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Abstract: In this work, our aim is to obtain a numerical solution to sofraetional differential equations. In the solution prages
we have used fractional derivatives in Caputo sense. Thiafuental characteristics of the present method is theHatittconverts
complex problems into those requiring the solution of atg&bones, which is obviously more easy for computationatessing. The
obtained approximate values show the accuracy and sitiyatiilthe present scheme for applying a wide range of fractigartial
differential equations. Finally, the error norias andL. are computed and found to be sufficiently small.
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1 Introduction

Fractional differential equations rather than ordinaryg geartial ones more accurately describe physical phenomena
having memory and hereditary characteristics thanks to ongraffects of fractional derivatives. Because of these
important characteristics, fractional differential etioas have become more important in many fields of science in
recent years. Thus, an urgent need for reliable and accaratkods for dealing with fractional partial differential
equations has increasingly arisen. This study of fracticaitulus has become more suitable for the formulation of
natural phenomena. This is due to the fact that fractionifréintial equations rather than integer order differ@nti
equations can better model natural physics process andrigreystem processes. Moreover, having the memory
effects, fractional differential equations can more dilitadescribe natural processes having memory and hergditar
characteristics. However, in general, derivation of theoesolutions of several fractional differential equatiasinot so
easy. Thus, obtaining some reliable and effective methodssdlving fractional differential equations has become
increasingly important recently.

In recent years, it has increasingly become evident that wiothe phenomena in diverse fields of science such
as engineering, chemistry, physics and many others candwadely described by mathematical models in fractional
calculus, namely, the area of integrals and derivative®afinteger order]]. The idea of differentiation and integration
to equations with non integer order has its origin in earktdry. To be more precise, this idea has its roots almost as
early as the those of the classical calculus were kn@krSeveral studies have hinted that derivatives and integifa
non integer order describe the characteristics of seveagdnials more accurately. It has become obvious that &raati
order schemes are better than those using integer ordeinaieess of accuracy. The ever increasing number of fraation
derivative procedures in many areas of engineering andsei@bviously shows the fact that there has been a huge need fo
more accurate models of every-day objects. Thus, the ématicalculus can be seen one of possible approaches to more
suitable mathematical modeling of every-day objects andgutures. Even though there are a few analytical techniques
[3] for handling the fractional equations, just as in integeter partial differential equations, in several situasidghe
auxiliary conditions are in such a way that the sole viableicd can be to apply approximation schemes. Even though
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there are lots of studies on the subject in recent ye&abs§, 7, 8], this area of numerical mathematics is still not developed
and understood as well as its integer counter@riifhough there have been a lot of techniques used in solvaggibnal
partial differential equations such as those used in ane iing10,11,12 13,14, 15], we have lots of works to do in this
nascent area of mathematics.

In this present paper, our goal is to apply the collocatioiidfielement scheme to fractional partial differential
equations with cubic B spline base functions. For this psepave will deal with one dimensional fractional anomalous
diffusion equations having inhomogeneous source ternmowitlosing its generality, given as follows,

9%u(x,t)  d2u(x.t)

ata ax2
having the auxiliary conditions

+u(xt)=f(xt), 0<x<L, t>0, (1)

and
u(x,0) = G(x) 3)
whereO< a <1 and[‘,’t—i denotes Caputo form fractional derivative havingrder described byl
t
%u(x,t) 1 g 0™ u(x, T)
_ _ z B/ < )
= l_(n“_a){(t pref__dr, n<a<n+l (@)

In order to get finite element scheme to solve the fractionatblem given by Eqgs.1)-(3), in the solution process of the
current problem, we discretize the Caputo derivative uksihfprmula ]

a —a m-1
% = %kzobE [f(tm—k) — f(tm-1-k)] + O(AL)

where

bg = (k+ 1)1 — k9.

