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Abstract: This work is devoted to constructing a deterministic finidéomaton whose states are particular types of order-prieger
Boolean partial maps introduced by Bisi and Chiaselottie @omains of such maps are subsets of a finite poset equippledmvi
idempotent and antitone map. These maps can be identifibcceiitain linear systems of real inequalities and this aatomprovides
a computational model useful for building the global extens of such maps.
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1 Introduction 12)if x,y € X and ifx <y, theny® < xC.

Let 2 be the Boolean lattice composed of a chain with 2 . _

elements which will be denoted by (the minimal ~The mapc is called complementation of X and x° the
element) andP (the maximal element). In this paper, complement of x. Let us observe that i is an involution
(X,<) represents an arbitrary finite poset. The set of allPoset, froml1), it follows thatc is bijective. Therefore
the partial maps from(X,<) to 2, here denoted by can be considered an anti-automorphisn¥Xainto itself

(X ~ 2), is a poset with the following order (se&J): and this is equivalent to say that the complementation is
if (A,dom(A)), (B,dom(B)) € (X ~ 2), an isomorphism betweex and its dual poseX*. If X is
an IP, it is said that a BPMA on X is complemented
(A,dom(A)) < (B,dom(B)) positive, if A"1(N)° C A-L(P). If X is an IP, a BPMA on
T X is calledweighted Boolean partial map (WBPM), if it
is up-positive, down-negative and
dom(A) € dom(B), Bigoma) = A. complemented-positive. In particular,Afis also total on

. ] X, it is calledweighted Boolean total map (WBTM). Let
A Boolean partial map (BPM) on X is an element s denote by” (X, 2) the subset of all the WBPM'’s on
(A, dom(A)) of (X ~» 2), (which in the following will be  x and by#/ (X, 2) the subset of all the WBTM'’s oX. In

denoted only byA). If dom(A) = X, it is said 'ghatA isa  poth cases Z(X,2) and # (X,2) are sub-posets of
Boolean total map (BTM) on X. £ 42(X,2) will denote (X ~ 2).

the family of all BTM’s onX which are order-preserving. In [4], it was introduced a particular IB(n,r), in

Itis said thata BPMA onX is: up-positiveif A*(P)is  order to study some extremal combinatorial sum
anup-setok, i.e., ifforallze A (P) andxe Xwithz<  problems (see7,8,9,17)). S(n,r) is a finite distributive
x, thenx € A~*(P); down-negativeif A_(N) is a down-set [attice with 2' elements and its construction, depending
of X, i.e., for allze A™1(N) andx € X with 2> x, then  from two integers G< r < n, is recalled in the section 3 of
x € A7L(N) . An up-down mapAonX is a BPMAonX  this paper. The structure dB(n,r) is also related to
which is up-positive and down-negative. Let us denote byinteresting aspects concerning the sequential and paralle
% 7(X,2) the set of all the up-down maps o Then,  dynamics (see 1[2,3]) in certain discrete dynamical

% 2(X,2) is a sub-poset of(X ~ 2), Q). _ systems (see5[10,11]). For a generalization of the
An involution poset (IP) is a poset(X,<,c) with a  partial order ofS(n, r) to a wider class of lattices se&q.

unary operatiom : x € X — X° € X, such that: In this context, the families of map®& Z(S(n,r),2) and

11)(x%)¢ =x, forall x € X; W 2 (S(n,r),2) can be identified with particular types of

