
Appl. Math. Inf. Sci.9, No. 3, 1191-1198 (2015) 1191

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090311

The Generative Capacity of Probabilistic Splicing
Systems

Mathuri Selvarajoo1, Sherzod Turaev2, Wan Heng Fong3,∗ and Nor Haniza Sarmin1

1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
2 Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
3 Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Received: 12 Jul. 2014, Revised: 13 Oct. 2014, Accepted: 14 Oct. 2014
Published online: 1 May 2015

Abstract: The concept ofprobabilistic splicing systemwas introduced as a model for stochastic processes using DNAcomputing
techniques. In this paper we introduce splicing systems endowed with different continuous and discrete probabilisticdistributions and
call them as probabilistic splicing systems. We show that any continuous distribution does not increase the generativecapacity of
the probabilistic splicing systems with finite components,meanwhile, some discrete distributions increase their generative capacity
up to context-sensitive languages. Finally, we associate certain thresholds with probabilistic splicing systems andthis increases the
computational power of splicing systems with finite components.

Keywords: DNA computing, splicing systems, probabilistic splicing systems, generative capacity

1 Introduction

DNA (Deoxyribonucleic acid) is the genetic material of
organisms in a chain of nucleotides. The nucleotides
differ by their chemical bases that areadenine (A),
guanine (G), cytosine (C), and thymine (T). This
nucleotides are pairedA-T , C-G according to the
so-called Watson-Crick complementary. Massive
parallelism, another fundamental feature of DNA
molecules, allows performing millions of cut and paste
operations simultaneously on DNA strands until a
complete set of new DNA strands are generated.

The famous biological experiment performed by
Adleman [1] using these two features (Watson-Crick
complementary and massive parallelism) of DNA
molecules for solving Hamiltonian Path Problem for
some instances indeed gave a high hope for the future of
DNA computing. Since then, several studies have been
done to show the power of DNA computing. For instance,
Lipton [2] proved that DNA computing techniques can be
successfully used to solve the problem of finding the
satisfying assignments for arbitrary contact networks.
Boneh et al. [3] showed that DNA based computers can
be used to solve the satisfiability problem for Boolean
circuits.

One of the earliest theoretical proposals for DNA
based computation, called asplicing system, was
introduced by Head [4] in 1987. A splicing system uses a
splicing operationthat is a formal model of the cutting
and recombination of DNA molecules under the influence
of restriction enzymes and ligation reactions. This process
works as follows: two DNA molecules are cut at specific
subsequences and the first part of one molecule is
connected to the second part of the other molecule, and
vice versa. This process can be formalized as an operation
on strings, described by a so-calledsplicing rule. A
system starts from a given set of strings (axioms) and
produces alanguageby iterated splicing according to a
given set of splicing rules. Because of practical reasons,
the case when the components of splicing systems are
finite is of special interest. But splicing systems with
finite sets of axioms and splicing rules generate only
regular languages (see [5]), hence, several restrictions in
the use of rules have been considered (for instance, see
[6]), which increase the computational power of the
languages generated up to the recursively enumerable
languages. This is important from the point of view of
DNA computing, as splicing systems with restrictions can
be considered as theoretical models ofuniversal
programmable DNA based computers.

∗ Corresponding author e-mail:fwh@ibnusina.utm.my

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090311

1192 M. Selvarajoo et. al. : The Generative Capacity of Probabilistic...

Different problems appearing in computer science and
related areas motivate the need to consider suitable
computation models for the solution. For instance, the
probabilistic models have been widely used in order to
develop accurate tools for natural and programming
language processing [7]. In fact, adding probabilities to
Chomsky grammars allows eliminating derivation
ambiguity and leads to more efficient parsing and tagging
algorithms for the language processing. The study of
probabilistic grammars (defined by assigning a
probability distribution to the productions) and
probabilistic automata (defined by associating
probabilities with the transitions) was started in the 1960s
(for instance, see [8,9,10,11,12]). Recent results on
probabilistic grammars and automata can be found, for
instance, in [13,14,15].

