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Abstract: In this article, the explicit and the Crank-Nicolson finitéference methods have been successfully applied to obtain
approximate solutions of the the nonlinear time fractioged dynamics equation. The time fractional derivative meluation has
been considered in the Caputo form. THediscretization formula has been applied to the equationedt the accuracy of the proposed
methods, the error nornis andL. have also been computed . The newly obtained solutions hyrtmmsed method indicate the easy
implementation and effectiveness of the approach useciarticle.
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1 Introduction methods. Although there are few analytical methods such

as found by B,4,5,6] providing exact solutions of the
Fractional calculus constitutes an important branch offractional equations, the numerical methods are more
applied mathematics and mainly deals with derivativescommon and the most appropriate and even sometimes
and integrals of non-integer orders. The application ofthe only way to handle most of the problems involving
differentiation and integration to non-integer orders has fractional equations. Thus effective, accurate and easily
long history, so it is not new by no means. In fact, interestimplemented numerical methods are of great importance.
in the subject dates back to the ideas of the classicalhough there have been many methods applied to solve
calculus []. However, in the last few decades, many fractional partial differential equations, there is siillong
authors have pointed out that derivatives and integrals ofvay to go in this field. There are several studies about
non-integer order are very suitable for the description offractional equations in the literature. Murillo and Yuste
many phenomena in the nature. It has been shown thdf7] have used an explicit difference for solving fractional
new fractional-order models are more adequate thamiffusion and diffusion-wave equations in the Caputo
previously used integer-order models. The growingform. Sweilamet al. [8] solved time-fractional diffusion
number of fractional derivative applications in various equation by using Crank-Nicolson finite difference
fields of science and engineering indicates that there is anethod. Monami and Odibat9] have implemented
significant demand for better mathematical models of reakelatively new analytical techniques, the variational
objects, and that the fractional calculus provides oneiteration method and the Adomian decomposition
possible approach on the way to more adequatenethod, for solving linear fractional partial differertia
mathematical modeling of real objects and processesequations arising in fluid mechanics. In this paper, we
They are widely used to model problems in fluid will use finite difference methods to obtain the numerical
mechanics, acoustics, biology, electromagnetismsolutions of the fractional gas dynamics equation by using
diffusion, signal processing, and many other physicalthelL1 discretizaton formula of the fractional derivative as
processes, look aP] and references therein. There are aused by J].The equations of gas dynamics are
wide range of studies dealing with the obtaining both mathematical expressions based on the physical laws of
analytical and numerical solutions of fractional conservation namely, the laws of conservation of mass,
differential equations using numerous techniques and
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conservation of momentum, conservation of energy etc2.1 The Explicit Finite Difference Scheme
[1Q]. The various forms of gas dynamics equations have
been solved by many authors. Among others, liij has . . . :
taken some partial differential equations related to gadJSing Ed.@) '?] Eq.() and gpplylng the the .follloyvmg
dynamics and mechanics into consideration and solvediScretize for the termsuy andu(1 — u), respectively:
them numerically and Rasulov and Karagul&g][have

applied difference scheme to solve some gas dynamics Uty ~ U™ Ul —ully
problems. = 20X
In this study, we will consider the homogenous
nonlinear time-fractional gas dynamics equation as aand
model is given b
9 y u(l—u) ~uf(1—-uf),
DYu+uux—u(l—u)=0 (1) we can easily obtain the following system of algebraic
equations
where
) L . Ut = Ul — sul(ul ;- Ul 4 + 24Ul — 24x)
thzi/t—r‘yf’rdro< <1 m
¢ f(t) l'(l—y)o( ) V(1) y Z um+1k rJnk},

is the fractional derivative in the Caputo’s sen3glf]. In

this paper, for fractional gas dynamics equation, we will )

take the boundary conditions of the model probleth ( j=11N-1,m=0(1)M
given in theinterval (< x <1 as

where
_ y
u(0,t) = E,(tY), u(l,t)=etE,(t) N CA\9)
S=r2-y Ax
and the initial condition as
u(x,0)=e. 2.2 The Crank-Nicolson Finite Difference
The exact solution of the problem is given &g eh
u(x,t) = e XEy(tY) Using Eq.@) in Eq.() and applying the the following

discretize for the termsuy andu(1 — u), respectively:
whereE, is the Mittag-Leffler function13].

