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Abstract: In this work, our aim is to obtain a numerical solution to somefractional differential equations. In the solution process,
we have used fractional derivatives in Caputo sense. The fundamental characteristics of the present method is the fact that it converts
complex problems into those requiring the solution of algebraic ones, which is obviously more easy for computational processing. The
obtained approximate values show the accuracy and suitability of the present scheme for applying a wide range of fractional partial
differential equations. Finally, the error normsL2 andL∞ are computed and found to be sufficiently small.
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1 Introduction

Fractional differential equations rather than ordinary and partial ones more accurately describe physical phenomena
having memory and hereditary characteristics thanks to memory effects of fractional derivatives. Because of these
important characteristics, fractional differential equations have become more important in many fields of science in
recent years. Thus, an urgent need for reliable and accuratemethods for dealing with fractional partial differential
equations has increasingly arisen. This study of fractional calculus has become more suitable for the formulation of
natural phenomena. This is due to the fact that fractional differential equations rather than integer order differential
equations can better model natural physics process and dynamic system processes. Moreover, having the memory
effects, fractional differential equations can more suitably describe natural processes having memory and hereditary
characteristics. However, in general, derivation of the exact solutions of several fractional differential equations is not so
easy. Thus, obtaining some reliable and effective methods for solving fractional differential equations has become
increasingly important recently.

In recent years, it has increasingly become evident that most of the phenomena in diverse fields of science such
as engineering, chemistry, physics and many others can be accurately described by mathematical models in fractional
calculus, namely, the area of integrals and derivatives of non-integer order [1]. The idea of differentiation and integration
to equations with non integer order has its origin in early history. To be more precise, this idea has its roots almost as
early as the those of the classical calculus were known [2]. Several studies have hinted that derivatives and integrals of
non integer order describe the characteristics of several materials more accurately. It has become obvious that fractional
order schemes are better than those using integer order onesin terms of accuracy. The ever increasing number of fractional
derivative procedures in many areas of engineering and science obviously shows the fact that there has been a huge need for
more accurate models of every-day objects. Thus, the fractional calculus can be seen one of possible approaches to more
suitable mathematical modeling of every-day objects and procedures. Even though there are a few analytical techniques
[3] for handling the fractional equations, just as in integer order partial differential equations, in several situations the
auxiliary conditions are in such a way that the sole viable choice can be to apply approximation schemes. Even though
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there are lots of studies on the subject in recent years [4,5,6,7,8], this area of numerical mathematics is still not developed
and understood as well as its integer counterpart [9]. Though there have been a lot of techniques used in solving fractional
partial differential equations such as those used in and there in [10,11,12,13,14,15], we have lots of works to do in this
nascent area of mathematics.

In this present paper, our goal is to apply the collocation finite element scheme to fractional partial differential
equations with cubic B spline base functions. For this purpose, we will deal with one dimensional fractional anomalous
diffusion equations having inhomogeneous source term, without losing its generality, given as follows,

∂ α u(x, t)
∂ tα −

∂ 2u(x, t)
∂x2 + u(x, t) = f (x, t), 0≤ x ≤ L, t > 0, (1)

having the auxiliary conditions
u(0, t) = g0(t), U(L, t) = g1(t) (2)

and
u(x,0) = G(x) (3)

where 0< α < 1 and ∂ α

∂ tα denotes Caputo form fractional derivative havingα order described by [16]

∂ α u(x, t)
∂ tα =

1
Γ (n+1−α)

t
∫

0

(t − τ)n−α ∂ n+1u(x,τ)
∂τn+1 dτ, n < α ≤ n+1. (4)

In order to get finite element scheme to solve the fractional problem given by Eqs. (1)-(3), in the solution process of the
current problem, we discretize the Caputo derivative usingL1 formula [2]

∂ α f
∂ tα

∣

∣

∣

∣

∣

tm =
(∆ t)−α

Γ (2−α)

m−1

∑
k=0

bα
k [ f (tm−k)− f (tm−1−k)]+O(∆ t)

where

bk,α = (k+1)1−α − k1−α
.