Probabilistic concepts in formal language and
automata theories can also be adapted in DNA computing
theory which can produce interesting results. Authors in
[16,17] studied probabilistic variants of splicing and
sticker systems as well as Watson-Crick finite automata.
In a probabilistic splicing system (see [18]), probabilities
are initially associated with the axioms (not with the
rules), and the probability of the generated string from
two strings is calculated by multiplication of their
probabilities.

The probability of a generated string in a Chomsky
grammar is computed by the multiplication of the
probabilities of the rules used in the derivation of the
string. This probability computation isnatural: the
application of a ruleu→ v modifies a sentential formxuy
by rewriting the substringu with the substringv resulting
in the sentential formxvy i.e., the rule has “direct”
contribution into the new sentential form. Thus, the
probability of xvy should be computed from the
probabilities of xuy and the rule u → v i.e.,
p(xvy) = p(xuy)p(u→ v).

This idea of the computation of the probability of
strings cannot be directly used in splicing systems:

First, in a splicing, two strings are used. If we follow
the idea above, in order to compute the probability of the
string z obtained from stringsx andy using splicing rule
r, we need to use probabilitiesp(x), p(y) and p(r) i.e.,
p(z) = p(x)p(r)p(y). But a splicing rule does not
contribute a substring into the newly formed string: it
only cuts two strings in some specific sites and combines
the prefixes with the suffixes. Thus, it is not quite natural
to use the probability of a splicing rule in this case.

On the other hand, if in a Chomsky grammar,
sentential formxvy in a derivation is resulted from
sentential formxuy by rule u → v, then we can also
consider that the probability ofxvy is computed from the
probabilities of the two strings xuy and v i.e.,
p(xvy) = p(xuy)p(v), where the probability of the rule
u→ v can be considered as the probability ofv. Thus, we
can adapt this “modified” definition of the probability
computation for splicing systems.

Hence, the computation of the probability of the
generated string from two strings by multiplication of
their probabilities is natural in splicing systems.

In this paper we continue our investigation on the
generative power of probabilistic splicing systems.

This paper is organized as follows.Section 2contains
some necessary definitions and results from the theories
of formal languages and splicing systems that are used in
sequel. Section 3 explains the specific features of
probabilistic splicing systems in two examples and
establishes some basic and also important results
concerning the generative power of probabilistic splicing
systems.Section 4discusses our main results, cites some
open problems and indicates possible topics for future
research in this direction.

2 Preliminaries

In this section we recall some prerequisites, by giving
basic notions and notations of the theories of formal
languages, and splicing systems, which are used in
sequel. The reader is referred to [6,19,20] for more
detailed information.

Throughout the paper we use the following general
notations. The symbol∈ denotes the membership of an
element to a set while the negation of set membership is
denoted by/∈. The inclusion is denoted by⊆ and the strict
(proper) inclusion is denoted by⊂. The empty set is
denoted by /0. The sets of integers, positive rational
numbers and real numbers are denoted byZ, Q+ andR
respectively. The cardinality of a setX is denoted by|X|.
The power set ofX is denoted by 2X.

The families of recursively enumerable,
context-sensitive, context-free, linear, regular and finite
languages are denoted byRE, CS, CF, LIN , REG and
FIN , respectively. For these language families, the next
strict inclusions, namedChomsky hierarchy(see [19]),
hold

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS⊂ RE.

Further, we recall some basic notations of (iterative)
splicing systems. LetV be an alphabet, and #,$ two special
symbols. A splicing rule overV is a string of the form

r = u1#u2$u3#u4 whereui ∈V∗, 1≤ i ≤ 4.

For such a ruler ∈ Rand stringsx,y,z∈V∗, we write

(x,y) ⊢r z

if and only if

x= x1u1u2x2, y= y1u3u4y2, andz= x1u1u4y2,

for somex1,x2,y1,y2 ∈V∗.

