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Abstract: The aim of this paper is to compare through Monte Carlo simulations the finite sample properties of the estimates of the
parameters of the weighted exponential distribution obtained by five estimation methods: maximum likelihood, moments, L-moments,
ordinary least-squares, and weighted least-squares. The bias and mean-squared error are used as the criterion for comparison. The
simulation study concludes that the last four estimation methods perform well and are highly competitive with the maximum likelihood
method in small and large samples. This conclusion is also supported with the analysis of two real data sets.
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1 Introduction

In the past few years, several statistical distributions have
been proposed to model lifetime data which exhibit
non-constant failure rate functions. One of such
distributions is the two-parameter weighted exponential
distribution introduced by Gupta and Kundu (2009). Its
probability density function (p.d.f.) is given by

f (x|α,β ) =
α +1

α
β e−β x(1− e−αβ x), x,α,β > 0. (1)

Note that f (x|0,β ) converges to the gamma distribution
with shape parameter 2 and scale parameterβ and
f (x|∞,β ) converges to the exponential distribution with
scale parameterβ .

The corresponding cumulative distribution function
(c.d.f.) and hazard rate function (h.r.f.), respectively,are
given by

F(x|α,β ) = 1− 1
α

e−β x(α +1− e−αβ x), (2)

and

h(x|α,β ) = (α +1)β
1− e−αβ x

α +1− e−αβ x
. (3)

For all valuesα,β > 0, the p.d.f. f (x|α,β ) is a
unimodal function inx with mode atx0 = 1

αβ ln(α + 1)

and the h.r.f.h(x|α,β ) is an increasing function inx with
h(0|α,β ) = 0 andh(∞|α,β ) = β .

Farahani and Khorram (2014) considered the
Bayesian statistical inference for the weighted
exponential distribution. Extension of the weighted
exponential distribution is given in Shakhatreh (2012).
Roy and Adnan (2012) introduced a class of
non-symmetric circular distributions by wrapping an
asymmetric weighted exponential distribution around the
circumference of a unit circle. Extension of the weighted
exponential distribution to the bivariate and multivariate
cases are investigated by Al-Mutairiet al. (2011).

As far as the estimation of the parameters of the
weighted exponential distribution, Gupta and Kundu
(2009) considered only the maximum likelihood
estimation (MLE) and method of moments estimation
(MME). It is of interest to compare these methods with
other estimation methods such as theL-moments
estimation (LME), ordinary least-squares estimation
(OLSE) and weighted least-squares estimation (WLSE).

The main aim of this paper is to compare the above
different estimation methods via intensive simulation
studies. Similar studies for other distributions can be
found in, for example, Shawky and Bakoban (2012) for
the exponentiated gamma distribution, Teimouriet al.
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(2013) for the Weibull distribution, and Usta (2013) for
the extended Burr XII distribution.

In Section 2 we discuss the five estimation methods
considered in this paper. The comparison of these methods
in terms of bias and mean-squared error is presented in
Section 3. The five estimation methods are used in fitting
two real data sets in Section 4. Some concluding remarks
are presented in Section 5.

2 Methods of Estimations

In this section we describe the five considered estimation
methods to obtain the estimates of the parametersα andβ
of the weighted exponential distribution.

2.1 Maximum Likelihood

Let x1,x2, . . . ,xn be a random sample of sizen from the
weighted exponential distribution with parametersα and
β with p.d.f.(1).

The maximum likelihood estimateŝαMLE and β̂MLE ,
of α andβ are obtained by maximizing the log-likelihood
function

ℓ(α,β ) = n ln

[
(α +1)β

α

]
−β nx+

n

∑
i=1

ln
(

1− e−αβ xi

)
,

wherex is the sample mean.
These estimates can also be obtained by solving the

non-linear equations:

−n
(α +1)α

+
n

∑
i=1

β xi e−αβ xi

1− e−αβ xi
= 0,

n
β
− nx+

n

∑
i=1

αxi e−αβ xi

1− e−αβ xi
= 0.