2 Cubic B-spline Finite Element Collocation Solutions

Before solving Eq. (1) having both the initial condition (3) and the boundary conditions (2) with the aid of collocation
method, let us firstly describe cubic B-spline basis functions. Assume the solution interval[a,b] is divided inN finite
elements of uniform equal lengths with nodal pointsxi, i = 0,1,2, ...,N in such a way thatx0 < x1 · · · < xN with h =
(xi − xi−1). The cubic B-spline functionsφi(x) , (i =−1(1)N+1), at nodal pointsxi are described in the solution interval
[a,b] by [17]

φi(x) = 1
h3























(x− xi−2)
3, xi−2 ≤ x ≤ xi−1,

h3+3h2(x− xi−1)+3h(x− xi−1)
2−3(x− xi−1)

3, xi−1 ≤ x ≤ xi,

h3+3h2(xi+1− x)+3h(xi+1− x)2−3(xi+1− x)3, xi ≤ x ≤ xi+1,

(xi+2− x)3, xi+1 ≤ x ≤ xi+2,

0 otherwise.

(5)

The set of splines{φ−1(x), . . . ,φN+1(x)} constitutes a basis for those functions given in the solution domain[a,b]. So, an
approximate solutionUN(x, t) may be defined using the cubic B- splines as test functions:

UN(x, t) =
N+1

∑
i=−1

δi(t)φi(x) (6)

whereδi(t)’s are time dependent variables which are going to be found using the supplementary and cubic B-spline
collocation constraints. Since every cubic B spline extends overs four consecutive elements, every element[xi,xi+1] is
spanned with four consecutive cubic B-splines. In the present problem, these elements are described on[xi,xi+1] and the
elements knotsxi,xi+1. If we the nodal valuesUi, U

′

i andU
′′

i defined in terms of the time dependent variableδi(t) by:

Ui =U(xi) = δi−1(t)+4δi(t)+ δi+1(t),
U ′

i =U ′(xi) =
3
h (−δi−1(t)+ δi+1(t)),

U ′′
i =U ′′(xi) =

6
h2 (δi−1(t)−2δi(t)+ δi+1(t))

(7)
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and the variation ofUN(x, t) on a typical element[xi,xi+1] is given by

UN(x, t) =
i+2

∑
j=i−1

δ j(t)φ j(x). (8)

If we replace the global approximation (6) and its required derivatives (7) in Eq. (1), we easily result in a set of theα-th
order fractional ordinary differential equations given asfollows:

(δ̇i−1+4δ̇i + δ̇i+1)−
6
h2 (δi−1−2δi+ δi+1)+ (δi−1+4δi+ δi+1) = f (xi, t) (9)

where dot denotesα-th fractional derivative in terms of time. When time dependent parametersδi(t)’s and the time
fractional derivativesδ̇i(t) given in Eq. (9) are discretized using the Crank-Nicolson formulae andL1 formula,
respectively:

δi =
1
2
(δ n +δ n+1), (10)

and

δ̇ =
dα δ
dtα =

(∆ t)−α

Γ (2−α)

n−1

∑
k=0

[

(k+1)1−α − k1−α]
[

δ n−k − δ n−k−1
]

,

we get a iterative scheme between consecutive times which are interrelating unknown time dependent parametersδ n+1
i (t)

for i = 0, ..., N,

(

1− (6− h2)γ
)

δ n+1
i−1 +

(

1+4(3+ h2)γ
)

δ n+1
i +

(

1− (6− h2)γ
)

δ n+1
i+1 =

(

1+(6− h2)γ
)

δ n
i−1

+
(

1−4(3+ h2)γ
)

δ n
i +

(

1+(6− h2)γ
)

δ n
i+1+2h2γ f (xi, tn)

−
n
∑

k=1

[

(k+1)1−α − k1−α][(δ n−k+1
i−1 − δ n−k

i−1 )+4(δ n−k+1
i − δ n−k

i )+ (δ n−k+1
i+1 − δ n−k

i+1 )
]

(11)

where

γ =
(∆ t)αΓ (2−α)

2h2 .

