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1 Introduction

Any nth-order scalar ordinary differential equation of
maximal Lie point symmetry is equivalent under a point
transformation to the equation

y(n) = 0 (1)

in which the independent variable isx. The Lie point
symmetries of ordinary differential equations have been
the subject of many studies beginning with those of Lie in
which he showed that the maximum number of point
symmetries of a scalar second-order equation is eight
[9][p 405]. Subsequently it was shown that the algebra of
the symmetries found in the operation of taking the Lie
Bracket wassl(3, R). The internal structure of the algebra
is not without intrinsic interest and has relevance to
studies of higher-order equations and so the subject of

this paper. The subalgebras are

Γ1 = ∂y
Γ2 = x∂y

}

Solution Symmetries
2A1

Γ3 = y∂x

Γ4 = xy∂x+ y2∂y

}

Noncartan Symmetries
2A1

Γ5 = ∂x
Γ6 = 2x∂x+ y∂y

Γ7 = x2∂x+ xy∂y

}

Special Linear Group
sl(2, R)

Γ8 = y∂y

}

Homogeneity
1A1.

(2)

Even in the earliest days of the study of symmetries of
differential equations it was natural to consider
transformations generated by symmetries which were not
point symmetries [10] and one finds in the work of
Noether [14] an assumption that the symmetries could be
generalised. As Noether was studying the invariance of
the Action Integral and the Lagrangian is directly related
to the Hamiltonian the theory of which essentially
contains canonical transformations, this assumption is
simply a reflection of the fact that the canonical
transformations in general correspond to generalised
symmetries.
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Lie had investigated the symmetries of equations of
order greater than the second, but it was not until more
than a century after his time that there were systematic
studies of the point symmetries of equations of
higher-order. In particular these studies were concerned
with those of linear - equally linearisible by a point
transformation - scalar ordinary differential equations.
Initial studies by Krause and Michel [7,8] were rendered
more complete in [11,12]. A second-order scalar ordinary
differential equation of maximal point symmetry always
had eight Lie point symmetries and the algebrasl(3, R).
By way of contrast for higher-order equations there were
three possibilities for an equation which was linearisible
by means of a point transformation. There could ben+4,
n + 2 or n + 1 Lie point symmetries. Evidently
second-order equations were exceptional since they did
not obey these rules. A second-order equation of maximal
symmetry did not have these three possibilities but just
the one, eight, which was more than expected by the
general result. The additional two symmetries with the
subalgebra 2A1 indicated above as Noncartan - also called
fibre-preserving in the literature [6] - are not reflected in
the point symmetries of equations of higher-order.
However, there was some hint of a persistence of this
property in third-order equations in that they possessed
contact symmetries - not necessarily equations of
maximal point symmetry; the Kummer-Schwarz equation
is an example of an exception - making ten symmetries in
all with the algebrasp(5) [2] and in the case of a linear
equation, with seven plus three symmetries being a
natural generalisation of the six plus two of the
second-order equation of maximal symmetry. Further
properties were noted in [13]. Equations of higher-order
than the third did not possess contact symmetries.

In this paper we explore the generalised symmetries
and associated algebras of linear equations of
higher-order of maximal symmetry. The complexities of
the calculations limit our attention to equations of the
form (1), but it has to be remembered that the
considerations apply to all equations which can be
linearised to (1). The linearising transformation need not
be point since we now consider generalised symmetries.
It is our intention to establish general results for the
number of generalised symmetries of order-two and three
and their associated algebras. There is a practical need for
the establishment of general results as the calculations
become impossible even for equations of not excessive
order. This is despite using one of the better
symmetry-determining packages currently available, Sym
[3,4,5,1]. From the results which we can obtain we infer
general rules and then prove that they are in fact general
being quite aware of the dictum of Popper [15]. Because
we are dealing with generalised symmetries, we write all
symmetries in vertical form.

2 Some Computational Results

We present the generalised symmetries of order-two
for several equations of the class (1).