The stringz is said to be obtained by splicingx,y, as
indicated by the ruler; the stringsu1u2 andu3u4 are called

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 3, 1191-1198 (2015) /www.naturalspublishing.com/Journals.asp 1193

thesitesof the splicing. We callx thefirst termandy the
second termof the splicing operation.

An H scheme(a splicing scheme) is a pairσ = (V,R),
whereV is an alphabet andR⊆ V∗#V∗$V∗#V∗ is a set
of splicing rules. For a given H schemeσ = (V,R) and a
languageL ⊆V∗, we write

σ(L) = {z∈V∗ : (x,y) ⊢r z, for somex,y∈ L, r ∈ R},

and we define
σ∗(L) =

⋃

i≥0

σ i(L)

by

σ0(L) =L,

σ i+1(L) =σ i(L)∪σ(σ i(L)), i ≥ 0.

An extended H systemis a constructγ = (V,T,A,R),
whereV is an alphabet,T ⊆ V is the terminal alphabet,
A⊆V∗ is the set ofaxioms, andR⊆V∗#V∗$V∗#V∗ is the
set ofsplicing rules. The system is said to benon-extended
whenT =V. An alphabetx∈V is said to benon-terminal
whenx /∈ T. The language generated byγ is defined by

L(γ) = σ∗(A)∩T∗.

The symbols EH(F1,F2) denotes the family of
languages generated by extended H system
γ = (V,T,A,R) with A∈ F1 andR∈ F2 where

F1,F2 ∈ {FIN ,REG,CF,LIN ,CS,RE}.

The following theorem (for details, see [6]) shows the
relations of the families of languages generated by splicing
systems to the families of Chomsky languages.

Theorem 2.1.The relations in the following table hold,
where at the intersection of the row marked withF1 with
the column marked withF2 there appear either the family
EH(F1,F2) or two families F3, F4 such that
F3 ⊂ EH(F1,F2)⊆ F4.

FIN REG LIN CF CS RE
FIN REG RE RE RE RE RE
REG REG RE RE RE RE RE
LIN LIN , CF RE RE RE RE RE
CF CF RE RE RE RE RE
CS RE RE RE RE RE RE
RE RE RE RE RE RE RE

3 Definitions, examples and results

First, we slightly modify our notions and notations related
to probabilistic splicing systems initially defined in [18].
Second, we recall some results obtained from [18] and
present new ones related to the generative capacity of
probabilistic splicing systems.

Definition 3.1. A probabilistic H (splicing) systemis a
5-tupleγ = (V,T,A,R, p) whereV,T,R are defined as for
an extended H system,p : V∗ → [0,1] is a probability
function, andA is a finite subset ofV+ such that

∑
x∈A

p(x) = 1.

Further, we define a probabilistic splicing operation,
an iterative splicing over probabilistic languages and the
language generated by a probabilistic splicing system.

Definition 3.2. For strings with probabilities(x, p(x)),
(y, p(y)), (z, p(z)) ∈V∗× [0,1] andr ∈ R, we say that

[(x, p(x)),(y, p(y))] ⊢r (z, p(z))

if and only if (x,y) ⊢r z andp(z) = p(x)p(y).

Definition 3.3. Let L ⊆ V∗ be a language andp : V∗ →
[0,1] be a probability function. We define aprobabilistic
language on Lby

Lp = {(x, p(x)) : x∈ L andp(x) is the probability ofx}.

Definition 3.4. For a givenH schemeσ = (V,R) and a
languageLp ⊆V+× [0,1], we write

σ(Lp) = {(z, p(z)) ∈V∗× [0,1] : [(x, p(x)),(y, p(y))]

⊢r (z, p(z)) for some (x, p(x)),(y, p(y)) ∈ Lp andr ∈ R},

and define
σ∗(Lp) =

⋃

i≥0

σ i(Lp)

where

σ0(Lp) = Lp,

σ i+1(Lp) = σ i(Lp)∪σ(σ i(Lp)), i ≥ 0.

