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Abstract: In this work we consider Symplectic Runge Kutta Nystrom moels with five stages. A new fourth algebraic order method
with phase-lag order eight is presented. Also the sympléutinge Kutta Nystrom of Calvo and Sanz Serna with five stagddourth
order is modified to produce a phase-fitted method. We applpéfv methods on several Hamiltonian systems and on the ¢atigou

of the eigenvalues of the Schrodinger Equation.
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1 Introduction methods with minimum phase-lag and P-stable methods
and are suitable for every oscillatory problem.

In this paper we consider systems of second order ODES o, the other hand research has been performed in the

of the form area of numerical integration of Hamiltonian systems with

Y'(x) = f(xy(X), XE€ [xo,X], (1) symplectic methods. Ldy be an open subset 61, |

y0) = Yo, Y (%) = Yh. an open subinterval dfl then the hamiltonian system of

differential equations is given by
Many categories of numerical methods have been

developed for the numerical solution of the special oH

problem (1), among them are Runge-Kutta-Nystromp' = ———(p,q,x), d = —=—(p,q,X), (2)
(RKN) methods (for more details sed][- [85 and 9q ap

references therein). The most well known are the methods

developed by Dormand and Prindg[ Dormand, EI  where(p,q) € U, x € |, the integerd is the number of
Mikawy and Prince §][6], these are methods with degrees of freedom and(p,q,x) be a twice continously
algebraic order up to eight. Also methods that take intodifferentiable function onU x |I. The q variables are
account the nature of the problem have been consider bgeneralized coordinates, the variables are the
many authors. There are two categories of such methodsonjugated generalized momenta at(p, q) is the total
with coefficients depending on the problem and with mechanical energy. The solution operator of a
constant coefficients. For the first category a goodHamiltonian system is a symplectic transformation. A
estimate of the period or of the dominant frequency issymplectic numerical method preserves the symplectic
needed, such methods are exponentially andstructure in the phase space when applied to Hamiltonian
trigonometrically fitted methods, phase-fitted and problems. Symplectic Runge-Kutta-Nystrom methods are
amplification fitted methods. In the second category areappropriate methods for the numerical integration of
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Hamiltonian systems of the special form coefficients of the method satisfy

! B=b(l-c), 1<i<s ®)
H(p,a,%) = 5p"P+V(a.X). 3) e SR

2 bi(Bj —aij) = bj(B —aj), 1<i,j<s @)

which can be written in the form (1) wheseis g. The

- _ A RKN method that satisfies (6) and (7) is called
té]:r%rgg;ahngv&i;hods can be found in the book of Sanzsymplectic RKN method (SRKN).

; Condition (6) is a well known simplifying assumption
th the last truct
symsp?(ranciic au R?<r§ n met?]odis ?ﬁ;tade arceons rgl(;c? dfrom the standard theory of RKN methods that reduces

exponentially/trigonometrically fitted [13,14,16,19]h& the number of order conditions. Calvo and Sanz-Serna has

: - : hown that condition (7) is also a simplifying assumption.
hase-lag (or dispersion) property was introduced b . -
grusa an% lsligro:{]%nd wa)s gxtgndgd to RK(N) methodsys In the case of explicit RKN methods the coefficients
by van der Houwen and Sommeijed. This is another ~ &i are fully determined by the coefficiertisandc;
type of truncation error the angle between the analyticaly; = bj(c¢; — c;) (8)
and the numerical solution. The idea of phase-fitting was ] .
introduced by Raptis and Simogj] Phase-lag analysis of numerical methods for second
Van de Vyver [L7] first constructed a symplectic order equations is based on the scalar test equation
Runge-Kutta-Nystrom method with minimum phase-lag. @’ = —W°q, wherew is a real constant. For the numerical
His method has third algebraic order and sixth phase-lagolution of this equation we can write
order. In another work Vyver1[g constructed a four 5 5
stages fourth algebraic order method with phase-lag order < On > — M, < o > M= <AS(V2) BS(VZ))
six. In this work we present a five stages fourth order h pn h po Cs(v7) Ds(v7)
method with phase-lag order eight. Also we modify the .
five stage fourth order SRKN method of Calvo and SanzWhere v = wh. The eigenvalues of th&/ are called
Serna §] to produce a phase-fitted SPRK method. amplification faptors of_the method and are the roots of
In section two the basic theory of RKN methods and the characteristic equation

the definitions of dispersion and dissipation are given.z2 _ ;. \1(\2 detM(V®)) = 0
The new methods are constructed in section 3.Numerical (M(v)¢ +detM(v))
results are presented in section 4 and conclusions i he phase-lag (dispersion) of the method is

section 5. tl’(M(VZ))
V) =V—arcco$———=——),
o) $2 det(M(vZ)))
2 Symplectic RKN methods and the dissipation (amplification error) is
A explicit RKN method is associated with a Butcher () =1 — . /detM(v2)).
tableau ) M)
C1 For a SRKN method the determinant of the amplification
Ca2laz1 matrix is zero, so the methods we construct here are zero
C3|az1 az2 dissipative.
N LI Then the phase-lag of the method is
Cs|@s1 As2 - Ass—1 tr(M(v2
BB PBs1 PBs o) — v—arccog ) é D)
by by --- bs 1 bs 20y -
. The tracetr(M(v9)) is a polynomial inv of order %
the RKN method is wheres s the number of stages of the SRKN method.

