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Abstract: In this article, the explicit and the Crank-Nicolson finite difference methods have been successfully applied to obtain
approximate solutions of the the nonlinear time fractionalgas dynamics equation. The time fractional derivative in the equation has
been considered in the Caputo form. TheL1 discretization formula has been applied to the equation. To test the accuracy of the proposed
methods, the error normsL2 andL∞ have also been computed . The newly obtained solutions by theproposed method indicate the easy
implementation and effectiveness of the approach used in the article.
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1 Introduction

Fractional calculus constitutes an important branch of
applied mathematics and mainly deals with derivatives
and integrals of non-integer orders. The application of
differentiation and integration to non-integer orders hasa
long history, so it is not new by no means. In fact, interest
in the subject dates back to the ideas of the classical
calculus [1]. However, in the last few decades, many
authors have pointed out that derivatives and integrals of
non-integer order are very suitable for the description of
many phenomena in the nature. It has been shown that
new fractional-order models are more adequate than
previously used integer-order models. The growing
number of fractional derivative applications in various
fields of science and engineering indicates that there is a
significant demand for better mathematical models of real
objects, and that the fractional calculus provides one
possible approach on the way to more adequate
mathematical modeling of real objects and processes.
They are widely used to model problems in fluid
mechanics, acoustics, biology, electromagnetism,
diffusion, signal processing, and many other physical
processes, look at [2] and references therein. There are a
wide range of studies dealing with the obtaining both
analytical and numerical solutions of fractional
differential equations using numerous techniques and

methods. Although there are few analytical methods such
as found by [3,4,5,6] providing exact solutions of the
fractional equations, the numerical methods are more
common and the most appropriate and even sometimes
the only way to handle most of the problems involving
fractional equations. Thus effective, accurate and easily
implemented numerical methods are of great importance.
Though there have been many methods applied to solve
fractional partial differential equations, there is stilla long
way to go in this field. There are several studies about
fractional equations in the literature. Murillo and Yuste
[7] have used an explicit difference for solving fractional
diffusion and diffusion-wave equations in the Caputo
form. Sweilamet al. [8] solved time-fractional diffusion
equation by using Crank-Nicolson finite difference
method. Monami and Odibat [9] have implemented
relatively new analytical techniques, the variational
iteration method and the Adomian decomposition
method, for solving linear fractional partial differential
equations arising in fluid mechanics. In this paper, we
will use finite difference methods to obtain the numerical
solutions of the fractional gas dynamics equation by using
theL1 discretizaton formula of the fractional derivative as
used by [7].The equations of gas dynamics are
mathematical expressions based on the physical laws of
conservation namely, the laws of conservation of mass,
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conservation of momentum, conservation of energy etc
[10]. The various forms of gas dynamics equations have
been solved by many authors. Among others, Liu [11] has
taken some partial differential equations related to gas
dynamics and mechanics into consideration and solved
them numerically and Rasulov and Karaguler [12] have
applied difference scheme to solve some gas dynamics
problems.

In this study, we will consider the homogenous
nonlinear time-fractional gas dynamics equation as a
model is given by

Dγ
t u+ uux− u(1− u) = 0 (1)

where

Dγ
t f (t) =

1
Γ (1− γ)

ˆ t

0
(t − τ)−γ f ′(τ)dτ 0< γ ≤ 1

is the fractional derivative in the Caputo’s sense [3,13]. In
this paper, for fractional gas dynamics equation, we will
take the boundary conditions of the model problem (1)
given in the interval 0≤ x ≤ 1 as

u(0, t) = Eγ(t
γ) , u(1, t) = e−1Eγ(t

γ )

and the initial condition as

u(x,0) = e−x
.

The exact solution of the problem is given as [10]

u(x, t) = e−xEγ(t
γ )

whereEγ is the Mittag-Leffler function [13].
In our numerical solutions, to obtain a finite difference

schemes for solving the fractional gas dynamics equation
as [7] used in explicit finite difference method, we will also
discretize the Caputo derivative by means of the so-called
L1 formula [1]

Dγ
t f (t)|tm =

(∆ t)−γ

Γ (2− γ)

m−1

∑
k=0

bγ
k [ f (tm−k)− f (tm−1−k)]+O(∆ t)

(2)
where

bγ
k = (k+1)1−γ − k1−γ

.

2 The Finite Difference Schemes

Let’s suppose that the solution domain of the problem 0≤
x ≤ 1 is divided into intervals having equal length∆x in
thex direction and having equal time intervals∆ t in time
t such thatx j = jh, j = 0(1)N andtm = m∆ t, m = 0(1)M
andum

j will denoteu(x j, tm) throughout the article.