Definition 3.5. Theprobabilistic languagegenerated by a
probabilistic splicing systemγ is defined as

Lp(γ) = {(x, p(x)) ∈ σ∗(Ap) : x∈ T∗}.

Remark 3.1. We should mention that different splicings
may result in the same string with different probabilities.
There are some techniques to remove this “ambiguity”
from the strings. For instance, we can consider a second
operation, such as addition or maximum, together with
the multiplication. Then, the cumulative probability or
maximum probability of a string generated by the splicing
system can be used as the probability of the string.

Another idea is based on the selection of the strings
generated by a splicing system: we choose cut-points
(thresholds) such as numbers, segments or discrete sets
with different modes such as “greater than”, “smaller
than”, “equal to”, “belongs to”, etc., and consider some
splicings are successful and select the produced strings

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1194 M. Selvarajoo et. al. : The Generative Capacity of Probabilistic...

into the language if the probabilities satisfy the threshold
requirements. In our current research we use the latter
approach because we are merely interested in the
generative capacity of probabilistic splicing systems, i.e.,
the powers of the families of crispy languages generated
by the probabilistic splicing systems.

Let Lp(γ) be the language generated by a probabilistic
splicing system γ = (V,T,A,R, p). We consider as
thresholds (cut-points) sub-segments and discrete subsets
of [0, 1] as well as real numbers in [0, 1]. We define the
following two types ofthreshold languageswith respect
to thresholdsω ∈ [0,1] andΩ ⊆ [0,1]:

Lp(γ,⋄) = {z∈ T∗ : (z, p(z)) ∈ σ∗
p(A)∧ p(z)⋄ω},

Lp(γ,⋆) = {z∈ T∗ : (z, p(z)) ∈ σ∗
p(A)∧ p(z)⋆Ω}

where⋄ ∈ {=, 6=,≥,>,<,≤} and ⋆ ∈ {∈, /∈} are called
thethreshold modes.

We denote the family of languages generated by
probabilistic splicing systems of type(F1,F2) by
pEH(F1,F2) where

F1,F2 ∈ {FIN ,REG,CF,LIN ,CS,RE}.

Instead of pEH(F1,F2), we also use the simplified
notation pEH(F) of the family languages generated by
probabilistic splicing systems with finite sets of axioms
where F ∈ {FIN ,REG,CF,LIN ,CS,RE} shows the
language family of splicing rules.

From the definition, the next lemma follows
immediately.

Lemma 3.1.

EH(FIN ,F)⊆ pEH(F)

for all familiesF ∈ {FIN ,REG,CF,LIN ,CS,RE}.

Proof. Let γ = (V,T,A,R) be a splicing system generating
the language L(γ) ∈ EH(FIN ,F) with
F ∈ {FIN ,REG,CF,LIN ,CS,RE}.

Let A = {x1,x2, . . . ,xn}, n ≥ 1. We define a
probabilistic splicing systemγ ′ = (V,T,A′,R, p) where
the set of axioms is defined by

A′ = {(xi , p(xi)) : xi ∈ A,1≤ i ≤ n)}

wherep(xi) = 1/n for all 1≤ i ≤ n, then

n

∑
i=1

p(xi) = 1.

We define the threshold language generated byγ ′ as
Lp(γ ′,> 0), then it is not difficult to see that
L(γ) = Lp(γ ′,> 0). �

Example 3.1.Let us consider a probabilistic splicing
system

γ1 = ({a,b,c,d},{a,b,c},

{(cad,2/7),(dbc,5/7)},R1, p1)

where

R1 = {r1 = a#d$c#ad, r2 = db#c$d#b,

r3 = a#d$d#b}. (1)

It is easy to see that the first rule in (1) can only be
applied to the stringcad, and the second rule in (1) to the
stringdbc. For instance,

[(cad,2/7),(cad,2/7)] ⊢r1 (caad,(2/7)2),

and

[(dbc,5/7),(dbc,5/7)] ⊢r2 (dbbc,(5/7)2).

