the magnetic field components
in space, in terms of two unknown functions defined on
the boundaries of the inclusions; in Section 4 we derive
the basic coupled integral equations satisfied by the two
unknown boundary functions; Section 5 concerns the
applications, with numerical results and discussion. In the
appendix we have shown the details of the derivation of
the basic coupled integral equations.

2 Mathematical problem

We consider an infinite plane current sheet given byz = 0
in the system of Cartesian coordinatesO(x,y,z) . Closed
contoursC1 andC2 with parametric equationsx = x(s) ,
y = y(s) andx = x(τ) , y = y(τ) respectively wheres and
τ denotes the arc lengths onC1 andC2 respectively, divide
the plane into three regions: The interiorsD1 , D2 and the
exterior D0. The conductivities in the three regions are
uniform and equal toσ1,σ2 andσ0 respectively.
A uniform electric fieldE parallel to the plane of the
sheet excites electric currents in the sheet. Let this electric
field be inclined at an angleα to thex-axis. Then

E = E(cosα i + sinα j)

where i, j , k denote the unit vectors in the directions of
increasing ofx,y,z respectively.

Fig. 1: Geometry of the problem.

It is required to evaluate the components of the
resulting magnetic field. We shall denote byψ0(x,y) the
current function of the undisturbed current flow if the
whole sheet were of integrated conductivityσ0 and by
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V 0
m(x,y) the electric potential that would be required to

maintain this undisturbed current flow in the non-uniform
sheet. Hence

ψ0(x,y) = I[xsinα − ycosα]

V 0
m(x,y) =−Iσ−1

m [xcosα + ysinα]
(1)

corresponding to the areaDm, m= 0,1,2 andI = σ0E. The
additional current function and additional electric potential
are denoted respectivelyψm, Vm in Dm. The total current
function and electric potential areψ ′

m, V
′

m respectively. In
Dm

ψ
′

m(x,y) = ψ0(x,y)+ψm(x,y)

V
′

m =V 0
m(x,y)+Vm(x,y).

(2)

From the theory of uniform current sheets it is known that
V

′

m(x,y), ψ ′

m(x,y), ψm(x,y) andVm(x,y) satisfy the two-
dimensional Laplace’s equation in the areaDm.

For a general point inDm

k × grad ψ
′

m =−σmgrad V
′

m

k × grad ψm =−σmgrad Vm.

The boundary conditions forψ ′

m(x,y) express the
continuity ofψ ′

m(x,y) andσ−1
m

∂
∂n ψ ′

m(x,y) (the tangential
components of the electric field) at the boundaryC1,
m = 0,1, the continuity ofψ ′

m(x,y) andσ−1
m

∂
∂N ψ ′

m(x,y)
(the tangential components of the electric field) at the
boundaryC2, m = 0,2 and the vanishing ofψ0(x,y) at
infinite distance from this boundary.
The boundary conditions forV

′

m(x,y) express the
continuity of V

′

m(x,y) and of σm
∂
∂nV

′

m(x,y) (the normal
components of the current density)at the boundary ofC1,
m = 0,1, the continuity ofV

′

m(x,y) and ofσm
∂

∂NV
′

m(x,y)
(the normal components of the current density) at the
boundary ofC2, m = 0,2 and the vanishing ofV0(x,y) at
infinite distances from the boundary. The directional
derivatives in the plane of the sheet along the normal and
tangent directions are∂

∂n and ∂
∂ s respectively on the

boundary C1, the corresponding quantities on the
boundaryC2 are ∂

∂N and ∂
∂τ respectively.