The newly obtained system(11) consists of N + 1 linear equations yet includesN + 3 unknown parameters
(δ−1, . . . ,δN+1)

T . Thus, to be able to obtain a unique solution to this system, we should find two additional constraints.
These are obtained from the boundary conditions and then areused to get rid ofδN+1 andδ−1 in this system.

2.1 Statement of Initial Condition

To be able to begin, the iterative process, we firstly need theinitial vector
d0 = (δ 0

0 ,δ
0
1 ,δ

0
2 , . . . ,δ

0
N−2,δ

0
N−1,δ

0
N)

T .
It can be easily computed using the boundary and initial conditions. So, the general approximation (6) can be particularly
stated for the starting point of iteration as follows

UN(x,0) =
N+1

∑
i=−1

δ 0
i (t)φi(x) (12)

where theδ 0
i ’s are time dependent unknown parameters. We impose the initial numerical approximationUN(x,0) satisfy

the following requirements:

UN(x,0) = u(xi,0), i = 0,1, ...,N
(UN)xx(0,0) = G′′(0), (UN)xx(Ł,0) = G′′(L). (13)

then we result in the matrix equation
W d0 = b (14)
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where

W =



















6 0 0 0 0 0 0 0
1 4 1 0 0 0 0 0
0 1 4 1 0 0 0 0

...
0 0 0 0 0 1 4 1
0 0 0 0 0 0 0 6



















d0 = (δ 0
0 ,δ

0
1 ,δ

0
2 , . . . ,δ

0
N−2,δ

0
N−1,δ

0
N)

T

and
b = (u(x0,0)−

h2

6 G′′(0),u(x1,0),u(x2,0), . . . ,u(xN−2,0),u(xN−1,0),u(xN ,0)− h2

6 G′′(L))T .

3 Numerical examples and results

Here, we are going to provide two numerical examples to show the application of collocation finite element scheme
using cubic B-spline basis functions to deal with the following two fractional partial differential equations. To showhow
accurate the results acquired with our the present method, the error normL2

L2 =
∥

∥

∥
Uanalytical −UN

∥

∥

∥

2
=

√

√

√

√h
N

∑
j=0

∣

∣

∣
Uanalytical

j − (UN) j

∣

∣

∣

2
(15)

and the error normL∞

L∞ =
∥

∥

∥
Uanalytical −UN

∥

∥

∥

∞
= max

j

∣

∣

∣
Uanalytical

j − (UN) j

∣

∣

∣
. (16)

are calculated.
Example 3.1: Firstly, we will consider the following problem

∂ α u(x, t)
∂ tα −

∂ 2u(x, t)
∂x2 + u(x, t) = Γ (2+α)ext, 0≤ x ≤ 1 t > 0, (17)

having auxiliary conditions
u(0, t) = t1+α

, u(1, t) = e t1+α (18)

and
u(x,0) = 0. (19)

The problem has the following analytical solution [18]

u(x, t) = ext1+α
. (20)

Numerical results for the Eq. (17) with the auxiliary conditions (18) and (19) are acquired with collocation scheme with
cubic B-spline basis functions.

We have compared the exact solution and numerical solutionsfor our problem using values ofα = 0.20, α = 0.50,
α = 0.75 andα = 0.90 and tabulated them in Table 1. We can obviously see in this table that the exact and approximate
solutions acquired by the scheme are in harmony with respectto each other.

We have also illustrated the approximate values forα = 0.50,∆ t = 0.0001 andt f = 0.1 and for various divisions of the
solution region in Table 2. In Table 2, we can observe that when the division number increases, the acquired approximate
values get more precise. This conclusion can be drawn from the decreasing values of the error normsL2 andL∞.