In general, for anyk≥ 1 andm≥ 1,

[(cakd,(2/7)k),(cad,2/7)] ⊢r1 (cak+1d,(2/7)k+1),

and

[(dbmc,(5/7)m),(dbc,5/7)] ⊢r2 (dbm+1c,(5/7)m+1).

From the stringscakd, k ≥ 1 and dbmc, m ≥ 1 by
applying the ruler3, we obtain

[(cakd,(2/7)k),(dbmc,(5/7)m)]

⊢r3 (cakbmc,(2/7)k)(5/7)m.

Thus,

Lp(γ1) = {(cakbm,(2/7)k(5/7)m) : k,m≥ 1}.

We obtain the following threshold languages
generated by this probabilistic splicing system with
different thresholds and modes:

Since all the initial probabilities are nonzero, all
multiplications of probabilities are also nonzero,
consequently,Lp(γ1,= 0) = /0, and

Lp(γ1,> 0) = L(γ ′1)

where γ ′ is the “crispy” variant of γ, i.e., γ without
probabilities. Then,Lp(γ1,> 0) is regular.

If we choose> as a mode and(10/49)i, i ≥ 1, as a
cut-point, thenLp(γ1,> (10/49)i) is afinite language, i.e.,

Lp(γ1,> (10/49)i) = {cakbmc : 1≤ k,m≤ i}.

We can obtaincontext-freelanguages if we consider
some discrete subsets of[0,1], for instance,

Lp(γ1,∈ {(10/49)n : n≥ 1}) = {canbnc : n≥ 1}

and

Lp(γ1, /∈ {(10/49)n : n≥ 1}) ={cakbmc : k> m≥ 1}

∪{cakbmc : m> k≥ 1}.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 3, 1191-1198 (2015) /www.naturalspublishing.com/Journals.asp 1195

Example 3.2.Consider the probabilistic splicing system

γ2 = ({a,b,c,w,x,y,z},{a,b,c,w,zA2,R2, p2})

where

A2 = {(wax,3/19),(xby,5/19),(ycz,11/19)}

and

R2 = {r1 = wa#x$w#a, r2 = xb#y$x#b,

r3 = yc#z$y#c, r4 = a#x$x#b,

r5 = b#y$y#c}.

We obtain the following strings from the first axiom
and the ruler1:

(wakx,(3/19)k), k≥ 1,

from the second axiom and the ruler2:

(xbmy,(5/19)m), m≥ 1,

from the third axiom and the ruler3:

(ycnz,(11/19)n), n≥ 1.

The nonterminalsx and y in these strings are
eliminated by rulesr4 andr5, i.e.,

[(wakx,(3/19)k),(xbmy,(5/19)m)] ⊢r4

(wakbmy,(3/19)k(5/19)m)

and

[(wakbmy,(3/19)k(5/19)m),(ycnz,(11/19)n)] ⊢r5

(wakbmcnz,(3/19)k(5/19)m(11/19)n).

Then the language generated by the probabilistic
splicing systemγ2 is

Lp(γ2) = {(wakbmcnz, (3/19)k(5/19)m(11/19)n) :

k,m,n≥ 1}.

Using different cut-points and modes we can obtain the
following threshold languages.

(1) Lp(γ2,= 0) = /0.

(2) Lp(γ2,> 0) = L(γ ′2) ∈ REG whereγ ′2 is the crispy
variant ofγ2.

(3) Lp(γ2,> τ i) = {wakbmcnz : 1 ≤ k,m,n ≤ i} ∈ FIN
whereτ = 165/6859.

(4) ForΩ = {(165/6859)n : n≥ 1},

Lp(γ2,∈ Ω) = {wanbncnz : n≥ 1} ∈ CS−CF

and

Lp(γ2, /∈ Ω) = {wakbmcnz : k 6= m,k 6= n,m 6= n}

that is also inCS−CF.

The examples above illustrate that the use of
thresholds with probabilistic splicing systems increase the
generative power of splicing systems with finite
components. We should also mention two simple but
interesting facts of probabilistic splicing systems. First, as
Proposition 3.1 and second, as Proposition 3.2, stated in
the following.