3 Current function and additional magnetic
field

Extending Ashour’s result [5] in an obvious way, one may
write down the following expression for the magnetic
scalar potentialΩ(x,y,z) of the additional system of
currents due to the above insertions, calculated at a field
pointP(x,y,z) in the half-spacez ≥ 0:

Ω(x,y,z) =−[

∮

C1

log(R1+ z)
d
ds

G1(s)ds

+

∮

C2

log(R2+ z)
d

dτ
G2(τ)dτ], (3)

whereR1, R2 are the distances between the field point P
and the boundary points q1 = (x(s),y(s),0),
q2 = (x(τ),y(τ),0):

R1 =
√

(x− x(s))2+(y− y(s))2+ z2

R2 =
√

(x− x(τ))2+(y− y(τ))2+ z2

The following notations were introduced for convenience:

F1(s) =
dG1(s)

ds
, F2(τ) =

dG2(τ)
dτ

, (4)

G1(s) = σ1VC1
1 (s)−σ0V

C1
0 (s)

G2(τ) = σ2VC2
2 (τ)−σ0V

C2
0 (τ),

(5)

VC1
1 (s), VC2

2 (τ), VC1
0 (s) andVC2

0 (τ) are the limiting values
of the electric potential at the boundariesC1 and C2.
According to our definition, the current functionψ(x,y)
in the sheet may be calculated from the theory of thin
current sheets [1] as the negative double of the jump of
the magnetic potential across the sheet when moving
along the positive sense of thez-axis. Because of obvious
symmetry, this may be written as:

ψ(x,y) =−2Ω(x,y,0+). (6)

The expressions for the magnetic field components are:

Hx(x,y,z) =−
∂Ω
∂x

=

∮

C1

x− x(s)
R1(R1+ z)

F1(s)ds

+

∮

C2

x− x(τ)
R2(R2+ z)

F2(τ)dτ, (7)

Hy(x,y,z) =−
∂Ω
∂y

=

∮

C1

y− y(s)
R1(R1+ z)

F1(s)ds

+

∮

C2

y− y(τ)
R2(R2+ z)

F2(τ)dτ, (8)

Hz(x,y,z) =−
∂Ω
∂ z

=

∮

C1

F1(s)
R1

ds+
∮

C2

F2(τ)
R2

dτ. (9)

These last four relations allow to evaluate the current
function in the sheet and the magnetic field components
everywhere in space, once the functionsF1(s) andF2(τ)
have been determined. The next section is devoted to the
derivation of the coupled boundary integral equations
satisfied by these two functions.

4 The basic coupled integral equations

The two functionsVm(x,y) andσ−1
m ψm(x,y) are harmonic

and satisfy the Cauchy-Riemann relations in the simply
connected domainDm, m = 1,2. This implies that
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Vm(x,y) + iσ−1
m ψm(x,y) is an analytical function of the

complex variable. From the Cauchy integral theorem:

V1(x,y)+ iσ−1
1 ψ1(x,y)

=
1

2π i

∮

C1

VC1
1 (s′)+ iσ−1

1 ψC1
1 (s′)

q1− p
dq1,

where

q1 = x(s′)+ iy(s′) p = x(s)+ iy(s)

p is a field point inside the insertion and

q1− p = r11eiθ11.

Therefore,

dq1

q1− p
= d(log(q1− p)) =

∂
∂ s′

(logr11+ iθ11)ds′,

whereds′ denotes the differential length along the contour
C1 at the boundary point(x(s′),y(s′)). Hence

V1(x,y)

=
1

2π

∮

C1

[VC1
1 (s′)

∂ logr11

∂n′
+

1
σ1

ψC1
1 (s′)

∂ logr11

∂ s′
]ds′.

whenp lies on the contourC1,

VC1
1 (s) =

1
π

∮

C1

[VC1
1 (s′)

∂ logr11

∂n′

+
1

σ1
ψC1

1 (s′)
∂ logr11

∂ s′
]ds′, (10)

with

r11 =
√

(x(s)− x(s′))2+(y(s)− y(s′))2.