It follows that α̂MLE is the solution of the non-linear
equation

nx
α(α +2)

−
n

∑
i=1

xi exp[− α(α+2)
(α+1) x xi]

1−exp[− α(α+2)
(α+1) x xi]

= 0, (4)

and

β̂MLE =
α̂MLE +2

(α̂MLE +1) x
. (5)

2.2 Method of Moments

The method of moments is another technique commonly
used in parameter estimation. For the weighted

exponential distribution, the first two raw moments,
respectively, are

E(X |α,β ) =
α +2

(α +1)β
,

E(X2|α,β ) =
2(α2+3α +2)
(α +1)2β 2 .

The method of moments estimatesα̂MME and β̂MME
for α andβ , are obtained by solving the equations:

E(X |α̂MME , β̂MME) = m1, E(X2|α̂MME , β̂MME) = m2,

where

m1 =
1
n

n

∑
i=1

xi = x, m2 =
1
n

n

∑
i=1

x2
i ,

are the first two sample moments, respectively.
It follows that

α̂MME =
2M−3+

√
2M−3

2−M
, (6)

β̂MME =
α̂MME +2

(α̂MME +1) x
, (7)

provided that
3
2
< M =

m2

m2
1

< 2. (8)

Note that M − 1 =
m2−m2

1
m2

1
= s2

x2 , where

s2 = 1
n ∑n

i=1(xi − x)2 is the (biased) sample variance. This
means that condition (8) is equivalent to

0.7071=
1√
2
<

s
x
< 1, (9)

i.e. the value of the sample coefficient of variation is in the
interval( 1√

2
,1).

2.3 Method of L-Moments

The method ofL-moments was proposed by Hosking
(1990). This method is defined in terms of linear
functions of population order statistics and their sample
counterparts.

For the weighted exponential distribution, the first two
populationL-moments, respectively, are given by

l1(α,β ) = E(X1:1|α,β ) = E(X |α,β ),

l2(α,β ) =
1
2

E (X2:2−X1:2|α,β )

= E(X |α,β )−E(X1:2|α,β ),
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whereXr:m is therth order statistic from a random sample
of sizem, E(X |α,β ) is the population mean and, using the
substitutiony = e−β x,

E(X1:2|α,β ) =
∫ ∞

0
[1−F(x|α,β )]2 dx

=
1

α2β

∫ 1

0
y(α +1− yα)2 dy

=
α2+5α +5

2(α +1)(α +2)β
.

TheL-moments estimatorŝαLME andβ̂LME of α andβ
are obtained by solving the equations:

l1(α̂LME , β̂LME) = l1, l2(α̂LME , β̂LME) = l2,

where

l1 = x, l2 =

{
2

n(n−1)

n

∑
i=0

(i−1)xi:n

}
− x,

are the first two sampleL-moments, respectively.
It follows that

α̂LME =
2L−3+

√
2L−3

2−L
, (10)

β̂LME =
α̂LME +2

(α̂LME +1) x
, (11)

provided that
3
2
< L =

4l2
l1

< 2. (12)

2.4 Ordinary and Weighted Least-Squares

Let x1:n ≤ x2:n ≤ ·· · ≤ xn:n be the order statistics of a
random sample of sizen from a distribution with c.d.f.
F(x). It is well known that:

E [F(xi:n)] =
i

n+1
, Var [F(xi:n)] =

i(n− i+1)
(n+1)2(n+2)

.

For the weighted exponential distribution, the ordinary
least squares estimatesα̂OLSE andβ̂OLSE of the parameters
α andβ are obtained by minimizing the function

S(α,β ) =
n

∑
i=1

[
F(xi:n | α,β )− i

n+1

]2

.

These estimates can also be obtained by solving the non-
linear equations:

n

∑
i=1

[
F(xi:n | α,β )− i

n+1

]
∆1(xi:n | α,β ) = 0, (13)

n

∑
i=1

[
F(xi:n | α,β )− i

n+1

]
∆2(xi:n | α,β ) = 0, (14)

where

∆1(xi:n|α,β ) =
[
1− (αβ xi:n +1)e−αβ xi:n

]
e−β xi:n , (15)

∆2(xi:n|α,β ) =
(

1− e−αβ xi:n
)

xi:n e−β xi:n . (16)

The weighted least-squares estimatesα̂W LSE and
β̂WLSE of the parametersα and β are obtained by
minimizing the function

W (α,β ) =
n

∑
i=1

(n+1)2(n+2)
i(n− i+1)

[
F(xi:n | α,β )− i

n+1

]2

.