Proposition 3.1.If the probability of each axiomx∈A in a
probabilistic splicing systemγ = (V,T,A,R, p) is nonzero,
then the threshold languageLp(γ,= 0) is the empty set,
i.e.,Lp(γ,= 0) = /0.

Proposition 3.2. If the probability of each axiomx ∈ A
in a probabilistic splicing systemγ = (V,T,A,R, p) is not
greater than 1, then every threshold languageLp(γ,> ν)
with ν > 0 is finite.

From Theorem 2.1, Lemma 3.1, Example 3.1 and 3.2,
we obtain the following theorems.

Theorem 3.2.

REG ⊂ pEH(FIN)⊆ pEH(F) = RE

whereF ∈ {FIN ,REG,CF,LIN ,CS,RE}.

Theorem 3.3.

pEH(FIN)−CF 6= /0.

Further, we investigate the relations between “usual”
splicing systems and probabilistic splicing systems.

Theorem 3.4.

EH(FIN ,FIN)⊂ pEH(FIN ,FIN).

Proof. From Lemma 3.1,

EH(FIN ,FIN)⊆ pEH(FIN ,FIN).

Since the languageLp(γ1,∈ {(10/49)n : n ≥ 1}) in
Example 3.1 belongs topEH(FIN ,FIN) but not to
EH(FIN ,FIN), we get the proper inclusion.�

Since

Lp(γ1,∈ {(10/49)n : n≥ 1}) ∈ pEH(FIN ,FIN)

in Example 3.1 is context-free, and

Lp(γ2,∈ {(165/6859)n : n≥ 1}) ∈ pEH(FIN ,FIN)

in Example 3.2 is not context-free, we obtain the following
strict inclusions.

Corollary 3.1.

EH(REG,FIN)⊂ pEH(REG,FIN)

and
EH(CF,FIN)⊂ pEH(CF,FIN).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1196 M. Selvarajoo et. al. : The Generative Capacity of Probabilistic...

Since by Theorem 2.1,EH(F1,F2) = RE for all

F1 ∈ {FIN ,REG,LIN ,CF,CS,RE}

and
F2 ∈ {REG,LIN ,CF,CS,RE},

the following theorem also holds.

Theorem 3.5.

EH(F1,F2) = pEH(F1,F2)

where F1 ∈ {FIN ,REG,LIN ,CF,CS,RE} and
F2 ∈ {REG,LIN ,CF,CS,RE}.

SinceEH(F,FIN) = RE for F ∈ {CS,RE}, again by
Theorem 3.1, we have the next theorem.

Theorem 3.6.ForF ∈ {CS,RE}

EH(F,FIN) = pEH(F,FIN).

Next, we study theregularity of probabilistic splicing
systems with finite sets of axioms and splicing rules with
respect to different cut-points and modes.

Theorem 3.7. Let γ = (V,T,A,R, p) be a probabilistic
splicing system where|A| = 1 and R ∈ FIN . Then the
threshold language generated byγ is a regular for all
cut-pointsΩ ⊆ [0,1] and ω ∈ [0,1], and for all modes
⋆ ∈ {∈, /∈} and⋄ ∈ {=, 6=,>,≥,≤,<}.

Proof. Let γ = (V,T,A,R, p) be a probabilistic splicing
system whereA = {(w, p(w))}. We denote the crispy
splicing systems byγ ′ i.e., γ ′ = (V,T,{w},R). By
definition, p(w) = 1. It is not difficult to see that for any
x∈ σ i

p(A), i ≥ 1, we also havep(x) = 1.

Further, we consider all possible cut-points and modes:

(1) Lp(γ,> 1) = /0.

(2) For allω ∈ [0,1), Lp(γ,> ω) = L(γ ′) ∈ REG.

(3) For allω ∈ [0,1], Lp(γ,< ω) = /0.

(4) For allω ∈ [0,1), Lp(γ,= ω) = /0.