systems of linear real inequalities.
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In [4], Bisi and Chiaselotti began a research line 2 Preliminaries and notations
oriented to study the links between such types of Boolean
maps and their associated linear systems inequalities. Ifor 2 C X, it ~can  be  considered
particular, in their paper, the authors raise a relevantand Z = {x € X @ 3z € Zstz > x} and
difficult problem: to establish necessary and sufficientT Z = {x€ X:3z€ Z s.t. z< x}. In particular, forz € X,
conditions on the Boolean mapA so that the it can be considered z=| {z} = {x e X :z>x} and
corresponding linear system is compatible. In the study ofl z=1{z} = {x€ X :z<x}.
this problem, a crucial aspect is to have a model ofDefinition 2.1.Z is said to be @lown-set of X if ze Z and
computation to build all WBTM’s in# (S(n,r),2) which  x € X with z> x, thenx € Z. Z is said to be amip-set of X
extend a fixed WBPM ir¥ &2 (S(n,r),2). In particular, if  if ze Z andx € X with z< x, thenx € Z.
it is possible to select the minimal WBPMN3, which have Observe that Z is the smallest down-set of which
a unique extensior, in 7/ (S(n,r),2), and if /g and-¥»  containsZ andZ is a down-set irX if and only if Z =] Z.
are respectively the corresponding linear systemSimilarly 1 Z is the smallest up-set &f which contain&
associated t® andA, the compatibility of the systen¥g andZ is an up-setiX ifand only if Z =1 Z.
implies the compatibility of the systen¥a (see f] for The following proposition shows that the concepts of
details). In this context, it raises the natural necessity t up-positivity, down-negativity and of order-preserving a
build a computational model which allows us to passequivalent for Boolean total maps.
from a "local” map to a "global” map. This problem can pqposition 2.1.Let Abe aBTM onX. Then the following
be studied in a more abstract context, because the onlyqngitions are equivalent:
required properties are the monotonicity andj) ajs order-preserving (op);
complemented positivity of the mapwith respect to the i A js up-positive (up);
antitone mapc. Therefore, this problem is examined in iii) Ais down-negative (dn).
the context of a generic finite involution poget, <). For
recent studies concerning the involution posets e [
Notice that the class of the involution posets is very large,
because it includes tharthocomplemented lattices, which
are involution bounded lattices such tlegx) Vx = 1 and
c(x) Ax= 0. For the relevance of these order structures in
guantum logic see the classical bodk].

Proof. In the following, it will be proved that) andii) are
equivalent. The equivalenceigfandiii) follows similarly.
i) = ii): Suppose that;,x; € X andA(x;) = P. SinceAis
order-preserving, we have thafx;) < A(xz) and this in2
implies thatA(xz) = P.
i) =) : Let x3,%2 € X such thatx; < x, and suppose,
by reduction to the absurd, tha{x;) £ A(xp). Since2
is totally ordered, this means thatx;) > A(x2). Hence
A(x1) = PandA(x2) = N. But, sincex; < xp andA(x1) =
This work is devoted to constructing a deterministic P, andA is up-positive, it follows thaA(x,) = P, which is
finite automaton that models the computational waya contradiction becauggx,) = N. [J
through which a WBPM on an IP becomes "global” (i.e. Obviously, if X is an IP, thanks to Proposition 2.1, it
defined on the whole poset), continuing to maintain itsfollows that# (X,2) is the sub-family of all the maps in
properties, i.e., becomes a WBTM. The states of thisoZ?(X,2) which are also complemented positive.
automaton are therefore the elements#f7(X,2) and From Proposition 2.1, it also follows that & is a
the symbols of transitions are the pairs of the fdmmé), BTM on X, then A is a WBTM if and only if A is
wherew is an element of the pos&tandé is a Boolean  up-positive and complemented positive. Let us note that
value (N, as "negative”, oP, as "positive”). each orthocomplemented latti¢e, A,V,0,1)) is also an
IP and that, in this case, a lattices morphidmL — 2 is a
WBTM.

This paper is structured as follows. In section 2, the The'f'ollowmg result will be essential in the sequel.
general results used in the sequel are described. In sectidifoposition 2.2.Let X be an IP andh a WBPM onX.
3, the definition of the latticéS(n,r),C) is recalled and it 1) If wis a minimal positive oA such tha\(w®) = N, then
is proved how the partial ordé€r characterizes the partial WC is a maximal negative oA.
sums on indeterminate real numbers. In this section, it idi) If X, X° € dom(A) andx® < x, thenA(x) = P.
also recalled the way through which the Boolean mapsProof.
are connected to particular types of linear systems) Suppose, by contradiction, that is not a maximal
inequalities. Section 4 is devoted to constructing annegative ofA. Then there exists an elementc A~1(N)
automaton whose states are the partial mapg 6f(X, 2) such thatv > w*. SinceA is complemented positive, we
and whose final states are the mapga?(X,2), whenX  have thatA=1(N)¢ C A=%(P) and hencegw/)® € A~1(P).
is an arbitrary finite poset. Finally, in section 5, the Furthermore, sincew > w‘, we have also that
construction given in the previous section is refined, inw = (W) > (W)€, but this is a contradiction by the
order to have an automaton whose states are the partiahinimality of win A=%(P).
maps of 7 #?(X,2) and whose final states are the mapsii) Suppose, by contradiction, thatx) = N. SinceA is
of #/(X,2), whenX is a finite IP. complemented positive, we have théte dom(A) and
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A(X®) = P. Sincex® < x andA is up-positive, we have that
A(x) = P and this is a contradictioifi]

The partii) of Proposition 2.2 motivates the following
definition:

Definition 2.2. The elementsv € X such that/® < w are
calledcomplemented.

