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Phase-Lag Oder 8 and Infinity

Z. Kalogiratou1, Th. Monovasilis2 and T. E. Simos3,4,∗

1 Department of Informatics and Computer Technology, Technological Educational Institution of Western Macedonia at Kastoria,
Kastoria, P.O. Box. 30, 52100 Greece.

2 Department of International Trade, Technological Educational Institution of Western Macedonia at Kastoria, Kastoria, P.O. Box. 30,
52100 Greece.

3 Department of Mathematics, College of Sciences, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
4 Laboratory of Computational Sciences, Department of Computer Science and Technology, University of Peloponnese, GR-221 00

Tripolis, Greece.

Received: 3 Jul. 2014, Revised: 4 Oct. 2014, Accepted: 5 Oct.2014
Published online: 1 May 2015

Abstract: In this work we consider Symplectic Runge Kutta Nyström methods with five stages. A new fourth algebraic order method
with phase-lag order eight is presented. Also the symplectic Runge Kutta Nyström of Calvo and Sanz Serna with five stagesand fourth
order is modified to produce a phase-fitted method. We apply the new methods on several Hamiltonian systems and on the computation
of the eigenvalues of the Schrödinger Equation.
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1 Introduction

In this paper we consider systems of second order ODEs
of the form

y′′(x) = f (x,y(x)), x∈ [x0,X], (1)

y(x0) = y0, y′(x0) = y′0.

Many categories of numerical methods have been
developed for the numerical solution of the special
problem (1), among them are Runge-Kutta-Nyström
(RKN) methods (for more details see [1] - [85] and
references therein). The most well known are the methods
developed by Dormand and Prince[4], Dormand, El
Mikawy and Prince [5][6], these are methods with
algebraic order up to eight. Also methods that take into
account the nature of the problem have been consider by
many authors. There are two categories of such methods
with coefficients depending on the problem and with
constant coefficients. For the first category a good
estimate of the period or of the dominant frequency is
needed, such methods are exponentially and
trigonometrically fitted methods, phase-fitted and
amplification fitted methods. In the second category are

methods with minimum phase-lag and P-stable methods
and are suitable for every oscillatory problem.

On the other hand research has been performed in the
area of numerical integration of Hamiltonian systems with
symplectic methods. LetU be an open subset ofℜ2d, I
an open subinterval ofℜ then the hamiltonian system of
differential equations is given by

p′ =−
∂H
∂q

(p,q,x), q′ =
∂H
∂ p

(p,q,x), (2)

where(p,q) ∈ U , x ∈ I , the integerd is the number of
degrees of freedom andH(p,q,x) be a twice continously
differentiable function onU × I . The q variables are
generalized coordinates, thep variables are the
conjugated generalized momenta andH(p,q) is the total
mechanical energy. The solution operator of a
Hamiltonian system is a symplectic transformation. A
symplectic numerical method preserves the symplectic
structure in the phase space when applied to Hamiltonian
problems. Symplectic Runge-Kutta-Nyström methods are
appropriate methods for the numerical integration of
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Hamiltonian systems of the special form

H(p,q,x) =
1
2

pT p+V(q,x). (3)

which can be written in the form (1) wherey is q. The
theory of these methods can be found in the book of Sanz-
Serna and Calvo [11].

Some authors in the last decade constructed
symplectic RKN methods that are also
exponentially/trigonometrically fitted [13,14,16,19]. The
phase-lag (or dispersion) property was introduced by
Brusa and Nigro [2] and was extended to RK(N) methods
by van der Houwen and Sommeijer [15]. This is another
type of truncation error the angle between the analytical
and the numerical solution. The idea of phase-fitting was
introduced by Raptis and Simos [9].

Van de Vyver [17] first constructed a symplectic
Runge-Kutta-Nyström method with minimum phase-lag.
His method has third algebraic order and sixth phase-lag
order. In another work Vyver [18] constructed a four
stages fourth algebraic order method with phase-lag order
six. In this work we present a five stages fourth order
method with phase-lag order eight. Also we modify the
five stage fourth order SRKN method of Calvo and Sanz
Serna [3] to produce a phase-fitted SPRK method.