(5) Lp(γ,= 1) = L(γ ′) ∈ REG.

(6) For all [ω1,ω2]⊆ [0,1), Lp(γ,∈ [ω1,ω2]) = /0.

(7) For all [ω1,ω2]⊆ [0,1), Lp(γ, /∈ [ω1,ω2]) = /0.

(8) Lp(γ,∈ [0,1]) = L(γ ′) ∈ REG. �

One can notice that all threshold languages generated
by the probabilistic splicing systemγ is the empty set or a
regular language.

Theorem 3.8. Let γ = (V,T,A,R, p) be a probabilistic
splicing system with finite sets of axioms and splicing
rules. If 0< p(w) < 1 for each(w, p(w)) ∈ A, then, for
any ω ∈ [0,1], Lp(γ,> ω) is a finite language and
Lp(γ,≤ ω) is a regular language.

Proof. Let γ = (V,T,A,R, p) be a probabilistic splicing
system where

A= {(w1, p1),(w2, p2), . . . ,(wn, pn)}.

where 0< pi < 1 for all 1≤ i ≤ n. It immediately follows
thatn≥ 2. Let ω ∈ [0,1]. One can easily see that for any
positive integerk,

k

∏
j=1

pi j >
k+1

∏
j=1

pi j

wherepi j ∈ {p1, p2, . . . , pn}. Then there exists a positive
integerm such that

m

∏
j=1

pi j < ω

for all pi j ∈ {p1, p2, . . . , pn} where 1≤ j ≤ m.

For any stringx∈ σ i
p(A), i ≥ m, that is obtained from

some strings ofσ i−1
p (A) using more than or equal tom

splicing operations, we havep(x) < ω . Thus,Lp(γ,> ω)
contains a finite number of strings, i.e.,Lp(γ,>ω) is finite.

Since

Lp(γ,≤ ω) = Lp(γ)−Lp(γ,> ω),

the languageLp(γ,≤ ω) is regular.�

From Theorem 3.7 and 3.8, the following theorem
follows.

Theorem 3.9. A non-regular languageL can only be
generated by a probabilistic splicing systemγ with finite
sets of axioms and splicing rules when the cut-point is a
discrete subset of[0,1] and the mode is∈ or /∈.

4 Conclusions

In this paper we studied the generative capacity of
probabilistic splicing systems with different continuous
and discrete probabilistic distributions. We showed that
any continuous distribution does not increase the
generative capacity of the probabilistic splicing systems
with finite sets of axioms and splicing rules, whereas
some discrete distributions increase the generative power
up to context-sensitive languages.

We should mention that the incomparability of the
context-free language family with the family of languages
generated by probabilistic splicing systems finite
components and the best upper bound for this language
family remain open.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 3, 1191-1198 (2015) /www.naturalspublishing.com/Journals.asp 1197

Acknowledgment

The first author would like to thank Ministry of
Education, Malaysia for the financial funding through
MyBrain15 scholarship. The second author acknowledges
the financial support by Fundamental Research Grant
Scheme FRGS13-066-0307, International Islamic
University Malaysia, Ministry of Education, Malaysia.
The third and fourth authors would also like to thank the
Ministry of Education, Malaysia and Research
Management Center, Universiti Teknologi Malaysia for
the financial funding through Research University Fund
Vote No.08H07and08H45.

The authors are grateful to the anonymous referees for
a careful checking of the details and for helpful comments
that improved this paper.

References

[1] L. Adleman, Science,266, 1021–1024 (1994).
[2] R. Lipton, Science,268, 542–545 (1995).
[3] D. Boneh, C. Dunworth, R. Lipton and J. Sgall, Discrete

Applied Mathematics. Special Issue on Computational
Molecular Biology,71, 79–94 (1996).

[4] T. Head, Bull. Math. Biology,49, 737–759 (1987).
[5] D. Pixton, Discrete Applied Mathematics,69, 101–124

(1996).
[6] Gh. Pǎun, G. Rozenberg and A. Salomaa, DNA computing.