3 Partial Sums of Real Numbers and Boolean
Maps

If f € F(n,r), we can consider the mag : S(n,r) — R
such that

Ot (ar...aq|by...byy) i= 2f(a{-)+nzrf(bj) (4)
i= =1

The next result shows how the order structuresSin,r)

is strictly related to the properties of the family of maps
{07 : f € F(n,r)}. Recall first the definition of valuation
on an arbitrary lattice.

Definition 3.1.1f X is a lattice, a map : X — R is called

Let n andr be two fixed non-negative integers such thatavaluation on X if for all a,b € X: v(aAb)+v(avb) =

r <n. We call(n,r)-string an-pla of integers

ar...a.l|bl...br|_r7 (1)

such that:

i)ag,....,a € {1,...,r,0};

i) by,....bn—r € {-1,...,—(n—r),0};

iii)ar>--->a>0>by > >bpr;

iv) the unique element inf which can be repeated is 0.
By S(n,r) it is denoted the set of all th@, r)-strings.

v(a)+v(b).
Fundamentals studies concerning the valuations on
distributive lattices were carried out it4,15,16)].

Proposition 3.1.According to the definitions above:
i)If f € F(n,r), the mapo; is a valuation or§(n,r).

i) If ww € S(n,r), thenw C w if and only if o;(w) <
ot (w) for eachf € F(n,r).

Proof. Statementi) follows directly from @) and the
definition of C.

On S(n,r), it can be considered the partial order on the To proveii), let us considew = a;...a|b; ..., by and

components, which is denoted hy. To simplify the

w = a...ab;...,b,_, two elements inS(n,r). If

notations, in all the numerical examples, the integers orw C W, it is immediate thatos(w) < of(w') for each

the right of the vertical barwill be written without minus
sign.

Since (S(n,r),C) is a finite distributive lattice, it is
also graded, with minimal element-00|12---(n—r)
and maximal element(r — 1)---21J0---0. The lattice
S(n,r) was introduced in 4] in order to study some
combinatorial extremal sum problems.

In [4], it is shown that(S(n,r),C) is an IP and its
complementation mapis such that the complement

(ak...a10...0|0...0b1...b|)°
is given by
a_...a,0...000...0b,...10_,

where {aj,...,a/_,} is the usual complement of
{ag,...,a} in{1,....r} and{b},.... b/, } is the usual
complement of{bs,...,b} in {-1,....—(n—r)} (for
example, in the distributive lattic§(7,4), we have that
(4310001)° = 2000023).

Consider now

I(nr):={r,...,1,0,—1,....,—(n—r)}.

Then,F(n,r) will denote the set of all the functions
f:1(n,r) — R such that
f(r)y>--->f(1)>f(0)=0>f(-1)>--->f(—(n—r))

()
andWF(n,r) the subset of all the functionk € F(n,r)
such that

f(r)+-+fQ)+f(-1)+-+f(—(n-r))>0. (3)

f € F(n,r). We assume now thadrs(w) < os(w') for
eachf € F(n,r) and that the conditionv C W is false.
This means that there exists some {1,...,r} such that
a > & or somej € {1,...,n—r} such thato; > b. Let
us suppose at this point that there exists {1,...,r}
such that; > & and assume thatis maximal among all
the positive integerbe {1,...,r} such thag > a. Thus,

(5)

Gz zanza>ag > > >

and

a >ar,....a 1> a1 (6)

Consider now the following function

{—1if ac{-1..,—(n-r)}
f(a):=<¢ 0 ifae{01,... a-1}

+1if a € {a,...,r}
Then,f € F(n,r) and from 6) and @), it follows that
of(w) > (r_!+1)+21§j§n—r f(bj)
> (r=1)+Yacj<nr F(b))
= (r—i)+Ja<j<nr f(b/j) =0t (W),

which is a contradiction.
We can suppose then that< & foralli=1,....r, so
that there exist§ € {1,...,n—r} such thatb; > b/l, and
assume thaf is minimal among all the positive integers
I €{1,....,n—r} such thab > bj. Thus
by> - >bj 1 >bj>bj>bj g > > by,