2.1 The Explicit Finite Difference Scheme

Using Eq.(2) in Eq.(1) and applying the the following
discretize for the termsuux andu(1− u), respectively:

uux ≃ um
j

(

um
j+1− um

j−1

2∆x

)

and

u(1− u)≃ um
j (1− um

j ),

we can easily obtain the following system of algebraic
equations

um+1
j = um

j − Sum
j (u

m
j+1− um

j−1+2∆xum
j −2∆x)

−
m

∑
k=1

bγ
k

[

um+1−k
j − um−k

j

]

,

j = 1(1)N −1,m = 0(1)M

where

S = Γ (2− γ)
(∆ t)γ

2∆x
.

2.2 The Crank-Nicolson Finite Difference
Scheme

Using Eq.(2) in Eq.(1) and applying the the following
discretize for the termsuux andu(1− u), respectively:

uux
∼=

um
j

2

(

um+1
j+1 − um+1

j−1

2∆x
+

um
j+1− um

j−1

2∆x

)

and

u(1− u)∼=
um+1

j + um
j

2
(1− um

j ),

we can easily obtain the following system of algebraic
equations

(−Sum
j )u

m+1
j−1 +(1−2∆xS+2∆xSum

j )u
m+1
j +(Sum

j )u
m+1
j+1 =

(Sum
j )u

m
j−1+(1+2∆xS−2∆xSum

j )u
m
j +(−Sum

j )u
m
j+1

−∑m
k=1 bγ

k

[

um+1−k
j − um−k

j

]

,

j = 1(1)N −1,m = 0(1)M

where

S = Γ (2− γ)
(∆ t)γ

4∆x
.
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3 Numerical examples and results

Numerical results for the fractional gas dynamics
problem are obtained by the explicit and the
Crank-Nicolson finite difference methods. The accuracy
of the methods are measured by the error normL2

L2 =
∥

∥uexact − uN
∥

∥

2 ≃

√

√

√

√h
N

∑
j=0

∣

∣

∣
uexact

j − (uN) j

∣

∣

∣

2

and the error normL∞

L∞ =
∥

∥uexact − uN
∥

∥

∞ ≃ max
j

∣

∣

∣
uexact

j − (uN) j

∣

∣

∣
.

The comparison of the analytical solutions and
numerical solutions obtained by the explicit and the
Crank-Nicolson difference methods for fractional gas
dynamics equation for values ofγ = 0.25, γ = 0.50 and
γ = 0.75 is given in Table 1-2, respectively. As it is
clearly seen from the both of the tables, the analytical and
numerical solutions obtained by the present schemes are
in good agreement with each other. In Table 3, we
demonstrate the numerical results by the Crank-Nicolson
finite difference method forγ = 0.5, ∆ t = 0.001 and
t f = 1.0. and for different number of divisions of the
region. Table 3 clearly show that as the number of
division increases, the obtained numerical results become
more accurate. We see these from the decreasing values
of the error normsL2 andL∞.

Table 1: The comparison of the exact solutions with the numerical solutions of
the fractional gas dynamics problem by the explicit finite difference method with
∆x = 0.025,∆ t = 0.0001 andt f = 0.1 for different values ofγ and the error norms

x
γ = 0.50 γ = 0.75

Numerical Exact Numerical Exact
0.0 1.486763 1.486763 1.219661 1.219661
0.1 1.345271 1.345279 1.103587 1.103595
0.2 1.217237 1.217259 0.998544 0.998574
0.3 1.101382 1.101421 0.903485 0.903547
0.4 0.996550 0.996607 0.817493 0.817563
0.5 0.901695 0.901768 0.739696 0.739762
0.6 0.815872 0.815953 0.669303 0.669364
0.7 0.738226 0.738305 0.605610 0.605666
0.8 0.667984 0.668046 0.547979 0.548029
0.9 0.604440 0.604473 0.495847 0.495877
1.0 0.546950 0.546950 0.448688 0.448688

L2×103 0.101129 0.052767
L∞ ×103 0.236551 0.083227

In Table 4-5, we show the error normsL2 andL∞ for
∆x = 0.025 and∆ t = 0.0001 for different values oft f .

The comparison of the results of the finite difference
methods, the other studies and exact solution forγ = 1 and
t = 0.1 is given in Table 6. It shows the finite difference
methods is in good agrement at almost all pointsx.

Figure 1 shows the graphs of the exact (denoted by
lines) solutions and the numerical solutions by the
Crank-Nicolson finite difference method for∆x = 0.025
and∆ t = 0.0001 att = 0.1 (stars),t = 0.5 (squares) and
t = 1.0 (triangles) forγ = 1.0.