New computing paradigms, Berlin, Springer-Verlag, 1998.
[7] C. Nick, D. Christopher, Probabilistic models of language

processing and acquisition. TRENDS in Cognitive Sciences,
10, 335–344 (2006).

[8] T. Booth and R. Thompson, IEEE Transactions on
Computers,22, 442–450 (1973).

[9] C.A. Ellis, Probabilistic Languages and Automata. PhD
thesis, Department of Computer Science, University of
Illinois, 1969.

[10] K.S. Fu and T. Li, International Journal of Informafion
Science,1, 403–419 (1969).

[11] M. Rabin, Information and Control,6, 230–245 (1963).
[12] A. Salomaa, Information and Control,15, 529–544 (1969).
[13] N. Smith and M. Johnson, IEEE Transactions on Computers,

33, 477–491 (2007).
[14] A. Kornai, Journal of Logic, Language and Information,20,

317–328 (2011).
[15] T. Fowler, The generative power of probabilistic and

weighted context-free grammars. In: Kanazawa M, Kornai
A, Kracht M, Seki H, (Eds.), The Mathematics of Language,
Springer-Verlag, Berlin, 2011.

[16] M.Selvarajoo, W.H. Fong, N.H. Sarmin and S. Turaev,
Probabilistic Sticker Systems, Malaysian Journal of
Fundamental and Applied Sciences,9, 150–155 (2013).

[17] M.Selvarajoo, W.H. Fong, N.H. Sarmin and S. Turaev,
Probabilistic Semi-Simple Splicing System and Its
Characteristics, Jurnal Teknologi (Sciences and Engineering)
Special Edition,62, 21–26 (2013).

[18] S. Turaev, M. Selvarajoo, W.H. Fong and N.H. Sarmin,
Probabilistic splicing systems, Advanced Methods for
Computational Collective Intelligence, Volume 457,
Springer, Berlin, Heidelberg, 2013.

[19] G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal
Languages, Volumes 1-3, Springer, Berlin, 1997.

[20] J. Dassow and G. Paun, Regulated Rewriting in Formal
Language Theory, Springer-Verlag, Berlin, 1989.

[21] M. Marin and T. Kutsia, Front. Comput. Sci. China,4, 173–
184 (2010).

Mathuri Selvarajoo is a
PhD candidate in Department
of Mathematical Sciences,
Universiti Teknologi
Malaysia. Her current
research interest includes
DNA computing, Formal
Language Theory, and
application of probability
in DNA computing models.

Sherzod Turaev
obtained his PhD in 2010
from Universitat Rovira
i Virgili, Tarragona, Spain.
He is currently an Assistant
Professor at Department
of Computer Science,
Faculty of Information and
Communication Technology,
International Islamic

University Malaysia. His research interests include Petri
net controlled grammars, descriptional complexity of
formal languages and automata, and weighted DNA
computing.

Fong Wan Heng
obtained her PhD in
2008 from Universiti
Teknologi Malaysia and is
a senior lecturer at Ibnu Sina
Institute for Fundamental
Science Studies, Universiti
Teknologi Malaysia. She
has been the project leader for
several research projects. Her

research is focused on splicing system and DNA
computing. Her research interest also includes Formal
Language Theory and its application in DNA computing.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1198 M. Selvarajoo et. al. : The Generative Capacity of Probabilistic...

Nor Haniza Sarmin
obtained her PhD in
1998 from State University
of New York at Binghamton,
USA and is a Professor at
Department of Mathematical
Sciences, Universiti
Teknologi Malaysia. She
has been the project leader for
many research projects. Her

research is focused on Group Theory and its applications,
and splicing systems on DNA molecules. Her research
interest also includes nonabelian tensor product and
nonabelian tensor squares of groups, homological
functors, capability of groups, commutativity degree of
groups, Formal Language Theory and its application in
DNA computing.

c© 2015 NSP
Natural Sciences Publishing Cor.

	Introduction
	Preliminaries
	Definitions, examples and results
	Conclusions