(7)
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and
b/lz bla"wb/jfl > bj,l

(8)

We must now distinguish two cases. First, suppose tha

bj = 0. In this case, consider the following function:

0 fae{ol,...
h(a) ::{—1:fg§}—l,...,r—}(n—r)}

Then,h € F(n,r) and from ) and @), it follows that

on(w) > (=1)(n—r—j)
> (=D(n—r—j+1)=on(W),

which is a contradiction.
Assume now thab; < 0. In this case, consider the
following function

0 ifa=0
+lifae{l,. .. r}
—lifae{-1,...,bj}
—2ifae{bj—1,...,—(n—r)}

g(a) =

Then,g € F(n,r) and from ) and @), it follows that

Og(W) > S1<1<j-19(0) + (=) + Tjr1<1<nr 9(br)
> Y1c<j-19(0) + (=2) + Yjr1<1<nr 9(b1)
= Y1<1<j-19(0)) + g(b/j) + Y j+1<1<n—r9(br)
> Zl(g|<1—19(bf)+(—2)+(—2)(n—f— i)

suggestive terminology and think the latti¢8(n,r),C)
as a lattice of indeterminate partial sums taken over the
indeterminate real variables,...,X1,Y1,--.,Yn—r Which
atisfy ©).
We call (n,r)-system of size p a system? of linear
inequalities having the following form:

X 2> 22X >20>y1 > >Yn s

3 (wg) >0 (or <0)

wp) >0
S (W2) >0 (or <0)

(10)

ikwp) >0 (or <0)

wherews, ...,wp € S(n,r). Itis clear that then,r)-system
. can be uniquely identified with the Boolean partial map
Ay € (S(n,r) ~ 2), with dom(A) = {wy,...,ws}, defined
as
N JPif 5 (wj) =0
Ay (wj) = { N if S (wj) <0

for j = 1,...,p. At this point, one can check that the

Boolean partial map A» is up-positive and
down-negative. Furthermore, when the inequality
Xe+-+X1+Y1+-+Ynr >0 (or <0) (11)

appears in 10), it is said that it is a(n,r)-positively
weighted system (or &n,r)-negatively weighted system).
Then, if the(n,r)-system. is positively weighted, the
map A is also complemented positive. Therefore, we

which is again a contradiction. This complete the proof of have two interesting families of BPM oS(n,r): the

ii). O

family of the up-positive and down-negative BPM and its

From the previous proposition, it can be deduced thatsyp-family of the complemented positive BPM (related to

the mapo; is an order-preserving valuation &n,r) for
all f € F(n,r). In particular, ifos is one-to-one, theos is
also a linear extension &n,r). In [19 Rota showed that

the (n,r)- positively weighted systems).
The important point is that there are several open
combinatorial problems related to the links between the

by the values that it takes on the join-irreducible elementsy operties of then, r)-systems (seel]).

of the lattice. Therefore, in our case, this means ghat

is uniquely determined by the values that it takes on the

join-irreducible elements of the distributive latti€en, r).
Let nowx,...,X,Y1,...,Yn_r benreal variables that
satisfy the following inequalities:
Xz 2>2X1>20>y1> > Y 9)
If w = &a...ag|b1...bp—r € S(n,r), we can set
S(W) = Xg + -+ + Xay + Yo, + - + Yoo, Then, from
Proposition 3.1, we can think the partial order on

4 The DFAop— % 7 (X,2)

In this section, we will study the possibility of
determining a computational model which allows us to
build total order-preserving complemented positive
Boolean maps through additions of single elements to
their domains. From Proposition 2.1, the subset of all the
total maps of%Z 2(X,2) is exactly 0 2 (X,2). We will

S(n,r) as the natural order induced from the linear define a structure of deterministic finite automaton, which

systems inequalities9)f on the partial sum of the real
variables %;,...,X1,Y1,--.,Yn—r- In other terms, if we
formally identify the signed partitionsw and w

will be denoted byop — &% 7 (X, 2).
The set” .7 ,(X) of the states 0bp — &% 7 (X, 2)
is exactly 7 2(X,2) by adding a new state EXIT.

respectively with the indeterminate real partial sumsFormally, .77 ,(X) is the linear sum of the poset
¥ (w) andy (W), then the result of Proposition 3.1 allows % Z(X,2) and of1(=EXIT) (therefore EXIT is an isolate

us to infer thatw C w if and only if the real inequality

element in this poset). However, the partial order on

¥ (w) < ¥ (W) holds. It can be deduced by using only the .7 >(X) will be denoted again byl. The set of the final
inequalities in ). Therefore, we can use a more states obp— 7% 7 (X,2) is 0 P (X,?2).
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If X ={Xg, - ,Xm}, the set7 Z»(X) of the transitions
symbols ofop— &% 7 (X,2) is {xP,xgN- -+, XmP,XmN}.
The initial statell,x is the empty partial map of

U7 (X,2), i.e., the Boolean map having empty domain,

which is also the minimum of the posgX ~~ 2), <).