1. y(4) = 0

Γs = xi∂y, i = 0,3

Γh = y∂y

ΓJ1 = y′∂y; xy′∂y;
(

x2y′−3xy
)

∂y

ΓJ2 = y′′∂y; xy′′∂y; x2y′′∂y;
(

x3y′′−6xy
)

∂y;
(

x4y′′−4x3y′+6x2y
)

∂y

where the subscripts refer to solution, homogeneity,
Jetspace order-one and Jetspace order-two
symmetries. The subalgebra ofsl(2, R) is obtained
from the Jetspace order-one symmetries and the
homogeneity symmetry. The standard form for
y(n) = 0 is [12]

Γ1 = ∂x, Γ2 = x∂x+(n−1)y∂y andΓ3= x2∂x+(n−1)xy∂y

and the connection with the Jetspace order-one
symmetries and heterogeneity symmetry is manifest.

2. y(5) = 0
We do not repeat the expressions forΓs andΓh as the
only difference is that the number of solution
symmetries increases by one with the order of the
equation.

ΓJ1 = y′∂y; xy′∂y;
(

x2y′−4xy
)

∂y

ΓJ2 = y′′∂y; xy′′∂y; x2y′′∂y;
(

x3y′′−12xy
)

∂y;
(

x4y′′−6x3y′+12x2y
)

∂y.

3. y(6) = 0

ΓJ1 = y′∂y; xy′∂y;
(

x2y′−5xy
)

∂y

ΓJ2 = y′′∂y; xy′′∂y; x2y′′∂y;
(

x3y′′−20xy
)

∂y;
(

x4y′′−8x3y′+20x2y
)

∂y.

4. y(7) = 0

ΓJ1 = y′∂y; xy′∂y;
(

x2y′−6xy
)

∂y

ΓJ2 = y′′∂y; xy′′∂y; x2y′′∂y;
(

x3y′′−30xy
)

∂y;
(

x4y′′−10x3y′+30x2y
)

∂y.

5. y(8) = 0

ΓJ1 = y′∂y; xy′∂y;
(

x2y′−7xy
)

∂y

ΓJ2 = y′′∂y; xy′′∂y; x2y′′∂y;
(

x3y′′−42xy
)

∂y;
(

x4y′′−12x3y′+42x2y
)

∂y.

6. y(9) = 0

ΓJ1 = y′∂y; xy′∂y;
(

x2y′−8xy
)

∂y

ΓJ2 = y′′∂y; xy′′∂y; x2y′′∂y;
(

x3y′′−56xy
)

∂y;
(

x4y′′−14x3y′+56x2y
)

∂y.
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7. y(10) = 0

ΓJ1 = y′∂y; xy′∂y;
(

x2y′−9xy
)

∂y

ΓJ2 = y′′∂y; xy′′∂y; x2y′′∂y;
(

x3y′′−72xy
)

∂y;
(

x4y′′−16x3y′+72x2y
)

∂y.

We note that the Jetspace order-one symmetries are
always three in number (at least for the number of
equations considered, but a detailed proof in terms of the
equivalent point symmetries is found in [12]) and that the
number of Jetspace order-two symmetries is five for each
of the equations considered here. One can find similar
results for equations of order 2 and 3. Naturally in the
case of the second-order equation the Jetspace order-two
symmetries are completely trivial.

Before we proceed to establish a general formula for
the Jetspace order-two symmetries from the evidence
before us and then to verify the formula in general it is
appropriate to consider the algebraic structure of the
symmetries which we have before us. The first task is to
establish the subalgebra of the Jetspace order-one and
order-two symmetries, respectively, and then to consider
the relationships between the subalgebras.

For the fifth-order equation the Lie Brackets for the
symmetries of order-one are

[ΓJ11, ΓJ12]LB =−ΓJ11

[ΓJ11, ΓJ13]LB =−2ΓJ12+4Γh

[ΓJ12, ΓJ13]LB =−ΓJ13.

This is reconciled with sl(2, R) if we define
Γ̃J12 = ΓJ12−2Γh. With this redefinition the subalgebra is
closed assl(2, R).

The Lie Brackets of the symmetries of order-two are

[ΓJ21, ΓJ22]LB =−2ΓJ31

[ΓJ21, ΓJ23]LB =−4ΓJ32−2ΓJ21

[ΓJ21, ΓJ24]LB =−6(ΓJ33+ΓJ22−4ΓJ11)

[ΓJ21, ΓJ25]LB =−4(2ΓJ34−6ΓJ23+3ΓJ12+6Γh)

[ΓJ22, ΓJ23]LB =−2(ΓJ33+ΓJ22)

[ΓJ22, ΓJ24]LB =−2(2ΓJ34+3ΓJ23−12ΓJ12)

[ΓJ22, ΓJ25]LB =−6
(

x4y′′′−3x3y′′+2x2y′+4xy
)

∂y

[ΓJ23, ΓJ24]LB =−2
(

x4y′′′+2x3y′′−12x2y′
)

∂y

[ΓJ23, ΓJ25]LB =−2
(

2x5y′′′−7x4y′′+6x3y′+12x2y
)

∂y

[ΓJ24, ΓJ25]LB =−2
(

x6y′′′−6x5y′′+18x4y′−24x3y
)

∂y.