Similarly, one derives the expression

VC2
2 (τ) =

1
π

∮

C2

[VC2
2 (τ ′)

∂
∂N′

logr22

+
1

σ2
ψC2

2 (τ ′)
∂

∂τ ′
logr22]dτ ′, (11)

with

r22 =
√

(x(τ)− x(τ ′))2+(y(τ)− y(τ ′))2.

It will be shown in Appendix that the basic coupled
integral equations for the functionsF1 andF2 assume the
form:

F1(s)−
σ0−σ1

π(σ0+σ1)
[

∮

C1

F1(s
′)

∂ logr11

∂n
ds′

+

∮

C2

F2(τ ′)
∂ logr12

∂n
dτ ′]

=
2(σ0−σ1)

σ0+σ1
I[ẋ(s)cosα + ẏ(s)sinα], (12)

F2(τ)−
σ0−σ2

π(σ0+σ2)
[

∮

C1

F1(s
′)

∂ logr21

∂N
ds′

+

∮

C2

F2(τ ′)
∂ logr22

∂N
dτ ′]

=
2(σ0−σ2)

σ0+σ2
I[ẋ(τ)cosα + ẏ(τ)sinα], (13)

where

r11 =
√

(x(s)− x(s′))2+(y(s)− y(s′))2,

r12 =
√

(x(s)− x(τ ′))2+(y(s)− y(τ ′))2,

r21 =
√

(x(τ)− x(s′))2+(y(τ)− y(s′))2,

r22 =
√

(x(τ)− x(τ ′))2+(y(τ)− y(τ ′))2.

The obtained formulae were tested in different ways:
First, we have setσ0 = σ2. It follows that F2(τ) = 0 as
may be directly verified, and the one-insertion case
treated in [6] is recovered. Numerical tests were carried
out for this case and the previous known results for one
circular, elliptic or square insertion were all recovered
with high precision. Second, we have exactly recovered
the numerical results for two circular insertions treated in
[5]. Also, although the basic equations and the proofs
presented above do not allow the vanishing of the
electrical conductivity of an island, one easily verifies that
the obtained pair of coupled integral equations remains
valid in the limit whenσ1 and/orσ2 tend to zero, which
means that our final results can be used to treat the cases
of practical importance when the insertions are poor
conductors, or even holes.

5 Numerical results and discussion

For conciseness, we consider in what follows only one
geometry, involving two elliptic insertions with parallelor
perpendicular major axes. The case of two slots is also
investigated as a special case of the ellipse, as the
eccentricity is close to unity. To the best of our
knowledge, the obtained results are new and clearly
indicate that the proposed formulation may be effectively
used to solve difficult boundary-value problems in this
area of research. In each case, the two boundaries have
been discretized in the usual way by defining point
partitions on them. The coupled integral equations were
thus reduced to a system of linear algebraic equations and
the functionsF(s),F(τ) were evaluated numerically at
the chosen set of boundary points. The obtained values
were then used in conjunction with Fourier expansion to
obtain analytic expressions for the two functions. These
are subsequently fed into the integrals for the total current
function and for the components of the magnetic field to
produce numerical results and plots. As the used Fourier
expansions were taken in complex form, the number of

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 3, 1213-1223 (2015) /www.naturalspublishing.com/Journals.asp 1217

points on each boundary was chosen odd. Only two
settings have been used for definiteness, for which the
axes are such that the applied electric field is directed
either along thex-axis (α = 0) or along the y-axis
(α = π/2). The magnetic field components are related to
the characteristic magnetic fieldH0 of the undisturbed
current flow in the non-homogeneous sheet, defined by:

H0 =
I
2
.

These components have been plotted for three values of
thez-coordinate:

z = 0;0.5;1.

The corresponding curves are labeled 1; 2; 3 respectively.
In the presented figures for the level lines of the total
current function, it is noticed that the current lines are
denser in the insertion with electrical conductivity larger
than that of the host matrix and the current lines are
attracted towards the insertion, the converse being true for
the insertion with lower electrical conductivity. Also, the
additional magnetic field tends to zero as one gets further
away from the insertions. Inside the insertions, when the
level curves for the total current function are close to
being equally distanced straight lines, the component of
the magnetic field in the direction perpendicular to these
lines will be almost constant, as appears from the figures.
All these results are expected on a physical basis, and
provide an indication to the correctness of the
calculations.

