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Abstract: Two second order response surface designs (central composite design and extended central composite design) are compared
on the basis of their slope estimation capabilities of a response function using quantile plots. A large number of pointsis randomly
generated on a sphere of radius centred at the origin in a given region of interest. The scaled average slope variance is evaluated at
each of these points and the quantiles of the resulting values are plotted. Both designs were compared using slope rotatability design
criterion and result obtained show that both designs have stable slope variance and the extended central composite design is better than
the central composite design for large values of the radius.

Keywords: Extended central composite design, Central composite design, Quantile plots, Scaled average slope variance, Slope
rotatability

1 Introduction

Response surface methodology comprises a collection of mathematical and statistical techniques for empirical modelling
and analysis of problems in which a response of interest is influenced by several variables; (see Box and Draper [3] and
Montgomery [13]). The major goals in using response surface methodology are finding a suitable approximating function
for the purpose of predicting future response and determining what value of the independent variables are optimum
as far as the response is concerned. The central composite design (CCD) proposed by Box and Wilson [5] allows for
estimation of all the parameters in a full second order modeland possesses good statistical properties such as orthogonality,
rotatability, slope rotatability etc. Kim [10] extended the CCD by using two numbers to indicate the axial point and studied
some of its properties. Studies on the extended CCD (ECCD) reveal that it has more statistical properties than the Box
and Wilson CCD. For instance the ECCD possess exact uniform precision while the CCD have near uniform precision.
The ECCD also have other statistical properties like rotatability, slope rotatability, both orthogonality and rotatability,
rotatability and uniform precision, orthogonality and slope rotatability. In addition, Park and Park [16] compared Box and
Wilson CCD and the extended CCD on the basis of uniform precision and concluded that the ECCD performs better than
the CCD.

However, it is more convenient to compare competing designsthat equally have same statistical property. Both the
CCD and the extended CCD possess the slope rotatability criterion, therefore, we shall compare both designs on the
basis of their slope estimation capabilities using quantile plots. The use of quantile plots to describe the distribution of
the predicted variances on a given sphere and compare some response surface designs was proposed by Khuri, Kim and
Um [9]. A graphical method for evaluating the slope estimation capability of a given response surface design as shown
by Jang and Park [8] involves the use of slope variance dispersion graph, an analogue of the variance dispersion graph
to compare designs on the basis of their slope estimation capabilities. It was observed that the slope variance dispersion
graph considered only maximum and minimum values of the scaled average slope variance (SASV) and does not give
information about the actual distribution of the scaled average slope variance on the hypersphere. In an effort to provide
more information concerning the SASV, the scaled average slope variance quantile (SASVQ) plots was proposed for
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describing the distribution of the SASV on a hypersphere inside a region of interest using quantile plots. The SASVQ
plots was also used to compare some response surface designs(CCD, Box-Behnken, Hoke and Roquemore designs).
Knowledge of the quantile values of the SASV will give such useful information as the first quartile, median, third
quartile and so on about the distribution of a given design (see Kim, Um and Khuri [12]). In this work, we shall use the
SASVQ plots to compare the SASV of the CCD and ECCD.

In response surface design, difference between the estimated responses at two points is usually of greater interest than
the response at individual locations. Estimation of local slope (that is rate of change) of the response is of interest when
differences at two points are involved. For instance, interest can be in the estimation of the rate of change in the yield of
a crop to various fertilizer or herbicide doses, or in the rate of chemical reaction. The research in designs for estimating
slope was initiated by Atkinson [1]. Many other works have been done in slope estimation; see for example, Ott and
Mendenhall [14], Hader and Park [7], Park [15] and Ying, Pukelsheim and Draper [17]. When interest is in estimating the
slope of a response surface, slope rotatability is a desirable criterion. Hader and Park [7] introduced slope rotatability as an
analogue of Box and Hunter [4] rotatability, which is referred as slope rotatability over axial direction. Slope rotatability
over axial direction was extended to slope rotatability over all direction by Park [15].

2 Preliminaries

2A Scaled Average Slope Variance

Consider ap− parameter second order model ink variables of interest(factors),x1,x2, . . . ,xk

y(x) = β0+
k

∑
i=1

βixi +
k

∑
i=1

βii x
2
i +∑

i< j
∑βi j xix j +e (1)

which can be written in matrix notation as
y(x) = f ′(x)β (2)

wherex = x1,x2, . . . ,xk, f ′(x) = (1,x1,x2, . . . ,xk,x2
1,x

2
2, . . . ,x

2
k,x1x2,x1x3, . . . ,xk−1xk)andβ is anp×1 vector of constant

coefficients,e is assumed to be uncorrelated random errors with zero mean and constant variance,σ2. The fitted model of
(1) can be expressed as