2 Cubic B-spline Finite Element Collocation Solutions

Before solving Eqg. 1) having both the initial condition3) and the boundary conditiong)(with the aid of collocation
method, let us firstly describe cubic B-spline basis funicAssume the solution intervid, b is divided inN finite
elements of uniform equal lengths with nodal poirtsi = 0,1,2,...,N in such a way thakg < x;--- < Xy with h =
(X —Xi—1). The cubic B-spline function@(x) , (i = —1(1)N+ 1), at nodal points; are described in the solution interval

[a,b] by [17]

(x=xi—2)3, X2 <X< X1,
h3 +3M(x—x_1) +3h(x—%_1)2 = 3(x—x_1)%, X_1 <xX<X,
@00 =75 4 h®+3n2(Xi 1 —X) +3n(Xir1—X)2 — B(Xis1—X)°, X < X< Xip1, 5)
(X2 — %)%, Xi+1 < X< X2,
otherwise

The set of spline$g_1(x), ..., @+1(X)} constitutes a basis for those functions given in the satufiomain(a, b]. So, an
approximate solutioby (x,t) may be defined using the cubic B- splines as test functions:

N-+1

Un(xt) = 3 ata) (6)

i=—1

where g (t)'s are time dependent variables which are going to be fouimyube supplementary and cubic B-spline
collocation constraints. Since every cubic B spline exseoekers four consecutive elements, every elener; 1] is
spanned with four consecutive cubic B-splines. In the pregmblem, these elements are describefkomi ;1] and the

elements knots;, X ;1. If we the nodal valued);, Ui/ andUi” defined in terms of the time dependent variab(é) by:
Ui =U(x) = 8_1(t) + 43 (1) + &1 (1),

U/ =U’(x) = 2(—&-1(t) + d41(t)), @
U/ =U"(x) = 562 (G-1(t) —28(t) + & 1(t))
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and the variation o)y (x,t) on a typical elementx;, x;11] is given by
i+2

Unixt) = 5 5 (). ®)
j=1—-1

If we replace the global approximatio)(and its required derivative§ ) in Eq. (1), we easily result in a set of the-th
order fractional ordinary differential equations giverfaltows:

: s 6
(8-1+48+041) — 15(8-1- 26+ 641) + (8148 +841) = (%, 1) 9)
where dot denotea-th fractional derivative in terms of time. When time depentiparameter$;(t)'s and the time
fractional derivativesgi(t) given in Eq. @) are discretized using the Crank-Nicolson formulae &rid formula,

respectively:

(8" + MY, (10)

NI -

&=
and
L doo - (At)—a n—-1

— gt — ['(2_ a)kgo [(k+1)1—a _kl—or} [5n—k_ 5n—k—1} ,

we get a iterative scheme between consecutive times whidintarrelating unknown time dependent paramedgrs (t)
fori=0,...,N,

(1—(6—h?)y) 3™+ (1+4(3+h?)y) g+ (1— (6—h?)y) o = (1+ (6—h?)y) &,
+(1-4(3+h?)y) 0"+ (14 (6—h?)y) ", + 2h?yf (X, tn) (11)
= 3 [ D0 kO] [ — g1 + 40 = g + (8T - 81

where

(AT (2—a)
2h? '
The newly obtained systenill) consists of N + 1 linear equations yet includell + 3 unknown parameters

(0_1,..., 6N+1)T. Thus, to be able to obtain a unique solution to this systeenskould find two additional constraints.
These are obtained from the boundary conditions and themsaictto get rid oby.1 andd_1 in this system.

2.1 Satement of Initial Condition

To be able to begin, the iterative process, we firstly needhitial vector

d°= (0,07, &N 5 1, 0)"-
It can be easily computed using the boundary and initial tmms. So, the general approximatid) can be particularly
stated for the starting point of iteration as follows

N-+1

Un(x.0)= Y &MHax) (12)

i=—1

where theélo's are time dependent unknown parameters. We impose tled imitmerical approximatioby(x,0) satisfy
the following requirements:

Un(X,0) =u(x,0), i o
(Un)x(0,0) = G"(0), (Un)x(t,0) = G"(L).

then we result in the matrix equation

(13)

wd® =b (14)
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where
6000000

14100 000
01410000

0000 0 141
0000 0 0O 6

d%=(50.80.87..... &0 2. & 1. 30"
and
b = (u(x0,0) — "£G"(0),u(x1,0),u(X2,0), ..., u(Xy_2,0),u(xn_1,0),u(xn,0) — EG"(L))T.