In our numerical solutions, to obtain a finite difference um /umtl - um+1 um . —um

. : . . ~ j+1 j+17 HYj-1
schemes for solving the fractional gas dynamics equation U= > AX + AX
as [7] used in explicit finite difference method, we will also
discretize the Caputo derivative by means of the so-called
L1 formula [1] and

a-w=T 0
At ul-uy—-—— uj
V()| = z bV  (tmt) — f (tm_1_4)] + O (At) 2
@) we can easily obtain the following system of algebraic

where equations

y __ 1-y 11—y

by = (k+1) k™ (—Su'j“)uT‘fll + (1—2AxS+ 2AxSuT‘)u’j“Jrl (Sum)u;"jll
(SUMUL; + (1+2AxS—2AxSuf)u' + (—Suful 4
. ) —ym b fumtk gk

2 The Finite Difference Schemes Zic1 B 1) J
Let's suppose that the solution domain of the problem 0 J=1YN-1,m=0(1)

x < 1 is divided into intervals having equal lengftx in h
thex direction and having equal time interval$ in time where v
t such tha; = jh, j = 0(1)N andtm = mAt, m= 0(1)M S=r@2-y (At)

andui will denoteu(x;,tm) throughout the article. '
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Table 2: The comparison of the exact solutions with the numericaltsmis of the

3 Numerlcal examples and reSUltS fractional gas dynamics problem by the Crank-Nicolson diniifference method
) ) ) with Ax = 0.025,At = 0.0001 and¢ = 0.1 for different values of/ and the error
Numerical results for the fractional gas dynamics normsLzandL..

. . y=0.25 y=0.50 y=0.75
prOblem are 0bta|n6d by the eXp“Clt and the * Numerical Exact Numerical Exact Numerical Exact
H AT H 0.0 2.364040 2.364040 1.486763 1.486763 1.219661 1.219661
Crank-Nicolson finite difference methods. The accuracy ;7 713w0ss 213072  1s4se1 13477 110304 1103895
0.2 1.935535 1.935512 1.217257 1.217259 0.998557 0.998574
Of the methOdS are measured by the error nbim 0.3 1.751353 1.751324 1.101411 1.101421 0.903502 0.903547
0.4 1.584696 1.584663 0.996585 0.996607 0.817509 0.817563
0.5 1.433896 1.433863 0.901734 0.901768 0.739710 0.739762
N 2 0.6 1.297444 1.297412 0.815912 0.815953 0.669316 0.669364
L exact ~ h exact 0.7 1.173975 1.173947 0.738263 0.738305 0.605621 0.605666
2 — U - UN 2= UJ - (uN ) J 0.8 1.062253 1.062232 0.668013 0.668046 0.547989 0.548029
— 0.9 0.961159 0.961147 0.604456 0.604473 0.495855 0.495877
J - 1.0 0.869682 0.869682 0.546950 0.546950 0.448688 0.448688
Ly x 108 0.065720 0.064386 0.040855
0.133187 0.161156 0.067735

and the error norr, Lo x 10°

Lo = [|u®®? —uy||, ~ mjax’u‘j“ad — (un); ’ .

Table 3: The comparison of the exact solutions with the numericaltsmis of the

The comparison of the analytical solutions and 9as dynamics problem with by the Crank-Nicolson finite défece methog= 0.5,
At =0.0001 and; = 1.0 for different values ofAx and the error normb; andL,.

numerical solutions obtained by the explicit and the - A0l AX=005  AX=0075 Exact
Crank-Nicolson difference methods for fractional gas 0.0 5008980 5.008980  5.008980 5.008980
dynamlcs equatlon for Values gf: 025’ y= 0.50 and 0.1 4.534760 4.532429 4.532333 4.532313
. . . . . 0.2 4.101863 4.101205 4.101040 4.101006
y = 0.75 is given in Table 1-2, respectively. As it is 0.3 3714275 3710996  3.710787 3710744
clearly seen from the both of the tables, the analytical and 8-4 2-352237 g-gg;ggg g-gg;ﬁﬁg g-gggﬁgg
H : H 5 .042397 . . 15 . 1
pumerlcal solutions obtglned by the present schemes are 06 2750114 2749951 2749034 2 748987
in good agreement with each other. In Table 3, we 0.7 2492261 2487612 2487428  2.487386
i -Ni 0.8 2251395 2250849 2250712  2.250680
d_e.monstrate the numerical results by the Crank-Nicolson 09 S oals70 5030503 5 o01s 2 636999
finite difference mgthod fOly = 05, At :0001 and 1.0 1.842701  1.842701 1.842701 1.842701
ty = 1.0. and for different number of divisions of the [x10° 3.05/607 0388016  0.304294