Obviously there is no closure. One infers that this be the
case for all symmetries of order higher than the second.
From the results for the last four brackets one can easily
believe that the algebra closes only with the addition of
higher-order symmetries. The order of the ultimate set of
symmetries must necessarily be limited by the order of

the equation. From the evidence one can only conjecture
the number of symmetries if all possible generalised
symmetries are admitted. In the case of the tenth-order
equation this may well be in excess of 100 which could
make the calculation of the Lie Brackets a somewhat
daunting task.

3 Conjectures

That the subalgebra of the solution symmetries isnA1
follows from construction of the solution set from the
differential equation itself. The homogeneity symmetry
follows from the linearity of the equation in the
dependent variable, y. The existence of the
three-dimensional subalgebra,sl(2, R), has already been
established in [12]. It remains to consider both the
structures and algebras of the Jetspace order-one and
order-two symmetries and from the evidence before us to
conjecture what the general case can be.

If we observe the initial symmetry in the cases ofΓh,
ΓJ1 and ΓJ2, we see that we havey∂y, y′∂y and y′′∂y,
respectively. In the case of the homogeneity there is just
the one symmetry. In the case of the Jetspace order-one
there is alsoxy′∂y whereas for Jetspace order-two one
finds xy′′∂y and x2y′′∂y. This leads us to the first
conjecture.

Conjecture I: The generalised symmetries for the
equationy(n) = 0 include symmetries of the form

Γ jeti j = xiy( j)∂y, (3)

wherei = 0, j and j = 0, J andJ < n is the order of the
Jetspace under consideration. We note that the notation
here is more precise than that used in Section 2 in that we
relate the indices to the order of the derivative ofy and the
exponents of the power ofx.

In addition to the generalised symmetries of the
simple structure proposed in Conjecture I there exist
generalised symmetries of more complex structure
determined by the order of the equation and the order of
the Jetspace. Thus we have

Conjecture II: The generalised symmetries for the
equationy(n) = 0 include symmetries of the forms

ΓJ11 =
(

x2y′− (n−1)xy
)

∂y for a Jetspace of order-one,
ΓJ21 =

(

x3y′′− (n−1)(n−2)xy
)

∂y and
ΓJ22 =

(

x4y′′−2(n−2)x3y′+(n−1)(n−2)x2y
)

∂y

for a Jetspace of order-two.
In general, if the Jetspace is of order-j, we assume that

there arej such symmetries of the general form

Γjet ji =
j

∑
m=0

amx j+i−my( j−m)∂y,
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where j is the order of the Jetspace andi + j the degree of
the polynomial expression.

4 Proofs of the Conjectures

Proof of Conjecture I:
The differential operator

Γjeti j = xiy( j)∂y, (4)

wherei = 0, j and j = 0, J andJ < n is the order of the
Jetspace under consideration, is a symmetry of the
equationy(n) = 0 if

dn

dxn

(

xiy( j)
)

= 0. (5)

A general term in the Leibniz expansion of the derivative
above is

(

n
k

)

dk

dxk

(

xi) dn−k

dxn−k

(

y( j)
)

.

When the derivatives are expanded, this becomes
(

n
k

)

i!
(i − k)!

xi−ky( j+n−k)

which is nonzero only ifk≤ i andk≥ j. As i ≤ j, this is a
contradiction and Conjecture I is proven.

Proof of Conjecture II:
Part (a)
We assume that the equationy(n) = 0 has a generalised
symmetry of the form

ΓJ11 =
(

x2y′+ c1xy
)

∂y.