In Figure 1, the graphs of numerical solutions acquired forα = 0.50,∆ t = 0.0001 andN = 40 at various times have
been illustrated.

Example 3.2: Secondly, we will deal with the following problem

∂ α u(x, t)
∂ tα −

∂ 2u(x, t)
∂x2 − u(x, t) =

2
Γ (3−α)

t2−α sinx, 0≤ x ≤ π , t > 0, (21)
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Table 1: A comparison of the analytical and the approximate solutions of the problem usingN = 40, ∆ t = 0.0001 andt f = 0.1 at
various values ofα with the error normsL2 andL∞.

x
α = 0.20 α = 0.50 α = 0.75 α = 0.90

Numerical Exact Numerical Exact Numerical Exact NumericalExact
0.0 0.063087 0.063096 0.031616 0.031623 0.017778 0.0177830.012586 0.012589
0.1 0.069729 0.069732 0.034945 0.034949 0.019651 0.0196530.013914 0.013913
0.2 0.077063 0.077065 0.038621 0.038624 0.021718 0.0217200.015379 0.015377
0.3 0.085168 0.085170 0.042683 0.042686 0.024003 0.0240040.016997 0.016994
0.4 0.094125 0.094128 0.047172 0.047176 0.026528 0.0265290.018785 0.018781
0.5 0.104024 0.104027 0.052133 0.052137 0.029317 0.0293190.020761 0.020756
0.6 0.114964 0.114968 0.057615 0.057620 0.032400 0.0324020.022943 0.022939
0.7 0.127055 0.127059 0.063675 0.063680 0.035807 0.0358100.025355 0.025352
0.8 0.140418 0.140422 0.070371 0.070378 0.039572 0.0395760.028020 0.028018
0.9 0.155186 0.155190 0.077771 0.077779 0.043732 0.0437390.030964 0.030965
1.0 0.171489 0.171512 0.085940 0.085960 0.048324 0.0483390.034213 0.034221

L2×103 0.005014 0.006235 0.004091 0.003304
L∞ ×103 0.023228 0.019343 0.014279 0.008490

Table 2: A comparison of the analytical and approximate solutions ofthe problem withα = 0.5, ∆ t = 0.0001 andt f = 0.1 for various
values ofN with the error normsL2 andL∞.

x N=10 N=20 N=40 N=80 N=100 Exact
0.0 0.031509 0.031594 0.031616 0.031621 0.031622 0.031623
0.1 0.034890 0.034934 0.034945 0.034948 0.034948 0.034949
0.2 0.038566 0.038610 0.038621 0.038623 0.038624 0.038624
0.3 0.042627 0.042671 0.042683 0.042685 0.042686 0.042686
0.4 0.047111 0.047160 0.047172 0.0471765 0.047175 0.047176
0.5 0.052065 0.052119 0.052133 0.052136 0.052137 0.052137
0.6 0.057538 0.057600 0.057615 0.057619 0.057620 0.057620
0.7 0.063584 0.063657 0.063675 0.063679 0.063680 0.063680
0.8 0.070264 0.070349 0.070371 0.070376 0.070378 0.070378
0.9 0.077642 0.077745 0.077771 0.077777 0.077778 0.077779
1.0 0.085650 0.085882 0.085940 0.085955 0.085957 0.085960

L2×103 0.127728 0.027530 0.006235 0.001435 0.000887
L∞ ×103 0.309488 0.077372 0.019343 0.004836 0.003095
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Fig. 1: A comparison of the analytical (line) and approximate solutions forα = 0.50,∆ t = 0.0001 andN = 40 att = 1 (triangle),t = 4
(star),t = 7 (square) andt = 10 (circle).

having the following boundary conditions

u(0, t) = u(π , t) = 0 (22)
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and initial condition

u(x,0) = 0. (23)

This problem has the following analytical solution

u(x, t) = t2sinx. (24)

Numerical results for the Eq. (21) with the boundary conditions (22) and the initial condition (23) are acquired using
collocation finite element scheme with cubic B-spline basisfunctions.