3 Numerical examplesand results
Here, we are going to provide two numerical examples to shmvapplication of collocation finite element scheme

using cubic B-spline basis functions to deal with the follogvtwo fractional partial differential equations. To shbaw
accurate the results acquired with our the present methedrtor norni,

. N . 2
Lo = [umaiea —uy| = h%\uf‘”e“y“cé“ - (Un)| (15)
J:
and the error norm.,
Lo = [uzasiea —yy| = mjax‘ujf”‘“éﬂwicaj - (Un),] (16)
are calculated.
Example 3.1: Firstly, we will consider the following problem
a 2
0 ;t(f,(’t) 0 ;E:;’t) +uxt)=r(2+a)et, 0<x<1lt>0, (17)
having auxiliary conditions
u(0,t) =t y(Lt) = ettt (18)
and
u(x,0) = 0. (19)
The problem has the following analytical solutidk8]
u(x,t) = etita, (20)

Numerical results for the Eq1{) with the auxiliary conditions8) and (19) are acquired with collocation scheme with
cubic B-spline basis functions.

We have compared the exact solution and numerical soluf@nsur problem using values @f = 0.20, a = 0.50,
o = 0.75 anda = 0.90 and tabulated them in Table 1. We can obviously see indbig that the exact and approximate
solutions acquired by the scheme are in harmony with respeztch other.

We have also illustrated the approximate valuesifer 0.50,At = 0.0001 ands = 0.1 and for various divisions of the
solution region in Table 2. In Table 2, we can observe thatnithe division number increases, the acquired approximate
values get more precise. This conclusion can be drawn frendélereasing values of the error normsandL..

In Figure 1, the graphs of numerical solutions acquiredofer 0.50,At = 0.0001 andN = 40 at various times have
been illustrated.

Example 3.2: Secondly, we will deal with the following problem

2%u(x,t)  d%u(xt) -
PTG - D o vy

t>%snx, 0<x<m, t>0, (21)
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Table 1: A comparison of the analytical and the approximate solstiohthe problem usingN = 40, At = 0.0001 andis = 0.1 at
various values ofr with the error normé, andLc.
a=0.20 a=0.50 a=0.75 a =0.90

Numerical Exact Numerical Exact Numerical Exact NumericaExact
0.0 0.063087  0.063096 0.031616  0.031623 0.017778 0.0177830.012586 0.012589
0.1 0.069729  0.069732 0.034945  0.034949 0.019651 0.0196530.013914  0.013913
0.2 0.077063  0.077065 0.038621  0.038624 0.021718 0.0217200.015379 0.015377
0.3 0.085168  0.085170 0.042683  0.042686 0.024003 0.0240040.016997 0.016994
0.4 0.094125  0.094128 0.047172  0.047176 0.026528 0.0265290.018785 0.018781
0.5 0.104024  0.104027 0.052133  0.052137 0.029317 0.0293190.020761 0.020756
0.6 0.114964  0.114968 0.057615  0.057620 0.032400  0.0324020.022943 0.022939
0.7 0.127055  0.127059 0.063675  0.063680 0.035807 0.0358100.025355 0.025352
0.8 0.140418  0.140422 0.070371  0.070378 0.039572 0.0395760.028020 0.028018
0.9 0.155186  0.155190 0.077771  0.077779 0.043732 0.0437390.030964  0.030965
1.0 0.171489  0.171512 0.085940  0.085960 0.048324  0.0483390.034213 0.034221

L, x10° 0.005014 0.006235 0.004091 0.003304

Lo x10°  0.023228 0.019343 0.014279 0.008490

X

Table 2: A comparison of the analytical and approximate solutionthefproblem withor = 0.5, At = 0.0001 and; = 0.1 for various
values ofN with the error normis; andL .
X N=10 N=20 N=40 N=80 N=100 Exact
0.0 0.031509 0.031594 0.031616 0.031621 0.031622 0.031623
0.1 0.034890 0.034934 0.034945 0.034948 0.034948 0.034949
0.2 0.038566 0.038610 0.038621 0.038623 0.038624 0.038624
0.3 0.042627 0.042671 0.042683 0.042685 0.042686 0.042686
0.4 0.047111 0.047160 0.047172 0.0471765 0.047175 0.84717
0.5 0.052065 0.052119 0.052133 0.052136 0.052137 0.052137
0.6 0.057538 0.057600 0.057615 0.057619 0.057620 0.057620
0.7 0.063584 0.063657 0.063675 0.063679 0.063680 0.063680
0.8 0.070264 0.070349 0.070371 0.070376 0.070378 0.070378
0.9 0.077642 0.077745 0.077771 0.077777 0.077778 0.077779
1.0 0.085650 0.085882 0.085940 0.085955 0.085957  0.085960
Lo x10° 0.127728 0.027530 0.006235 0.001435  0.000887
Lo x10° 0.309488 0.077372 0.019343 0.004836  0.003095