It is important to notice the existence of singular
behavior of solutions for the magnetic field components
at boundaries of discontinuity of the function of electrical
conductivity, even within the used linearized theory of
Electromagnetism. These may be weak singularities,
jumps or infinite discontinuities of logarithmic nature as
appears on the different plots. The logarithmic singularity
may be put in evidence by considering the boundary
integral expression (9) for the magnetic field component
perpendicular to the sheet. After substituting into it the
Fourier expansion forFi, this expression is seen to involve
an elliptic integral of the third kind, which is known to
have a logarithmic singularity (cf. [22], p.303). Such a
singularity is clearly unrealistic, it is only a result of the
inadequacy of the used model in regions of the sheet
contiguous to the boundaries.

The calculations were successfully performed on a
multitude of geometries, smooth boundaries or
boundaries with corner points, and for a number of
settings of the applied electric field. Only the following
three cases are presented:

A.Two elliptic insertions with parallel major axes. The
ellipses have same dimensions, major axis half-length
equal to unity, eccentricitye ≃ 0.94. The centers of
the ellipses lie on they-axis, with major axes aligned
perpendicular to the direction of the initial electric field
(α = π

2 ) and are a distance apart equal to double the

length of the major axis. The electrical conductivities
take the values such that:

σ1

σ0
= 1.5,

σ2

σ0
= 0.75.

Figure 2 shows the corresponding level curves for the
total current function. Figure 3 displays the magnetic

Fig. 2: Level lines for the total current function for two
elliptic insertions: Symmetric setting with major axes parallel
to the direction of the applied electric field and line of centers
perpendicular to this direction.

field componentsHx, Hy andHz as functions ofx for
y = 0, i.e. when the observer moves along a path
parallel to the major axes in the direction of the
applied electric field and symmetrically positioned
with respect to the two insertions. The symmetry
properties in these figures are obvious and may be
used experimentally to determine the side in which
the insertion of high (low) electrical conductivity lies.
Comparison between the components shows that the
maximum absolute value of the componentHy is
much smaller than that of the other two components.
Thus the componentsHy and Hy may be more
appropriate for measurements. Figure 4 shows the
magnetic field componentsHy and and Hz as
functions ofy for x = 0, i.e. when the observer moves
along a direction parallel to the line of centers,
perpendicular to the direction of the applied field. The
crossing of the two boundaries takes place whenz = 0
and is accompanied by a weak discontinuity inHy and
an infinite discontinuity inHz. The field inside the
insertions is linear, nearly constant. The locations of
the discontinuities may be used for the determination
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Fig. 3: Magnetic field componentsHx, Hy and Hz as functions
of x, for y = 0 for two elliptic insertions: Symmetric setting with
major axes parallel to the direction of the applied electricfield
and line of centers perpendicular to this direction.

of the locations of the insertions from measurements
of these magnetic field components.

Fig. 4: Magnetic field componentsHy andHz as functions ofy,
for x= 0 for two elliptic insertions: Symmetric setting with major
axes parallel to the direction of the applied electric field and line
of centers perpendicular to this direction.

B.Two parallel elliptic slots. The ellipses have same
dimensions, major axis half-length equal to unity,
eccentricitye ≃ 0.99, rendering the ellipses very thin.
The centers of the ellipses lie on they-axis, with
major axes aligned perpendicular to the direction of
the initial electric field(α = π

2 ) and are a distance
apart equal to double the length of the major axis. The
electrical conductivities take the values such that:

σ1

σ0
= 1.25,

σ2

σ0
= 0.50.