region. Table 3 clearly show that as the number of Lox10° 5370697 0650771 0.571857

division increases, the obtained numerical results become
more accurate. We see these from the decreasing values
of the error norms. andLe. Table 4: The comparison of the exact solutions with the numericaltsmis of the

fractional gas dynamics problem by the explicit finite diéfiece method method
with Ax = 0.025 andAt = 0.0001 for different values df; and the error normk,

andLe.
Table 1: The comparison of the exact solutions with the numericaltgmis of t y=0.50 y=0.75
the fractional gas dynamics problem by the explicit finit6edence method with L, x 10° L, x 10° L, x 10° L, x 10°
Ax = 0.025,At = 0.0001 and; = 0.1 for different values off and the error norms 0.005 0.312097 0.424766 0.084208  0.120952
y=0.50 y=0.75 0.01 0.234807  0.311849 0.074993  0.106386
X Numerical  Exact Numerical  Exact 0.05 0.129177  0.242196 0.058112  0.079220
0.0 1.486763 1.486763 1.219661 1.219661 0.1 0.101129 0.236551 0.052767 0.083227
0.1 1.345271 1.345279 1.103587 1.103595
0.2 1.217237 1.217259 0.998544 0.998574
0.3 1.101382 1.101421 0.903485 0.903547
0.4 0.996550 0.996607 0.817493 0.817563
0.5 0.901695 0.901768 0.739696 0.739762 Table 5: The comparison of the exact solutions with the numericaltsmis of the
0.6 0.815872 0.815953 0.669303 0.669364 fractional gas dynamics problem by the Crank-Nicolson diniifference method
0.7 0.738226 0.738305 0.605610 0.605666 method withAx = 0.025 andAt = 0.0001 for different values of; and the error
0.8 0.667984 0.668046 0.547979 0.548029 normsL, andLe.
0.9 0.604440 0.604473 0.495847 0.495877 ¢ y=025 y=050 y=075
1.0 0.546950 0.546950 0.448688 0.448688 0.005 |527X1f§g;7 Lulc ;417%550 I_20X217c§203 Lm;;?:aozg =2 Xolgjslsggl_w XésOJ;Lm
L2 X 103 0.101129 0.052767 6.01 0:449973 1:030954 0:200572 0:266704 0:071278 0.80096
Lo x 10° 0.236551 0.083227 0.05 0.143310 0.313828 0.093259 0.183434 0.049698 0.06763
0.1 0.065720 0.133187 0.064386 0.161156 0.040855 0.067735

In Table 4-5, we show the error norrhs andL., for
Ax=0.025 andA.t = 0.0001 for different va!ues d:ff Table 6: The results obtained by the finite difference methods in @spn with
The comparison of the results of the finite difference the other studies and exact solutioryat 1.0, At = 0.0001Ax = 0.025 andy = 0.1
methods, the other studies and exact solutioryferl and ~ for different values ok _ .
t 0 1 . . . T bl 6 |'[ h th f t df‘f HPSTM [2] ADM [ 2] Explicit Crank-Nicolson Exact
= oIS given in faple o. 1 ShOWS the Nl Qe enCe oeoizioo  oaiooizies  aaorsasyao  0pi07370055 00167307501
methods is in good agrement at almost all poiats 05 06702819447 06702819447  0.6703212919  0.6703246440 0.6703200460
: 07 05487804413 05487804413 05488119545  0.5488146988 0.5488116361
Figure 1 shows the graphs of the exact (denoted DY os  o4sss0s7263 04403037263 0.4493287612 04493310007 0.4493289641
lines) solutions and the numerical solutions by the 2 e
Crank-Nicolson finite difference method fdx = 0.025
andAt = 0.0001 att = 0.1 (stars)t = 0.5 (squares) and

t = 1.0 (triangles) fory = 1.0.

0.
0.
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Fig. 1. The comparison of the exact(lines) and numerical
solutions by the Crank-Nicolson finite difference method fo
y =10, Ax=0.025 andAt = 0.0001 att = 0.1 (stars)t = 0.5
(squares), antd= 1.0 (triangles).

4 Conclusion , _
Alaatin ESEN received

In the present study, a finite difference methods have been
successfully used to obtain the numerical solutions of
fractional gas dynamics equation. In these equations, the
fractional derivative is considered of the Caputo form. In
this study, the fractional derivative appearing in the
fractional gas equation is approximated by means of the
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so-calledL1 formulae. One can easily conclude from the
presented results that the applied method is a highly good
one to obtain numerical solutions of this kind fractional
partial differential equations.
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