S
Ynt1 = Yn + h)/n + hz_ZLBi fi,
= 3 Construction of the new methods

S
Yorr=Yo+hY bif, (@)
e " izi . We consider the five stage method
®
i1 C2|by(c2—c1)
fi=f [ Xo+Gh, yn + chy, + h? . ca|b1(cz —c1) ba(c3—C2)
I < " ! Yn ! )/n lea” J) Ca bl(C4—Cl) bz(C4—Cz) b3(C4—Cg)
. ) ) Cs|b1(cs — 1) ba(cs —C2) ba(cs —c3) bg(cs —ca)
Suris showed that a RKN method is symplectlclwhen bi(1—c1) bp(1—Cp) ba(1—C3) ba(l—Ca) bs(1—Cs)
applied to Hamiltonian problems of the form (1) if the by by bs by bs
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The order conditions for SRKN methods up to order or

four are the following ¢, = 0.569565106171329534
first order Cs — 0.460745578685849985
be—1. c4 — 1.118848387543557940

b; = 0.207962537630456825

second order
b, = 1.142156468574106129

b.ce= % by = —0.309852240725141980
by = 0.273435305462953536
third order bs = —0.313702070942374510

1 1 . _ .
b.c?e— 3 bae— = T;e leading term of the phase-lag error is
— V0= 5511510 V!0

fourth order 10!
s 1 1 . - .
b.c’e= 7 b.a.ce= 4 3.2 Method with coefficients depending on the
- _ frequency
The trace of the amplification matrM can be written
as We consider the five stage method of Calvo and
5 Sanz-Serna this method has order four. We ask for the
tr(M(v?)) = 2— plav® + plav* — plgv method to have phase lag order infinity and solvebfor
+plgv® — plyov*? bs = (A—2cos/)/B,
where where
A = 2—0.87498017720547386% + 0.0624966962009123v1
pl2 =b.ce+p.e —0.0015556392423006952 1 9.2739441394248210 6\
ply = b.ace+p.ae B = 2 —0.166666666666666667 +
ple = baace+p.aae 0.008596200666029148 — 0.000150163788958964%

pls = b.a.aa.ce+ .aaae,

lio = b.aaa.ace+pB.aaaae .
Plo P 4 Numerical results

We shall use our new methods on several test problems
3.1 Method with constant coefficinets such as the harmonic oscillator, the inhomogeneus
equation, the two coupled oscillators and the computation
of the eigenvalues of the one-dimensional
time-independent Schrddinger equation.
We will compare the new methods presented here
(p18,pf) with the sixth phase-lag order SRKN methods of

We shall consider the FSAL case by setting= 0 and
¢s = 1, thenplip = 0. The maximum phase-lag order we
can obtain is eigth. We solve the six order conditions

together with the phase-lag conditions Vyver (Vyver3 Vyver), the classical fifth order SRKN
plg =2/6!, plg=2/8l. method of Calvo and Sanz-Sern@SS, the classical

RKN methods of fifth and sixth algebraic orddRKN5
for cp,c3,c4 andb; fori=1,...,5. RKN9 ([7],page 285, %]).

The following sets of coefficients are obtained

4.1 Harmonic Oscillator
c» = —0.118848387543557942
c3 = 0.539254421314150014
cs = 0.430434893828670465
by = —0.313702070942374513

b, = 0.273435305462953536 Eor thi o 10. Th blem has b

_ or this problem we usw = 10. The problem has been
bs = —0.309852240725141981 solved numerically in the interval0,1000 with steps
by = 1.142156468574106133 h=0.1 andh=0.05. In Table 1 we present the maximum
bs = 0.207962537630456825 absolute error of the solution.

We consider the following problem:
y'=-V?y, y(0)=0, y(0)=v

with v = 10. In this case the exact solution is
y(x) = sin(vx),
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Table 1:Maximum Absolute Error for the Harmonic Table 3:Absolute Error at the end point for the coupled
Oscillator oscillators
Vyve3| Vyved pl8 pf VyveB| Vyved pIg P

h=0.5] 3.4810%8.6410°/4.1310°(3.2910°
1.911072|5.0810742.2210°°(2.4810°°

Table 1 (continuedMaximum Absolute Error for the
Harmonic Oscillator

CS$ RKN5|  RKN6 Table 3 (continued)Absolute Error at the end point for
h=0.1/7.32101T ——[2.1410° the coupled oscillators
h=0.054.621029.08102|2.4510*

CSS RKN5] RKN6

4.2 Inhomogeneous Equation h=1[6.05102[2.99101[1.3010°3
, _ 746102 ——|5.8110°3

We consider the following problem: h—05/3.821036.69103/1.9910°
Y = —Vy+(V—1sinx y(0)=1, y(0)=v+1 9.6810°3/7.51102/9.6410°

wherex > 0 andv = 10. The exact solution is

Y(x) = cos(vx) +sin(vx) +-sin(x), 4.4 Computation of the eigenvalues of the

For this problem we use = 10. The problem has been _di ; - S
solved numerically in the interval0,1000 with steps ggﬁa?ilg:]ensmnal time-independent nger

h= 0.1 andh = 0.05. In Table 2 we present the maximum
absolute error.