Before defining how the transition symbols act on the

Observe thatd, is well-defined. Indeed, ifij € Qa, for
somei = 1,---,p, then A(u;) = P (by contradiction, if
A(u;) = N from the hypothesisv C u; and from the fact
that A is down-negative, it follows thav € Qa and that
A(w) = N, against the hypothesis thatZ Q).

Now we verify thatAy, is up-positive. Letv;,wy € X

automaton’s states, we fix some preliminary concepts. Lesuch thatw; € Qa[w], wi T w, and suppose that

w € X be fixed, and letuy,---,up,vi,---,vq be the
elements of X such that {uy,---,up} =t w
{Vla o 'Vq} :i/ w.

Let & be an arbitrary Boolean value . The following
sequence of transition symbols

{ulP---upP if E=P

VIN---vgN if £ =N
is calledproduction of the transition symbol wé, and it is
denoted bywé |- --].
Let (A, Qa) € % 2(X,2) and letQa = {wy, - ,Ws}.
If A(wi) =&, (i=1,---,s), whereé; € 2, we will identify
A with the sequence; &7 - - - Wsés and write

we[--] (12)

A=wé;---Wes. (13)

When thinking ofA in the form @3), we will write A
instead of(A, Qa).

We define now how the transition symbols act on the

states. Given a non-exit sta® = wi&1---wsés and a
transition symboWwé, then:

sp)If we {wy, -, ws}, thenwé transforms the stat&
into the state

A/Ewlfl"'WsEsWE["']; (14)

s)If we {wy,---,ws} andw=w;, forsomei=1,--- s,
then:
-if & # &, wé sends the stat& into the exit state;
-if & = &, wé sends the stat& into itself.

s3)Each transition symbolvé sends the state exit into
itself.

In order to prove that the constructed automadpn-
AU T (X,2) is well-defined, we need to prove that the
sequences of transition symbols i) define effectively
an up-down map ok, i.e., an element o¥/ (X, 2). This
is established in the following result.

Theorem 4.1.Let (A, Qa) be an up-down map oK, and

let we X\ Qa Let & € 2 and suppose that

WE[---] = o1& ---amé is the production ofwé. Let

Qaw] = QaU{ay, -+ ,am} andAy : Qalw] — 2 defined
A(u) if ue Qa

by

Aw(u) {5 if u—ci (i=1,--,m).
Then the coupléAy, Qa[w]) is an up-down map oK.
Proof. Suppose at first th&t= P. In this case, sed @), we

have{ai,---,am} = {uy,--- ,up}, where{uy, - ,up} =7
{w}, and hence

A(u) if ue Qa

P ifue{uy,---,up}. (15)

Ault) = {

Ay(wy) = P Then, if wy € Qa, we have that
A(wy) = Aw(wp) = P, and sincéA is up-positive we have
thatwp, € Qa and Ay(w2) = A(wp) = P. Thus, we can
assume thawy € {ug,---up}\ Qa.

Since{uy,---up} =Tw, andwy € {uy,---up} andw; C
Wo, it follows thatw, € {uy, ---up} and hencav, € Qa[w]
andAy(w,) = P thanks to 15). This proves tha#y, is up-
positive.

Letw;, W, € X be such thatv, € Qaw], wi C w, and
An(Wz) = N. From (15), it follows thatw, € Qa and that
A(wz) = Aw(Wz) = N, and, sinceA is down-negative, it
follows thatw; € Qa and Ay(wi) = A(w1) = N. This
proves tha®, is down-negative.

The cas& = N is similar.(J

Hence, as proved, the rulsg), s;) andsz) define a
transition function

5. ToX) x TRHX) — % T(X).

In view of that, the automatoop — &% .7 (X,2) is
formally given by

(L T2X), TH2(X),02x,0,0P(X,2)).

The following proposition shows the connection
betweend and<.