A comparison of the analytical and the newly obtained numerical solutions for valuesα = 0.20,α = 0.50,α = 0.75
andα = 0.90 has been given in Table 3. It is evident in this table that both the exact and approximate solutions acquired
using the present method are in harmony with each other.

Table 3: A comparison of the analytical and approximate solutions ofthe problem withN = 40,∆ t = 0.0001 andt f = 0.1 for various
values ofα with the error normsL2 andL∞.

x α = 0.20 α = 0.50 α = 0.75 α = 0.90 Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.003089 0.003090 0.003090 0.003092 0.003090
0.628319 0.005876 0.005877 0.005878 0.005880 0.005878
0.942478 0.008088 0.008090 0.008091 0.008094 0.008090
1.256637 0.009508 0.009510 0.009511 0.009515 0.009511
1.570796 0.009997 0.009999 0.010001 0.010004 0.010000
1.884956 0.009508 0.009510 0.009511 0.009515 0.009511
2.199115 0.008088 0.008090 0.008091 0.008094 0.008090
2.513274 0.005876 0.005877 0.005878 0.005880 0.005878
2.827433 0.003089 0.003090 0.003090 0.003092 0.003090
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000
L2×103 0.003338 0.001017 0.001194 0.005420
L∞ ×103 0.002664 0.000812 0.000953 0.004324

In Table 4, the approximate values forα = 0.50, ∆ t = 0.0001 andt f = 0.1 and for various division numbers of the
solution region have been tabulated. Table 4 obviously illustrates that when division number is increased, the acquired
approximate values get more precise. This conclusion can bedrawn by looking at the decreasing values of the error
normsL2 andL∞.

Table 4: A comparison of the analytical approximate solutions of theproblem withα = 0.5, ∆ t = 0.0001 andt f = 0.1 for various
values ofN with the error normsL2 andL∞.

x N=10 N=20 N=40 N=80 N=100 Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.003085 0.003089 0.003090 0.003090 0.003090 0.003090
0.628319 0.005869 0.005876 0.005877 0.005878 0.005878 0.005878
0.942478 0.008078 0.008087 0.008090 0.008090 0.008090 0.008090
1.256637 0.009496 0.009507 0.009510 0.009510 0.009511 0.009511
1.570796 0.009985 0.009996 0.009999 0.010000 0.010000 0.010000
1.884956 0.009496 0.009507 0.009510 0.009510 0.009511 0.009511
2.199115 0.008078 0.008087 0.008090 0.008090 0.008090 0.008090
2.513274 0.005869 0.005876 0.005877 0.005878 0.005878 0.005878
2.827433 0.003085 0.003089 0.003090 0.003090 0.003090 0.003090
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
L2×103 0.019422 0.004693 0.001017 0.000099 0.000011
L∞ ×103 0.015496 0.003745 0.000812 0.000079 0.000009
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In Figure 2, we have illustrated the graphical views of approximate values acquired forα = 0.50, ∆ t = 0.0001 and
N = 40 at different times.
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Fig. 2: A comparison of the analytical (lines) and approximate solutions for α = 0.50, ∆ t = 0.0001 andN = 40 att = 1 (triangles),
t = 2 (stars),t = 3 (squares) andt = 4 (circles).

4 Perspective

In the present paper, we have presented collocation finite element scheme using cubic B-spline basis functions to acquire
approximate solutions for fractional partial differential equations. The fractional derivatives are used in Caputo form . The
fundamental characteristics of the present method is that it changes a fractional differential problem into algebraicsolvable
problem, which is obviously more suitable for numerical calculations. In conclusion, it can be said that collocation finite
element method can be easily used in finding approximate solutions of many more similar equations.
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