Table 2: The comparison of the exact solutions with the numerical solutions of the
fractional gas dynamics problem by the Crank-Nicolson finite difference method
with ∆x = 0.025,∆ t = 0.0001 andt f = 0.1 for different values ofγ and the error
normsL2 andL∞.

x
γ = 0.25 γ = 0.50 γ = 0.75

Numerical Exact Numerical Exact Numerical Exact
0.0 2.364040 2.364040 1.486763 1.486763 1.219661 1.219661
0.1 2.139085 2.139072 1.345281 1.345279 1.103594 1.103595
0.2 1.935535 1.935512 1.217257 1.217259 0.998557 0.998574
0.3 1.751353 1.751324 1.101411 1.101421 0.903502 0.903547
0.4 1.584696 1.584663 0.996585 0.996607 0.817509 0.817563
0.5 1.433896 1.433863 0.901734 0.901768 0.739710 0.739762
0.6 1.297444 1.297412 0.815912 0.815953 0.669316 0.669364
0.7 1.173975 1.173947 0.738263 0.738305 0.605621 0.605666
0.8 1.062253 1.062232 0.668013 0.668046 0.547989 0.548029
0.9 0.961159 0.961147 0.604456 0.604473 0.495855 0.495877
1.0 0.869682 0.869682 0.546950 0.546950 0.448688 0.448688

L2×103 0.065720 0.064386 0.040855
L∞ ×103 0.133187 0.161156 0.067735

Table 3: The comparison of the exact solutions with the numerical solutions of the
gas dynamics problem with by the Crank-Nicolson finite difference methodγ = 0.5,
∆ t = 0.0001 andt f = 1.0 for different values of∆x and the error normsL2 andL∞.

x ∆x = 0.1 ∆x = 0.05 ∆x = 0.025 Exact
0.0 5.008980 5.008980 5.008980 5.008980
0.1 4.534760 4.532429 4.532333 4.532313
0.2 4.101863 4.101205 4.101040 4.101006
0.3 3.714275 3.710996 3.710787 3.710744
0.4 3.358817 3.357899 3.357669 3.357620
0.5 3.042397 3.038383 3.038150 3.038100
0.6 2.750114 2.749251 2.749034 2.748987
0.7 2.492261 2.487612 2.487428 2.487386
0.8 2.251395 2.250849 2.250712 2.250680
0.9 2.041870 2.036593 2.036518 2.036499
1.0 1.842701 1.842701 1.842701 1.842701

L2×103 3.057607 0.388016 0.304294
L∞ ×103 5.370697 0.650771 0.571857

Table 4: The comparison of the exact solutions with the numerical solutions of the
fractional gas dynamics problem by the explicit finite difference method method
with ∆x = 0.025 and∆ t = 0.0001 for different values oft f and the error normsL2

andL∞.

t
γ = 0.50 γ = 0.75

L2×103 L∞ ×103 L2×103 L∞ ×103

0.005 0.312097 0.424766 0.084208 0.120952
0.01 0.234807 0.311849 0.074993 0.106386
0.05 0.129177 0.242196 0.058112 0.079220
0.1 0.101129 0.236551 0.052767 0.083227

Table 5: The comparison of the exact solutions with the numerical solutions of the
fractional gas dynamics problem by the Crank-Nicolson finite difference method
method with∆x = 0.025 and∆ t = 0.0001 for different values oft f and the error
normsL2 andL∞.

t
γ = 0.25 γ = 0.50 γ = 0.75

L2×103 L∞ ×103 L2×103 L∞ ×103 L2×103 L∞ ×103

0.005 0.718327 1.547650 0.278203 0.378029 0.081599 0.117052
0.01 0.449973 1.030954 0.200572 0.266704 0.071278 0.100966
0.05 0.143310 0.313828 0.093259 0.183434 0.049698 0.067631
0.1 0.065720 0.133187 0.064386 0.161156 0.040855 0.067735

Table 6: The results obtained by the finite difference methods in comparison with
the other studies and exact solution atγ = 1.0,∆ t = 0.0001,∆x= 0.025 andt f = 0.1
for different values ofx.

x HPSTM [2] ADM [ 2] Explicit Crank-Nicolson Exact
0.1 0.9999431595 0.9999431595 1.0000048609 1.0000093850 1.0000000000
0.3 0.8186842160 0.8186842160 0.8187335710 0.8187376655 0.8187307531
0.5 0.6702819447 0.6702819447 0.6703212919 0.6703246440 0.6703200460
0.7 0.5487804413 0.5487804413 0.5488119545 0.5488146988 0.5488116361
0.9 0.4493037263 0.4493037263 0.4493287612 0.4493310007 0.4493289641
L2 0.0000022940 0.0000054172
L∞ 0.0000048609 0.0000095657
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Fig. 1: The comparison of the exact(lines) and numerical
solutions by the Crank-Nicolson finite difference method for
γ = 1.0, ∆x = 0.025 and∆ t = 0.0001 att = 0.1 (stars),t = 0.5
(squares), andt = 1.0 (triangles).

4 Conclusion

In the present study, a finite difference methods have been
successfully used to obtain the numerical solutions of
fractional gas dynamics equation. In these equations, the
fractional derivative is considered of the Caputo form. In
this study, the fractional derivative appearing in the
fractional gas equation is approximated by means of the
so-calledL1 formulae. One can easily conclude from the
presented results that the applied method is a highly good
one to obtain numerical solutions of this kind fractional
partial differential equations.
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