Fig. 1: A comparison of the analytical (line) and approximate gohg fora = 0.50,At = 0.0001 and\ = 40 att = 1 (triangle)t =4
(star),t =7 (square) ant= 10 (circle).

having the following boundary conditions
u(o,t) =u(mt)=0 (22)
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and initial condition
u(x,0) =0. (23)

This problem has the following analytical solution
u(x,t) = t?sinx. (24)

Numerical results for the Eq2() with the boundary condition®2@) and the initial conditionZ3) are acquired using
collocation finite element scheme with cubic B-spline basmstions.

A comparison of the analytical and the newly obtained nuca¢golutions for values = 0.20,a = 0.50,a = 0.75
anda = 0.90 has been given in Table 3. It is evident in this table th#t tioe exact and approximate solutions acquired
using the present method are in harmony with each other.

Table 3: A comparison of the analytical and approximate solutionthefproblem withN = 40, At = 0.0001 and; = 0.1 for various
values ofa with the error normé, andLe.
X a=020 a=050 a=075 a=090 Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.003089 0.003090 0.003090 0.003092 0.003090
0.628319 0.005876 0.005877 0.005878 0.005880 0.005878
0.942478 0.008088 0.008090 0.008091 0.008094 0.008090
1.256637 0.009508 0.009510 0.009511 0.009515 0.009511
1.570796 0.009997 0.009999 0.010001 0.010004 0.010000
1.884956 0.009508 0.009510 0.009511 0.009515 0.009511
2.199115 0.008088 0.008090 0.008091 0.008094 0.008090
2.513274 0.005876 0.005877 0.005878 0.005880 0.005878
2.827433 0.003089 0.003090 0.003090 0.003092 0.003090
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000
L,x10° 0.003338 0.001017 0.001194 0.005420
Lo x10°  0.002664 0.000812 0.000953 0.004324

In Table 4, the approximate values far= 0.50, At = 0.0001 and = 0.1 and for various division numbers of the
solution region have been tabulated. Table 4 obviouslgtitates that when division number is increased, the aadjuire
approximate values get more precise. This conclusion catrden by looking at the decreasing values of the error
normsL, andLc.

Table 4: A comparison of the analytical approximate solutions of pheblem witha = 0.5, At = 0.0001 ands = 0.1 for various
values ofN with the error norm&, andLe.
X N=10 N=20 N=40 N=80 N=100 Exact

0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000@00
0.314159 0.003085 0.003089 0.003090 0.003090 0.00309003@0
0.628319 0.005869 0.005876 0.005877 0.005878 0.00587805878
0.942478 0.008078 0.008087 0.008090 0.008090 0.00809008@C0
1.256637 0.009496 0.009507 0.009510 0.009510 0.00951109%10
1.570796 0.009985 0.009996 0.009999 0.010000 0.01000010@00
1.884956 0.009496 0.009507 0.009510 0.009510 0.00951109%10
2.199115 0.008078 0.008087 0.008090 0.008090 0.00809008@0
2.513274 0.005869 0.005876 0.005877 0.005878 0.00587805&78
2.827433 0.003085 0.003089 0.003090 0.003090 0.00309003@0
3.141593 0.000000 0.000000 0.000000 0.000000 0.00000000@00
Lo x10° 0.019422 0.004693 0.001017 0.000099 0.000011
Lo x10°  0.015496 0.003745 0.000812 0.000079  0.000009
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In Figure 2, we have illustrated the graphical views of agpnate values acquired far = 0.50, At = 0.0001 and
N = 40 at different times.

Fig. 2. A comparison of the analytical (lines) and approximate sohs for a = 0.50, At = 0.0001 andN = 40 att = 1 (triangles),
t =2 (stars)t = 3 (squares) and= 4 (circles).

4 Per spective

In the present paper, we have presented collocation fireteeht scheme using cubic B-spline basis functions to aequir
approximate solutions for fractional partial differehgguations. The fractional derivatives are used in Caputmf The
fundamental characteristics of the present method isttbhinges a fractional differential problem into algebsailvable
problem, which is obviously more suitable for numericatcddtions. In conclusion, it can be said that collocatiortdin
element method can be easily used in finding approximaté¢igotiof many more similar equations.
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