These estimates can also be obtained by solving the non-
linear equations:

n

∑
i=1

∆1(xi:n | α,β )
i(n− i+1)

[
F(xi:n | α,β )− i

n+1

]
= 0, (17)

n

∑
i=1

∆2(xi:n | α,β )
i(n− i+1)

[
F(xi:n | α,β )− i

n+1

]
= 0, (18)

where∆1(xi:n | α,β ) and∆2(xi:n | α,β ), are given by (15)
and (16), respectively.

3 Simulations

In this section we present results of some numerical
experiments to compare the performance of the five
estimators discussed in the previous section. We have
taken sample sizesn = 25,50, . . . ,200, and parameter
values(α,β ) : (0.5,0.5),(0.5,2),(1,4),(2,0.5).

For each combination(n,α,β ), we have generated
N = 10,000 pseudo-random samples from the weighted
exponential distribution using the fact thatX = Y + Z
where Y and Z are independent exponential random
variables with scale parametersβ and (α + 1)β ,
respectively. The generated sample values satisfy the
conditions (8) and (12) in order to make the comparison
between all the considered five estimations methods.

All calculations were performed using theR statistical
software Version 3.0.0., R Core Team (2013). The
estimates using MLE, OLSE and WLSE methods were
obtained using theoptim function. To assess the
performance of the methods, we calculated the bias and
the mean-squared error for the simulated estimates of
θ = α,β :

Bias(θ̂) = 1
N

N
∑

i=1
(θ̂i −θ ), MSE(θ̂) = 1

N

N
∑

i=1
(θ̂i −θ )2.

Figures 1-2 show, respectively, the bias of the
simulated estimates ofα andβ . From these two figures,
we observe that

(i) all the estimators of the parameterα (β ) are
positively biased (positively and/or negatively biased),

(ii) the biases of the estimators of the parametersα
and β tend to zero for largen, i.e. the estimators are
asymptotically unbiased for the parameters,
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(a) α = 0.5, β = 0.5

(b) α = 0.5, β = 2

(c) α = 1, β = 4

(d) α = 2, β = 0.5

Fig. 1: Bias ofα̂ ( � : MLE, © : MME, △ : LME,
♦ : OLSE,▽ : WLSE).

(a) α = 0.5, β = 0.5

(b) α = 0.5, β = 2

(c) α = 1, β = 4

(d) α = 2, β = 0.5

Fig. 2: Bias of β̂ ( � : MLE, © : MME, △ : LME, ♦ :
OLSE,▽ : WLSE).
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(a) α = 0.5, β = 0.5

(b) α = 0.5, β = 2.0

(c) α = 1, β = 4

(d) α = 2, β = 0.5

Fig. 3: MSE of α̂ ( � : MLE, © : MME, △ : LME,
♦ : OLSE,▽ : WLSE).

(a) α = 0.5, β = 0.5

(b) α = 0.5, β = 2

(c) α = 1 andβ = 4

(d) α = 2, β = 0.5

Fig. 4: MSE of β̂ ( � : MLE, © : MME, △ : LME,
♦ : OLSE,▽ : WLSE).
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(iii) the MME of the parameterα has smaller positive
bias compared to other estimators when the sample size
is small (n < 50), otherwise, all estimators biases are very
close,

(iv) the MME of the parameterβ has a smaller
absolute bias compared to other estimators except the
caseα = 2, β = 0.5 where the MLE, OLSE, WLE and
WLE have smaller absolute bias.

Figures 3-4 show, respectively, the MSE of the
simulated estimates ofα andβ . From these two figures,
we observe that

(i) the MSE of all estimators of the parameterα (β )
tend to zero for largen, i.e. the estimators are consistent
for the parameter,

(ii) the MME of the parameterα has smaller MSE
compared to other estimators when the sample size is
small (n < 50), otherwise, LME or WLSE have smaller
MSE,

(iii) the MME or LME of the parameterβ has smaller
MSE compared to other estimators.