ŷ(x) = β̂0+
k

∑
i=1

β̂ixi +
k

∑
i=1

β̂ii x
2
i +∑

i< j
∑ β̂i j xix j (3)

or in matrix notation as
ŷ(x) = f ′(x)β̂ (4)

The least square estimator ofβ is given by

β̂ = (X′X)−1X′y (5)

X is anN× p matrix of rankp andy is theN×1vector of response values.
Suppose, interest is in the estimation of the first order partial derivative ofŷ with respect to each of the independent

variables of interestx1,x2, . . . ,xk, that is

δ ŷ(x)
δxi

= β̂i +2β̂iixi +∑
j 6=i

β̂i j x j (6)

The variance of(6 )is a function of the point(x1,x2, . . . ,xk) and also a function of the design through this relationship

Var(β̂) = (X′X)−1σ2 (7)

Slope rotatability over axial direction requires that the variance ofδ ŷ(x)
δxi

be a constant on circles, spheres or hyperspheres
centred at the origin of the design. Then estimates of the first order derivative would have equal precision at all points
(x1,x2, . . . ,xk) equidistant from the design origin. The criterion is calledslope rotatability over axial direction.

Sometimes, interest might be in the estimation of the slope of the response surface not only on the axial direction but
also at any specified direction of thexi . This is referred to slope rotatability over all direction.
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Let g(x) be a vector of ˆy(x)

g(x) =
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= J′β̂ (8)

whereJ = [0, Ik,2diag(x1,x2, . . . ,xk),J∗] is ak× p matrix arising from differentiating ˆy(x)
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The estimated derivative of ˆy(x)at any pointx in the direction specified by the unit vectorw = (w1,w2, . . . ,wk)
′ is

defined asw′g(x)
where∑k

i=1w2
i = 1

This slope variance is
V(x) =Var

[

w′g(x)
]

= w′JVar(β̂ )J′w
= σ2w′J(X′X)−1J′w

(9)

If interest is in all possible directions ofw then we consider the average ofV(x) over all possible direction. This is called
the average slope variance,V(x).

V(x) =
σ2

k

[

J(X′X)−1J′
]

(10)

if V(x) is constant for all points equidistant from the design origin, then the design is slope rotatable over all direction
(SROALD). For fair comparison of designs of different sizes, we scale the average slope variance. This is called the scaled
average slope variance(SASV); see, Park [15].

Let h(x)denote the SASV, then

h(x) =
N
σ2V(x)

=
N
k

tr
[

J(X′X)−1J′
]

(11)

For design comparison, smaller values from (11) are preferred to larger values.

2B Central Composite Design (CCD)

A CCD comprises a factorial part, F consisting of 2k−q(q≥ 0) units of at least resolution V (a situation where the main
effects and two-factor interactions are not aliased with any other main effects or two-factor interactions) with each point
replicatednF times, which is usually called the cube. The levels of the factors are coded(±1,±1), an axial part consisting
of 2k units on the axis of each factor at a distance,α, from the centre of the design,[(±α,0),(0,±α)] usually called the
star, with each point replicatednα times andn0 replication of the centre points,(0,0, . . . ,0); all of which give a total of
N = nF2k−q+nα2k+n0; α− values are chosen based on some design criteria such as rotatability, slope-rotatability. The
condition for a CCD to be slope rotatable over axial direction is as follows:

[2(F +n0)]α8− [4kF]α6−F [N(4− k)+ kF−8(k−1)]α4+
[

8(k−1)F2]α2−2F2(k−1)(N−F) = 0 (12)

Rotatable⊂ slope rotatable over all directions. This implies that all rotatable designs are slope rotatable over all directions
but the reverse is not true. The CCD which satisfy (12) are also slope rotatable over all directions; see Hader andPark [7],
Park [15] and Ying, Pukelsheim and Draper [17].
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2C Extended Central Composite Design (ECCD)

The ECCD is made up of a factorial part,F consisting of 2k−q(q ≥ 0) units of at least resolution V with each point
replicatednF times, an axial part consisting of 4k units on the axis of each factor from the centre of the design,with each
point replicatednα times andn0 replication of the centre points,(0,0, . . . ,0); which give a total ofM =nF2k−q+nα4k+n0.
In ECCD two numbers represent the axial distance. Let the twonumbers representing the axial distance be denoted byα1
andα2, such that 0≤‖ α1 ‖≤‖ α2 ‖≤ r. The condition for ECCD to be slope rotatable over axial direction is

2(F +2k+n0)(α8
1 +α8

2)−8k(α6
1α2

2 +α2
1α6

2)+4(F +2k+n0)α4
1α4

2 −4kF(α6
1 +α4

1α2
2 +α2

1α4
2 +α6

2)−F{4F−

4k2+ k(8−n0)+4(2+n0)}(α4
1 +α4

2)+16(k−1)Fα2
1α2

2 +8(k−1)F2(α2
1 +α2

2)−2(k−1)F2(4k+n0) = 0
(13)

The ECCD has slope rotatability over all direction, regardless of the values ofα1,α2 and the number of centre points,n0
see,Kim and Park [11].