The level curves for the total current function in this
case are represented on Figure 5.
The curves for the magnetic field components as
functions ofx for y = 0 are shown on Figure 6.

Fig. 5: Level lines for the total current function for two slots:
Symmetric setting with major axes perpendicular to the direction
of the applied electric field and line of centers parallel to this
direction.

Figure 7 displays the magnetic field componentHx as
function of y for x = 0. The weak discontinuities are
evident as the boundaries are crossed.

C.Two elliptic insertions with perpendicular major
axes.The geometrical parameters of the ellipses are
as in case A. The centers lie on they-axis, the major
axis of insertion (2) is parallel to the applied electric
field (α = 0), the major axis of insertion (1) is
perpendicular to this direction. The electrical
conductivities satisfy

σ1

σ0
= 1.2,

σ2

σ0
= 0.80.

The level curves for the total current function are
shown on Figure 9. We have represented on Figure 10
the magnetic field componentHy, and on Figure 11
the field componentHz, both as functions ofy for
x = 0. The singular behavior of these two components
is clear at those points where they-axis intersects the
boundaries of the ellipses.
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Fig. 6: Magnetic field componentsHx, Hy and Hz as functions
of x, for y = 0 for two slots: Symmetric setting with major axes
perpendicular to the direction of the applied electric fieldand line
of centers parallel to this direction.

Fig. 7: Magnetic field componentsHx as function ofy, for x = 0
for two slots: Symmetric setting with major axes perpendicular
to the direction of the applied electric field and line of centers
parallel to this direction.

The following general remarks are due:

1.All the results are in accordance with the Theory of
Electromagnetism in quasi-static formulation.

2.The different components of the electromagnetic field
show singular behavior on the sheet, at the boundary
points. The singularities may be of weak type, finite
jumps or else logarithmic singularities.

3.The presence of logarithmic singularity for the
magnetic field component normal to the sheet at the
boundary points clearly indicate the inadequacy of the
linear model in the regions of the sheet close to the
boundaries of the insertions.

4.Although the deduction of the integral equations for
the functionsFi requires the electrical conductivities
of the insertions to be non zero, the final form of these
equations is not subject to such a restriction.

Fig. 8: Level lines for the total current function for two elliptic
insertions: One major axis perpendicular to the direction of the
applied electric field, the other major axis perpendicular to this
direction.

Fig. 9: Magnetic field componentsHx, Hy and Hz as functions
of x, for y = 0, for two elliptic insertions: One major axis
perpendicular to the direction of the applied electric field, the
other major axis perpendicular to this direction.

5.The used numerical scheme performed well in almost
all cases, whether the insertion is electrical conductor,
isolator or even hole. The previous known results
were all recovered as special cases. The obtained
results provide effective solutions to diffcult,
three-dimensional boundary-value problems for
Laplace’s equation, otherwise impossible to solve
analytically.

6.During the calculations, the partitions of the
boundaries were gradually refined, till the numerical
figures stabilized within the required accuracy. The
presented results were obtained with uniform
partitions consisting of 101 points. The relative errors
were within the limits of 1%.
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Fig. 10: Magnetic field componentsHy and Hz as functions
of y, for x = 0, for two elliptic insertions: One major axis
perpendicular to the direction of the applied electric field, the
other major axis perpendicular to this direction.

7.In case of boundary corner points, the corresponding
function Fi may have jumps. This will cause Gibb’s
phenomenon to take place when this function is
expanded in a Fourier series. To avoid the resulting
errors, the corner should be rounded. This can be
achieved either by replacing portions of the boundary
by properly chosen curves, or by replacing the whole
boundary by another smooth one, or else by just
avoiding to include the corner points in the partition.

8.It was noticed that the level curves for the total current
function could not be drawn correctly in some cases.
Closed contours would appear threading the
boundaries, a fact that is not likely to happen in
practice. This phenomenon was observed to gradually
disappear as the value of the electrical conductivity of
the host matrix was increased relative those of the
insertions.