Thenth extension ofΓJ11, which is given by the form
(

n
k

)

dk

dxk

(

x2) dn−k

dxn−k

(

y′
)

+ c1

(

n
k

)

dk

dxk (x)
dn−k

dxn−k (y) ,

must be zero when it acts upon the differential equation.
When we perform the calculation of thenth extension,
take into account the differential equation and the
eventual annihilation of the derivative of the exponents of
the independent variablex, we obtain

(

n
2

)

2!y(n−1)+ c1

(

n
1

)

1!y(n−1) = 0

the solution of which is

c1 =−
(n−1)!
(n−2)!

=−(n−1). (6)

Part (b)
By similar argument, if we have the generalised symmetry
of the form

ΓJ21 =
(

x3y′′+ c2xy
)

∂y,

we obtain that

n!
(n−3)!3!

.6+nc2 = 0

whence

c2 =−
(n−1)!
(n−3)!

=−(n−1)(n−2). (7)

Part (c)
In this case we take the generalised symmetry to be of the
form

ΓJ22 =
(

x4y′′+ax3y′+bx2y
)

∂y.

When we gather those terms in thenth extension ofΓJ22
which are not automatically zero and make some useful
cancellations of terms, we obtain the two equations

4n(n−1)(n−2)+3an(n−1)+2bn= 0,

n(n−1)(n−2)(n−3)+an(n−1)(n−2)+bn(n−1)= 0.

The solution of this system of equations gives

a=−2(n−2) and b= (n−1)(n−2). (8)

Part (d)
From the indications given by the results for Jetspaces 0, 1
and 2 we make the Ansatz that there are symmetries of the
form

Γjet ji =
j

∑
m=0

amx j+i−my( j−m)∂y, (9)

where j ≤ n is the order of the Jetspace,i+ j the degree of
the polynomial expression inx with i ≤ j anda0 is set at
one. We require that

dn

dxn

(

j

∑
m=0

amx j+i−my( j−m)

)

= 0 (10)

for the equationy(n) = 0.

5 Discussion

In the computational results presented here there are
several points to be noted. The first is that the capacity to
calculate generalised symmetries in a reasonable time is
limited to Jetspaces 1 and 2. Whether this limitation be
due to machine or program is not obvious, but attempts
made with Jetspace 3 at various orders of equation were
uniformly unsuccessful. That generalised symmetries of
higher-order exist is easily demonstrated. For example the
equationy(10) = 0 possesses the symmetryΓ = y(9)∂y,
corresponding to Jetspace 9, and doubtless with a little
more effort one could devise other generalised
symmetries for this equation. However, there is no way
that one could claim completeness by means of educated
guessing. The second point is that the type of generalised
symmetry at any particular order varies with the order of
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the equation. The third-order equation has generalised
symmetries of both the first degree and the second degree
in y′. The former are the vertical forms of the three
symmetries constituting thesl(2, R) subalgebra. This
property is repeated in all higher-order equations. The
latter are the vertical forms of the contact symmetries
which are peculiar to third-order equations. At the
fourth-order generalised symmetries of order-two and
degree one are introduced, whereas at the fifth and
higher-orders there are also symmetries of degree two. An
interesting feature of the coefficient functions of these
symmetries is that they factor and we illustrate this
property in the case ofy(6) = 0. The symmetries as far as
order two are

Γs1 = ∂y, Γs2 = x∂y, Γs3 = x2∂y,

Γs4 = x3∂y, Γs5 = x4∂y, Γs6 = x5∂y

Γh = y∂y

Γjs11= y′∂y, Γjs12= xy′∂y, Γjs13=
(

x2y′−5xy
)

∂y

Γjs21= y′′∂y, Γjs22= xy′′∂y, Γjs23= x2y′′∂y,

Γjs24=
(

x3y′′−20xy
)

∂y,

Γjs25=
(

x4y′′−8x3y′+20x2y
)

∂y.

The factors of the symmetries of order two are

Γjs21= D(D)y∂y, Γjs22= xD(D)y∂y,

Γjs23= xD(xD−1)y∂y, Γjs24= (xD−6)
(

x2D+4x
)

y∂y

and Γjs25 =
(

x2D−6x
)(

x2D−4x
)

y∂y,

where D= d/dx. Note that the factors are not necessarily
unique.

Although currently there does not appear to be any
particular application of generalised symmetries in the
case of ordinary differential equations – naturally we
exclude the contact symmetries of the third-order
equation – to the resolution of problems, we have
increased our theoretical knowledge of the properties of
this class of equations.
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