3 Methodology

As mentioned earlier, the SASVQ plots shall be used to compare the designs. Because of its relevance in this work we
shall briefly review it. A set of points are randomly generated on a sphere,S(r) of radiusr inside a region of interest,R,
S(r) = {x = ∑k

i=1x2
i = r2}, and then obtaining the value ofh(x|r), that is the value ofh(x) at each of the randomly

generated points. The random selection of points is achieved by using spherical coordinates. Any pointx= (x1,x2, . . . ,xk)
onS(r) can be represented usingk−1 independent spherical coordinatesθ1,θ2, . . . ,θk−1 such that

x1 = r cosθ1,

x2 = r sin θ1, cosθ2,

x3 = r sin θ1, sin θ2,cos θ3,

...

xk−2 = r sin θ1, sin θ2, . . . ,sin θk−3 cosθk−2,

xk−1 = r sin θ1, sin θ2, . . . ,sin θk−3 sin θk−2 cos θk−1,

xk = r sin θ1, sin θ2, . . . ,sin θk−3 sin θk−2 sin θk−1,

where 0≤ θ1 ≤ θ2 ≤ π , . . . ,0≤ θk−2 ≤ π ,0≤ θk−1 ≤ 2π (see, for example Edwards,[6]).
Values ofθ1,θ2, . . . ,θk−2,θk−1 are randomly generated from independent uniform distribution such thatθi ∼U(0,π), i =
1,2, . . . ,k− 2; θk−1 ∼ U(0,2π). For a chosenr, we obtainx1,x2, . . . ,xk which are used to evaluateh(x|r); see also,
Borkowski [2]. Using this principle, a large number of points are chosen to obtain a sample,H(r) consisting of values of
h(x) on S(r) . Then the quantiles ofH(r) are obtained. Plots of the quantiles ofH(r) versusp,0≤ p≤ 1 can be obtained
for any value ofr within the regionR. The first quartile(p= 0.25), the median(p= 0.50), the third quartile(p= 0.75)
and so on can be obtained from the plots. Using this method, weobtain the distribution of the SASV inside the region
R. Also, more than one design can be compared on the basis of their slope estimation capabilities by superimposing their
respective quantiles ofH(r) insideR . This is called the combined quantile plots. We used MATLAB to generate uniform
random numbers, obtain the values of SASV, the quantiles ofH(r) and the combined quantile plots. MATLAB is powerful
and efficient in handling matrices and graphics.

4 Design Comparison

We compare the slope estimation capabilities of the two competing designs (CCD and ECCD) at multiple radii. The
Design matrix of the CCD (D1) and ECCD (D2) fork= 3 andn0 = 1 are shown below.
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Fig. 1: Combined quantile plots for the slope rotatable CCD and ECCD
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The two designs are rotatable which implies SROAD. 10000 points are randomly selected onS(r) = {x= ∑k
i=1x2

i = r2},
for each radiusr(= 0.1,0.3, . . . ,1.7). Plots of the quantiles ofH(r) are obtained. Fig. 1 shows the SASVQ plots. The
plots correspond respectively tor = 0.1,0.3, . . . ,1.7. From the plots in Fig. 1, the average slope variance,h(x) is stable
(constant) for the two designs. This implies equal precision at all points(x1,x2, . . . ,xk) equidistant from the design origin
(slope rotatability). Secondly, asr increases from 0.1 to 1.7, the quantiles ofh(x) also increase for all values ofp. For
r ≤ 0.5, the SASVQ plots of the CCD are below that of the ECCD. The CCDhave lower slope variance than the ECCD.
Therefore, the former performs better than the later. But for 0.7≤ r ≤ 1.7, the CCD are above the ECCD. The value of
h(x) for CCD is greater than that of ECCD. Hence, for these values of r , ECCD performs better than the CCD in terms
of slope estimation.
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5 Conclusion

The quantile plot is an effective graphical method for evaluating and comparing response surface designs when the
assumptions in equations(1) and (2) hold. It can be used to prove constant slope variance. When interest is in slope
estimation of the response surface at any specified direction, slope rotatability over all direction is a desirable criterion.
Both CCD and ECCD have good statistical properties like rotatability and slope rotatability. We obtained slope rotatable
CCD and ECCD over all direction and used the combined quantile plots to compare the designs on a sphere of radius
S(r) = {x= ∑k

i=1x2
i = r2}. In terms of the slope estimation capability, we found that the CCD is better than the ECCD

near the design centre. However, the ECCD performs better than the CCD as one approaches the design perimeter.
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