In section two the basic theory of RKN methods and
the definitions of dispersion and dissipation are given.
The new methods are constructed in section 3.Numerical
results are presented in section 4 and conclusions in
section 5.

2 Symplectic RKN methods

A explicit RKN method is associated with a Butcher
tableau

c1
c2 a21
c3 a31 a32
...

...
...

cs as1 as2 · · · as,s−1
β1 β2 · · · βs−1 βs

b1 b2 · · · bs−1 bs

the RKN method is

yn+1 = yn + hy′n + h2
s

∑
i=1

βi fi ,

y′n+1 = y′n + h
s

∑
i=1

bi fi , (4)

(5)

fi = f

(

xn+ cih , yn + cihy′n + h2
i−1

∑
j=1

ai j f j

)

Suris showed that a RKN method is symplectic when
applied to Hamiltonian problems of the form (1) if the

coefficients of the method satisfy

βi = bi(1− ci), 1≤ i ≤ s, (6)

bi(β j −αi j ) = b j(βi −α ji ), 1≤ i, j ≤ s. (7)

A RKN method that satisfies (6) and (7) is called
symplectic RKN method (SRKN).

Condition (6) is a well known simplifying assumption
from the standard theory of RKN methods that reduces
the number of order conditions. Calvo and Sanz-Serna has
shown that condition (7) is also a simplifying assumption.

In the case of explicit RKN methods the coefficients
ai j are fully determined by the coefficientsbi andci

ai j = b j(ci − c j) (8)

Phase-lag analysis of numerical methods for second
order equations is based on the scalar test equation
q′′ = −w2q, wherew is a real constant. For the numerical
solution of this equation we can write
(

qn
h pn

)

= Mn

(

q0
h p0

)

, M =

(

As(v2) Bs(v2)
Cs(v2) Ds(v2)

)

where v = wh. The eigenvalues of theM are called
amplification factors of the method and are the roots of
the characteristic equation

ξ 2− tr(M(v2))ξ +det(M(v2)) = 0

The phase-lag (dispersion) of the method is

φ(v) = v−arccos(
tr(M(v2))

2
√

det(M(v2))
),

and the dissipation (amplification error) is

α(v) = 1−
√

det(M(v2)).

For a SRKN method the determinant of the amplification
matrix is zero, so the methods we construct here are zero
dissipative.

Then the phase-lag of the method is

φ(v) = v−arccos(
tr(M(v2))

2
),

The tracetr(M(v2)) is a polynomial inv of order 2s
wheres is the number of stages of the SRKN method.

3 Construction of the new methods

We consider the five stage method

c1
c2 b1(c2−c1)
c3 b1(c3−c1) b2(c3−c2)
c4 b1(c4−c1) b2(c4−c2) b3(c4−c3)
c5 b1(c5−c1) b2(c5−c2) b3(c5−c3) b4(c5−c4)

b1(1−c1) b2(1−c2) b3(1−c3) b4(1−c4) b5(1−c5)
b1 b2 b3 b4 b5
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The order conditions for SRKN methods up to order
four are the following

first order

b.e= 1,

second order

b.c.e=
1
2
,

third order

b.c2.e=
1
3
, b.a.e=

1
6
,

fourth order

b.c3.e=
1
4
, b.a.c.e=

1
24

.

The trace of the amplification matrixM can be written
as

tr(M(v2)) = 2− pl2v
2+ pl4v4− pl6v6

+pl8v8− pl10v
10

where

pl2 = b.c.e+β .e,
pl4 = b.a.c.e+β .a.e,
pl6 = b.a.a.c.e+β .a.a.e,
pl8 = b.a.a.a.c.e+β .a.a.a.e,

pl10 = b.a.a.a.a.c.e+β .a.a.a.a.e

3.1 Method with constant coefficinets

We shall consider the FSAL case by settingc1 = 0 and
c5 = 1, thenpl10 = 0. The maximum phase-lag order we
can obtain is eigth. We solve the six order conditions
together with the phase-lag conditions

pl6 = 2/6!, pl8 = 2/8!.