9.The results may be directly generalized to the infinite
electrical conducting sheet with any finite number of
insertions.
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Appendix A

The expressions (10) and (11) for VC1
1 (s) andVC2

2 (τ) may
be written as follows:

VC1
1 (s) =

1
π

∮

C1

[VC1
1 (s′)

∂ logr11

∂n′
+

1
σ1

ψC1
1 (s′)

∂ logr11

∂ s′
]ds′

+
1
π

∮

C2

[VC2
2 (τ ′)

∂ logr12

∂N′
+

1
σ2

ψC2
2 (τ ′)

∂ logr12

∂τ ′
]dτ ′,

VC2
2 (τ) =

1
π

∮

C1

[VC1
1 (s′)

∂ logr21

∂n′
+

1
σ1

ψC1
1 (s′)

∂ logr21

∂ s′
]ds′

+
1
π

∮

C2

[VC2
2 (τ ′)

∂ logr22

∂N′
+

1
σ2

ψC2
2 (τ ′)

∂ logr22

∂τ ′
]dτ ′,

because in the first equation the second integral vanishes
and in the second equation the first integral vanishes. Also,

VC1
0 (s)

=−
1
π

∮

C1

[VC1
0 (s′)

∂ logr11

∂n′
+

1
σ0

ψC1
0 (s′)

∂ logr11

∂ s′
]ds′

−
1
π

∮

C2

[VC2
0 (τ ′)

∂
∂N′

logr12+
1

σ0
ψC2

0 (τ ′)
∂

∂τ ′
logr12]dτ ′,

(14)

VC2
0 (τ)

=−
1
π

∮

C1

[VC1
0 (s′)

∂ logr21

∂n′
+

1
σ0

ψC1
0 (s′)

∂ logr21

∂ s′
])ds′

−
1
π

∮

C2

[VC2
0 (τ ′)

∂ logr22

∂N′
+

1
σ0

ψC2
0 (τ ′)

∂ logr22

∂τ ′
]dτ ′,

(15)

with

r12 =
√

(x(s)− x(τ ′))2+(y(s)− y(τ ′))2,

r21 =
√

(x(τ)− x(s′))2+(y(τ)− y(s′))2.

From the continuity of the current function and the
electric potential:

ψC1
0 (s) = ψC1

1 (s),

ψC2
0 (τ) = ψC2

2 (τ),

V ′
0 =V ′

1 on C1, V ′
0 =V ′

2 on C2.

From the second of equations (2) applied onC1

V 0
0 +V0 =V 0

1 +V1.

and from (1) after some manipulations

σ1(V0−V1) = E(σ1−σ0)[xcosα + ysinα].

Taking the limit as points tend to the boundary point on
C1:

σ1[V
C1
0 (s)−VC1

1 (s)] = E(σ1−σ0)[x(s)cosα + y(s)sinα].
(16)

Similarly one can prove that

σ2[V
C2
0 (τ)−VC2

2 (τ)] =E(σ2−σ0)[x(τ)cosα+y(τ)sinα].
(17)

In (20) the second integral vanishes and therefore it may
be multiplied by an arbitrary constant,σ2 say. The
remainder of this equation is multiplied byσ1, equation
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(14) is multiplied byσ0 and the resulting expressions are
added to yield

σ1VC1
1 +σ0V

C1
0 =

1
π

∮

C1

{[σ1V
C1
1 (s′)−σ0V

C1
0 (s′)]

∂ logr11

∂n′

+[ψC1
1 (s′)−ψC1

0 (s′)]
∂ logr11

∂ s′
}ds′

+
1
π

∮

C2

{[σ2V
C2
2 (τ ′)−σ0V

C2
0 (τ ′)]

∂ logr12

∂N′

+[ψC1
2 (τ ′)−ψC2

0 (τ ′)]
∂ logr12

∂τ ′
}dτ ′.