Proposition 4.1. Let (A,Qa) and (B,Qg) two non-exit
states ofop— &% 7 (X,2) (i.e. two up-down maps on
X) and let w¢& be a transition symbol such that
O0(A,wé) =B. Then(A, Qa) < (B, Qg).
Proof. SinceB is a non-exit state, it can coincide with
or it can be of the form4). In every case, it follows that
Qp C Qg and thatB‘QA = A, from which the assertion
follows. O

The preceding proposition asserts that the transition
function can move a staté to a exit-state or to a stateB
that in the Hasse diagram ¥ Z(X,2) is necessarily
aboveA.

5 The DFAWt — 7% T (X, 2)

In this section,X will denote an arbitrary finite IP.
Consider? #(X,2) as a sub-poset ot/ 2(X,2). The
subset of all the total maps o#' #?(X,2) is exactly
W (X,2). We define now a structure of deterministic finite
automaton which will be denoted It — «7% .7 (X, 2).

The sew.”” .7 »(X) of the states ot — 7% .7 (X, 2)
is exactly 7 #(X,2) by adding a new state EXIT.
Formally, as in the previous section,” .7 ,(X) is the
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linear sum of the pose¥ 27(X,2) and of 1(=EXIT).

Then, ifé =P or £ =N andw is not-complemented, the

However, also in this case, the partial order oncouple(Aw,Qa[w])is an WBPM onX.

w.” .7 »(X) will be denoted again byd. The set of the
final states ot — &7% .7 (X,2) is # (X, 2).

If X = {x1,--,xm}, the setw.7%»(X) of the
transitions symbols of wt — % T(X,2) is
{XaP,xaN -+ XmP, xmN }.

The initial statewl,x is the empty partial map of

W P(X,2), i.e., the Boolean map having empty domain,

which is also the minimum of the posgiX ~ 2), ).

Proof. First, suppose tha = P. In this case, se€lg), we
have{as,---,dm} = {uy,--- ,up}, where{uy,--- ,up} =7
{w}, and hence

A(u) if ue Qa

Aw<u>={p itue {u, - up). 49

Observe that Ay is well-defined, up-positive and

As in the previous case, we need to fix some yown-negative by using the same argument of Theorem

preliminary concepts. Letw € X be fixed, and let

Ug,---,Up,Vq,---,Vg,21, - - , % be the elements oX such
that {Ulv"' ,Up} =T w, {Vla"'Vq} =l w,
{z, -z =1 {vg, Vgl

Let & be an arbitrary Boolean value 21 The following
sequence of transition symbols

_JwP---upP if =P
Wﬂ”i—{wNummaPmanE:N (16)
is calledproduction of the transition symbol wé, and it is
denoted bywé[---].

Let (A/Qa) € #¥(X,2) as in (@3), where
Qp = {wy,--- ,ws}. We define now how the transition

symbols act on the states. Given a non-exit state

A=w &1 ---wsés and a transition symbelé, then:

wi)If weZ {wy,---,ws} andw is not-complemented , then
wé transforms the stat& into the state

A =w& - WeEWE [

wio)If w ¢ {wy,---,ws} andw is complemented, themwé
transforms the stat& into the state

(17)

A =w & WséWP- -] (18)
if & =P, orinto a exit-state i€ = N.

wiz)If w e {w,--- ,ws} andw = w;, for somei = 1,--- s,
then:
-if & # &, wé sends the stat& into a exit-state;
- if & = &, wé€ sends the stat& into itself.

wts)Each transition symbolé sends an exit-state into
itself.

In order to prove that this automaton
wt — % 7 (X,2) is well-defined, we need to prove that
the sequences of transition symbols ia7) define
effectively a WBPM orX, i.e., an element of/ & (X, 2).
This is established in the following theorem.

Theorem 5.1.Let (A, Qa) be a WBPM onX and let
w e X\ Qa Let & € 2 and suppose that
WE[---] = 01&1--- amém is the production ofwé. Let
Qaw] = QaU{ay, - ,am} andAy 1 Qalw] — 2 defined
by

AU ifue Qa

Aﬂw—{a if u—or (i=1,-.,m).

4.1. Letu € Qa[w] be such thaf\,(u) = N. From (@19), it
follows thatu € Qa and thatA(u) = Ay(u) = N. SinceA
is a WBPM on X, it is also complemented positive.
Thereforeu® € Qa andAy(u®) = A(u®) = P. This proves
thatAy, is complemented positive.