for c2,c3,c4 andbi for i = 1, . . . ,5.
The following sets of coefficients are obtained

c2 = −0.118848387543557942,

c3 = 0.539254421314150014,

c4 = 0.430434893828670465,

b1 = −0.313702070942374513,

b2 = 0.273435305462953536,

b3 = −0.309852240725141981,

b4 = 1.142156468574106133,

b5 = 0.207962537630456825

or

c2 = 0.569565106171329534,

c3 = 0.460745578685849985,

c4 = 1.118848387543557940,

b1 = 0.207962537630456825,

b2 = 1.142156468574106129,

b3 = −0.309852240725141980,

b4 = 0.273435305462953536,

b5 = −0.313702070942374510

The leading term of the phase-lag error is
2

10!
v10 =−5.511510−7v10

3.2 Method with coefficients depending on the
frequency

We consider the five stage method of Calvo and
Sanz-Serna this method has order four. We ask for the
method to have phase lag order infinity and solve forb5

b5 = (A−2cosv)/B,

where

A = 2−0.874980177205473866v2 +0.062496696200912311v4

−0.0015556392423006952v6 +9.27394413942482∗10−6v8

B = v2−0.166666666666666667v4 +

0.008596200666029143v6 −0.0001501637889589645v8

4 Numerical results

We shall use our new methods on several test problems
such as the harmonic oscillator, the inhomogeneus
equation, the two coupled oscillators and the computation
of the eigenvalues of the one-dimensional
time-independent Schrödinger equation.

We will compare the new methods presented here
(pl8,pf) with the sixth phase-lag order SRKN methods of
Vyver (Vyver3, Vyver4), the classical fifth order SRKN
method of Calvo and Sanz-Serna (CSS), the classical
RKN methods of fifth and sixth algebraic order (RKN5,
RKN6) ([7],page 285, [5]).

4.1 Harmonic Oscillator

We consider the following problem:

y′′ =−v2y, y(0) = 0, y′(0) = v

with v= 10. In this case the exact solution is

y(x) = sin(vx),

For this problem we usew = 10. The problem has been
solved numerically in the interval[0,1000] with steps
h= 0.1 andh= 0.05. In Table 1 we present the maximum
absolute error of the solution.
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Table 1:Maximum Absolute Error for the Harmonic
Oscillator

Vyver3 Vyver4 pl8 p f
h= 0.1 2.9110−1 7.5710−2 6.1510−3 3.6710−4

h= 0.05 4.03101−3 1.0810−3 3.1910−4 1.7910−5

Table 1 (continued):Maximum Absolute Error for the
Harmonic Oscillator

CSS RKN5 RKN6
h= 0.1 7.3210−1 −− 2.1410−4

h= 0.05 4.6210−2 9.0810−2 2.4510−4

4.2 Inhomogeneous Equation

We consider the following problem:

y′′ =−v2y+(v2−1)sinx, y(0) = 1, y′(0) = v+1

wherex≥ 0 andv= 10. The exact solution is

y(x) = cos(vx)+ sin(vx)+ sin(x),

For this problem we usew = 10. The problem has been
solved numerically in the interval[0,1000] with steps
h= 0.1 andh= 0.05. In Table 2 we present the maximum
absolute error.

Table 2:Maximum Absolute Error for the inhomogeneous

Vyver3 Vyver4 pl8 p f
h= 0.1 0.41 0.11 3.5710−3 5.0410−4

h= 0.5 5.5510−3 1.4610−3 2.7110−4 2.2210−5

Table 2 (continued):Maximum Absolute Error for the
inhomogeneous

CSSRKN5 RKN6
h= 0.1 −− −− 2.3310−2

h= 0.5 6.54210−2 0.13 3.4710−4

4.3 Two coupled oscillators with different
frequencies

y′′1 = −y1+2εy1y2, y1(0) = 1, y′1(0) = 0,

y′′2 = −2y2+ εy2
1+4εy3

2, y2(0) = 1, y′2(0) = 0

We chooseε = 10−4 and use as reference solution
y1(103) = 0.56242453952476 and
y2(103) = 0.92464439359914 For this problem we use
w1 = 1 andw2 =

√
2.