The above conditions of continuity allow to simplify this
last relation to the form:

σ1VC1
1 +σ0V

C1
0

=
1
π

∮

C1

[σ1VC1
1 (s′)−σ0V

C1
0 (s′)]

∂ logr11

∂n′
ds′

+
1
π

∮

C2

[σ2VC2
2 (τ ′)−σ0V

C2
0 (τ ′)]

∂ logr12

∂N′
dτ ′. (18)

With the help of (5) one obtains

σ1VC1
1 +σ0V

C1
0 =

1
π

∮

C1

G1(s
′)

∂ logr11

∂n′
ds′

+
1
π

∮

C2

G2(τ ′)
∂ logr12

∂N′
dτ ′. (19)

Adding (5) and(19) and dividing by 2σ1:

VC1
1 (s) =

1
2σ1

[G1(s)+
1
π

∮

C1

G1(s
′)

∂ logr11

∂n′
ds′

+
1
π

∮

C2

G2(τ ′)
∂ logr12

∂N′
dτ ′]. (20)

Subtracting (5) from (20) and dividing by 2σ0:

VC1
0 (s) =

1
2σ0

[−G1(s)+
1
π

∮

C1

G1(s
′)

∂
∂n′

logr11ds′

+
1
π

∮

C2

G2(τ ′)
∂

∂N′
logr12dτ ′]. (21)

Now subtract (21) from (20) and multiply byσ1 to get

σ1[V
C1
1 (s)−VC1

0 (s)] =
σ1+σ0

2σ0
G1(s)

+
σ0−σ1

2πσ0
[

∮

C1

G1(s
′)

∂ logr11

∂n′
ds′

+

∮

C2

G2(τ ′)
∂ logr12

∂N′
dτ ′].

From (16):

E(σ0−σ1)[x(s)cosα + y(s)sinα] =
σ1+σ0

2σ0
G1(s)

+
σ0−σ1

2πσ0
[

∮

C1

G1(s
′)

∂ logr11

∂n′
ds′

+

∮

C2

G2(τ ′)
∂

∂N′
logr12dτ ′].

Multiplying this last equation by 2σ0
σ0+σ1

and replacingI =
Eσ0 yields

G1(s)+
σ0−σ1

π(σ0+σ1)
[

∮

C1

G1(s
′)

∂
∂n′

logr11ds′

+

∮

C2

G2(τ ′)
∂

∂N′
logr12dτ ′]

=
2(σ0−σ1)

σ0+σ1
I[x(s)cosα + y(s)sinα].

Differentiate w.r.tos and use (4):

F1(s)+
σ0−σ1

π(σ0+σ1)

d
ds

[

∮

C1

G1(s
′)

∂
∂n′

logr11ds′

+

∮

C2

G2(τ ′)
∂

∂N′
logr12dτ ′]

=
2(σ0−σ1)

σ0+σ1
I[ẋ(s)cosα + ẏ(s)sinα].

Integration by parts and use of the Cauchy-Riemman
relations

∂
∂n

logr11 =
∂
∂ s

θ11,
∂

∂n
logr12 =

∂
∂ s

θ12

finally yields the integral equation

F1(s)−
σ0−σ1

π(σ0+σ1)
[
∮

C1

F1(s
′)

∂
∂n

logr11ds′

+
∮

C2

F2(τ ′)
∂

∂n
logr12dτ ′]

=
2(σ0−σ1)

σ0+σ1
I[ẋ(s)cosα + ẏ(s)sinα].

The second integral equation may be derived in a similar
way as

F2(τ)−
σ0−σ2

π(σ0+σ2)
[

∮

C1

F1(s
′)

∂
∂N

logr21ds′

+

∮

C2

F2(τ ′)
∂

∂N
logr22dτ ′]

=
2(σ0−σ2)

σ0+σ2
I[ẋ(τ)cosα + ẏ(τ)sinα].
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