Table 2:Maximum Absolute Error for the inhomogeneous The Schrodinger equation may be written in the form

d%q
VyveB| Vyved B pf a2 — “Bva where B(x)=2(E-V(x)).
h=01 041  0113571073504107% , , _
h=0.5/5551023|1.46 10 3|2.7110 422210 °° E isthe energy elgenvalu‘e,‘,(x) the potentlal, anv(X) the

wave function.
The Hamiltonian function is defined as:

Table 2 (continuedMaximum Absolute Error for the H(q, p,X) = p>—L(x,q,p)

inhomogeneous
where
CSIRKN5[ RKN6 1., 1 2
L(x,q,p)=T—-U==p"—=B(X
h=0.1 ——| —-[2.3310°7 (.a.P) 2P 5B
h=0.5|6.542 102 0.133.47 104 is the Lagrange function, or
p? 2
4.3 Two coupled oscillators with different H(@,p.x) = 5 +5B(X)q
frequencies Then the Hamiltonian canonical equations are:
JoH
p=—Fg = BX-q
Yi = —y1+2¢ey1y2, y1(0) =1, ¥;(0)=0, aq
Ys = —2y2+eyi+4ey3, v2(0)=1, Y(0)=0 - f;_H —p
We choosee = 1074 and use as reference solution P
y1(10%) = 0.56242453952476 and The tested problems are the harmonic oscillator and
y2(10%) = 0.92464439359914 For this problem we use the exponetial potential. In the implementation of the
wp; =1 andw, = /2. methodsv = /(B(x)) has been used.
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4.4.1 The Harmonic Oscillator

5 Conclusions

The potential of the one dimensional harmonic oscillator|n this work two new symplectic Runge-Kutte-Nystrom

IS

V(X)

1
._zk%
we considek = 1. The integration interval is-R,R].
The exact eigenvalues are given by

1
En=n+ >
In Table 1 we give the absolute error of several
eigenvalues up té&,40 computed with step sizk = 0.1.
The integration interval ranges froR =5 to R = 24.
Both new methods give very accurate eigenvalues.

n=0,1,2,...

eigenvalues up tdEjggp With h = 0.05 again the new
methods especiallylrig6 while the classical methods
failed. For Table 2 the integration interval ranges from
R=22toR=46.

Table 4:Absolute Error (10-6) of the eigenvalues of the
harmonic oscillator with step size-h 0.05.

Vyverd | pl8 | pf | CSS| RKN5 | RKN6

Eio 0 0| O 2 0 0
Eso 4 2| 0| 149 66 7
Ei1o0 50 3| 0| 1179| 1026 11
Eis0 256 4| 11]3977| 5128 57
E2o0 829 | 23| 19441 — 181
Eoso 2081| 90| 1 - - 446
Eso0 — 1248 2 - - 935

The phase-fitted method has superior performance

with error smaller than 1 up to the eigenvalue
E = 14005, and less than 1d up to the eigenvalue
E = 18005.

4.4.2 The Exponential Potential

The exponential potential is
V(x) = exp(x)
with boundary conditiong)(xmin) = 0 and /(Xmax) = O.

We have used 50 points in the interval of integration
(0, 7.

Table 5:The absolute error 10~°) of the eigenvalues of
the exponential potential.

CSS
0

3

41
281
1243

RKN5
0

0

6

97
757
3817
14549

Vyverd
0

0

3

13

56
228
815
2506
6902
17245

pl8
0

1

2

9

52
144
361
700
1151
1503

pf

4.8966694
16.019267
32.263707
56.181594
88.132119
128.10502
176.08900
232.07881
296.07196
368.06713

methods with phase lag order eight and infinity have been
constructed and tested. The performance of the new
methods on the harmonic oscillator, the inhomogeneous
equation two coupled oscillators is more accurate (by one
decimal digits) than the fourth order method of Vyver and

the phase-fitted method is more accurate (by one decimal
digits) than the new eigth phase-lag order method. On the
computation of the eigenvalues of the Schrodinger
equation for both potentials presented here the new
methods have superior performance than all methods
tested. For the harmonic oscillator potential the error is

In 4 i
ess than 10" for as lagre eigenvalue &5
Table 2 we proceed with the computation of higher state g g 800
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