4 Data anaylsis

In this section we analyze two real data sets for comparing
the considered five estimation methods for the weighted
exponential distribution.

Data set 1: (Gupta and Kundu 2009)
This data set represents the marks in Mathematics for

48 students in the slow pace programme in the year 2003:
29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15,
86, 21, 15, 14, 39, 15, 14, 70, 44, 6, 23, 58, 19, 50, 23, 11,
6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31.

Data set 2: (Ghitanyet al. 2008)
This data set represents the waiting times (in minutes)

before service of 100 bank customers:

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2,
3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7,
4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2,
6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6,
8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9,
11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9,
13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3,
17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4,
21.9, 23.0, 27.0, 31.6, 33.1, 38.5.

Table 1 shows that the conditions for the existence of
MME and LME for the considered data sets are satisfied.

Table 1: Existence of MME and LME for data sets 1 and 2.

Data set M s/x L
1 1.5054 0.7109 1.5209
2 1.5315 0.7290 1.5416
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(a) Data set 1
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(b) Data set 2

Fig. 5: Empirical scaled total time on test plots for data
sets 1 and 2.

Figure 5 shows the empirical scaled total time on test
(TTT)-transform (Barlow and Campo 1975) where

T (r/n) =
∑r

i=1 xi:n +(n− r)xr:n

∑n
i=1 xi:n

, r = 1,2, . . . ,n.

Inspection of Figure 5 shows concave behavior above the
diagonal line, indicating that each of the considered data
sets is drawn from a population with an increasing failure
rate (IFR).

Tables 2-3 show the estimates of the parametersα and
β under the considered five estimation methods. These
tables also show the corresponding Crámer-von Mises
goodness-of-fit test statistic:

CvM =
1

12n
+

n

∑
i=1

[
F(xi:n|α̂, β̂ )− 2i−1

2n

]2

,
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Table 2: Parameters estimates, Crámer-von Mises test and SSR
for data set 1.

Method α̂ β̂ CvM p-value SSR
MLE 0.2797 0.0688 0.0639 0.7892 0.0972
MME 0.2322 0.0700 0.0642 0.7873 0.0983
LME 0.5139 0.0641 0.0624 0.7988 0.0906
OLSE 0.5668 0.0645 0.0588 0.8218 0.0690
WLSE 0.8410 0.0592 0.0631 0.7946 0.0879

Table 3: Parameters estimates, Crámer-von Mises test and SSR
for data set 2.

Method α̂ β̂ CvM p-value SSR
MLE 0.7033 0.1607 0.0220 0.9947 0.0298
MME 0.6702 0.1619 0.0222 0.9944 0.0305
LME 0.8103 0.1572 0.0217 0.9951 0.0277
OLSE 0.8888 0.1552 0.0216 0.9953 0.0248
WLSE 0.8860 0.1545 0.0221 0.9946 0.0382

and its p-value as well as the sum of squares of the
residuals (SSR):

SSR=
n

∑
i=1

[
F(xi:n|α̂ , β̂ )−Fn(xi:n)

]2
,

whereFn(x) = 1
n (number ofx′is ≤ x) is the empirical c.d.f.

Tables 2-3 show that the OLSE method has the
smallest test statistic and highestp-values of Crámer-von
Mises test as well as smallest sum of squares of the
residuals. Hence, for each of the given data sets, the
OLSE is the most suitable estimation method among the
five considered methods.

5 Conclusions

In this paper we compared, via intensive simulation
experiments, the estimation of the parameters of the
weighted exponential distribution using five well known
estimation methods, namely the maximum likelihood,
method of moments, method ofL-moments, ordinary
least-squares, and weighted least-squares. The simulation
study concludes that the last four estimation methods
perform well and are highly competitive with the
maximum likelihood method in small and large sample
sizes. This conclusion is also supported with the analysis
of two real data sets.
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