Hence, ifé = P, the couple(Aw, Qalw]) is a WBPM
onX.

Now suppose that/ is not-complemented anfl= N.
In this case, from X6), it can be deduced that
{ala"' 7am} {Vl7"'VQ7zl7"' 7Zt}7 where
{Vlv' a 7Vq} :\l' w, and {Zla e ,Zt} :T {Vca e ’VC}’.
Consequently,

A(u) if ue Qa
Ay(u) = { N if ue{vy,---vg} (20)
P ifue{zn, -z}

At this point, we need to prove tha%, is well defined.
Observe thafz; ---z} N {v1,---vq} = 0. Indeed, suppose,
by contradiction, that for somg € {1,---,t} and for
some i € {1,---q} we have thatz; = v;. Since
{ze, -z} =1 {V§--- ,Vg}, there will exist &k € {1,--- ,q}
such thaty; C z;. Since{vy,---,vq} =l w, thenw C w;
sinceX is an IP, byl 2) we have

WCVWCzi=viCw

Hencew is complemented and this is a contradiction.

We need to prove now that if; € Qp, for some
i=1---,q9, then it will be A(vi) = N. Suppose by
contradiction thaty; € Qa and thatA(vi) = P. Since
v; C w andA is up-positive, it follows thatv € Qs and
that A(w) = P, in contradiction with the hypothesis
w 5{ Qn.

Finally, we prove that iz; € Qa, for somej =1,---t,
then it will be A(zj) = P. I, by contradictionz; € Qa and
A(zj) = N, as by the hypothesi&\ is complemented
positive, it follows thatzj € Qa andA(z) = P. Now let
ke {1,---q} be such that; C z;. Sincevy C w andX is
an IP, it holds tha1zjg C vk C w. Then, we will have that
Zj € Qa, A(Z) = P andzj C w; sinceA is up-positive, it
follows thatw € Qa andA(w) = P, against the hypothesis
w & Qa. HenceA, is well defined.

From this point on, we will show tha4,, is a WBPM
on X, i.e., that it is up-positive, down-negative and
complemented positive.
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Letw;,ws € X be such thatv; € Qa[w], wi C w, and
suppose thafy(wi) = P. If wy € Qa, we can proceed as
in the case€ = P. Then, suppose that; € {z;---z} and
wy € Qa. Since {z,---,z} =t {\§,--- &} and
wy € {z1,---,z}, by the hypothesisv; C wy, it follows
that wo €1 {v{,---,Vg}, and hencew, € Qa[w| and
An(wp) = P thanks to 20). This proves thatAy is
up-positive.

Letw;,ws € X be such thatv, € Qa[w], wi C W, and
Ay(wp) = N. If wy € Qa, then we can use the same
argument as in the cade=P. If wo € {vq,---,vq} and
Wo € Qp, thanks to the equalityvy,--- ,vq} =] w, and to
the hypothesisv; C wy, it follows thatw; € {vi,---Vq},
and hencewn; € Qa[w] and Ay(w;) = N thanks to 20).
This proves tha#,, is down-negative

Finally, suppose thatu € Qa[w] is such that
An(u) = N. If ue Qa, we can use the same argument as
in the case§ = P. If ue {vq,---,vq}, thenu =y for
some i € {1,---q}, and hence
u = v e {z,---,z} =1 {V§,---,Vg}. Therefore,
u® € Qa[w] and A, (u€) = P. This proves tha#, is also
complemented positive and the thesis follofas.

Hence, as proved, the rulest;) — wty) define a
transition function

o Wygz()() X Wgﬂz(X) —r Wyyz()().

Therefore, the automatorw — /% 7 (X,2)
formally given by

is

Wy T 2(X),WT Z2(X), Wz x, 8,7 (X,2)).

Proposition 5.1. Let (A, Qa), and (B,Qg) two non-exit
states ofmt — 7 .7 (X,2) (i.e. two WBPM maps orX)
and letwé be a transition symbol such thatA,wé) = B.
Then(A,Qa) < (B, Qp).

Proof. SinceB is a non-exit state, it can coincide with
or it can be of the formX7) or of the form (8). In all
cases,Qa C Qg and thatB‘QA = A, from which the
assertion follows]

As in the previous section, the preceding proposition
asserts that the transition function can move a state
anexit-state or to a statedB which in the Hasse diagram of
W P (X,2) is necessarily abovk.
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