Table 3:Absolute Error at the end point for the coupled
oscillators

Vyver3 Vyver4 pl8 p f
h= 1 2.4810−2 6.2010−3 1.6510−3 1.0910−4

−2.2310−1 4.2610−2 4.3810−3 3.1310−4

h= 0.5 3.4810−4 8.6410−5 4.1310−5 3.2910−6

1.9110−2 5.0810−4 2.2210−5 2.4810−5

Table 3 (continued):Absolute Error at the end point for
the coupled oscillators

CSS RKN5 RKN6
h= 1 6.0510−2 2.9910−1 1.3010−3

7.4610−2 −− 5.8110−3

h= 0.5 3.8210−3 6.6910−3 1.9910−5

9.6810−3 7.5110−2 9.6410−5

4.4 Computation of the eigenvalues of the
one-dimensional time-independent Schrödinger
equation

The Schrödinger equation may be written in the form

d2q
dx2 =−B(x)q where B(x) = 2(E−V(x)).

E is the energy eigenvalue,V(x) the potential, andy(x) the
wave function.

The Hamiltonian function is defined as:

H(q, p,x) = p2−L(x,q, p)

where

L(x,q, p) = T −U =
1
2

p2−
1
2

B(x)q2

is the Lagrange function, or

H(q, p,x) =
p2

2
+

1
2

B(x)q2

Then the Hamiltonian canonical equations are:

p′ =−
∂H
∂q

=−B(x) ·q

q′ =
∂H
∂ p

= p

The tested problems are the harmonic oscillator and
the exponetial potential. In the implementation of the
methodsw=

√

(B(x)) has been used.

c© 2015 NSP
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4.4.1 The Harmonic Oscillator

The potential of the one dimensional harmonic oscillator
is

V(x) =
1
2

kx2

we considerk= 1. The integration interval is[−R,R].
The exact eigenvalues are given by

En = n+
1
2
, n= 0,1,2, . . .

In Table 1 we give the absolute error of several
eigenvalues up toE240 computed with step sizeh = 0.1.
The integration interval ranges fromR = 5 to R = 24.
Both new methods give very accurate eigenvalues. In
Table 2 we proceed with the computation of higher state
eigenvalues up toE1000 with h = 0.05 again the new
methods especiallyTrig6 while the classical methods
failed. For Table 2 the integration interval ranges from
R= 22 toR= 46.

Table 4:Absolute Error (×10−6) of the eigenvalues of the
harmonic oscillator with step size h= 0.05.

Vyver4 pl8 pf CSS RKN5 RKN6
E10 0 0 0 2 0 0
E50 4 2 0 149 66 7

E100 50 3 0 1179 1026 11
E150 256 4 1 3977 5128 57
E200 829 23 1 9441 – 181
E250 2081 90 1 – – 446
E300 – 248 2 – – 935

The phase-fitted method has superior performance
with error smaller than 10−5 up to the eigenvalue
E = 1400.5, and less than 10−4 up to the eigenvalue
E = 1800.5.

4.4.2 The Exponential Potential

The exponential potential is

V(x) = exp(x)

with boundary conditionsψ(xmin) = 0 andψ(xmax) = 0.
We have used 50 points in the interval of integration
[0,π ].

Table 5:The absolute error (×10−6) of the eigenvalues of
the exponential potential.

Vyver4 pl8 pf CSS RKN5 RKN6
4.8966694 0 0 0 0 0 0
16.019267 0 1 0 3 0 0
32.263707 3 2 0 41 6 0
56.181594 13 9 3 281 97 1
88.132119 56 52 13 1243 757 8
128.10502 228 144 34 – 3817 41
176.08900 815 361 81 – 14549 164
232.07881 2506 700 147 – – 511
296.07196 6902 1151 263 – – 1418
368.06713 17245 1503 426 – – 3512

5 Conclusions

In this work two new symplectic Runge-Kutte-Nystrom
methods with phase lag order eight and infinity have been
constructed and tested. The performance of the new
methods on the harmonic oscillator, the inhomogeneous
equation two coupled oscillators is more accurate (by one
decimal digits) than the fourth order method of Vyver and
the phase-fitted method is more accurate (by one decimal
digits) than the new eigth phase-lag order method. On the
computation of the eigenvalues of the Schrödinger
equation for both potentials presented here the new
methods have superior performance than all methods
tested. For the harmonic oscillator potential the error is
less than 10−4 for as lagre eigenvalue asE1800.
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