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1 Introduction Applying the convolution property for the Fourier

_ _ _ o _ transform, we obtain
In this section we give the definition and some basic

properties of the S-transform. The S-transform was first (Su(r, f) = Z Ha(-+ Ho(-, £)} (1), (5)
introduced by Stockwelét al. [19] in 1996 as invertible 1 i .

time-frequency spectral localization technique. TheWhere .fi is the inverse Fourier transform. For the
S-transform is an extension to the ideas of continuous>aussian window cas@)

wavelet transform, and is based on a moving and scalable . N _o(mika /)2

localizing Gaussian window and has characteristics ot f)}(a, ) =w(a,f)=e - (6)
superior to both of the Fourier transform and the waveletT

transform f, 20, 21]. hus we can write the S-transform in the following form:

The one-dimensional continuous S-transform(@j is . _ 2
defined as20] o (Su(r,f) = /RU(OHL fle 2rma/t g?mtda.  (7)
(Su(t, f) = S(u(t))(t, f) :/ ut)w(t —t, fe g, Also, if 0(f) and(Su)(t, f) are the Fourier transform and
R (1) S-transform ol respectively, then
where the windoww is assumed to satisfy the following: a(f) = / (Su(r, f)dr, ()
R
w(t,f)dt=1forallf e R\ {0}. 2
[ w1 oL@,
The most usual window is the Gaussian one ut)y=7"1 (/ (Su(t, -)dr) (t). 9)
R
2:2
w(t, f)= le*sztz, k>0, (3)  Some basic properties of S-transform can be found & [
kv2m 17].

where f is the frequencyt is the time variable, andd is
a scaling factor that controls the number of oscillations in . )
the window. 2 Fractional Fourier transform

Then, Equation) can be rewritten as a convolution ) .
The fractional Fourier transform(FRFT) has played an

(Su(r,f) = (u(-)e‘iZ"f' x (-, 1)) (7). (4)  important role in signal processing. Th¥ order FRFT
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of a signalu(t) is defined asq]:

F(T) = [ uKa(t. e, (10)
R
where the transform kernil(t, f) is defined as
Aeein(fzcot6—2ftcsc9+tzcot9) if @£ nm
Ka(t,f) = o(t—f), if 8 =2nm
o(t+f), if 8+ m=2nm,
(11)

whereAg = v/1—icotf, 8 = am/2,ac [0,4), i is the
complex unit,n is an integer, andf is the fractional

Fourier frequency(FRFfr). The inverse FRFT of equation

(10)is :
(12)

ut) = [ R .
R
We can write 10) as
oo )
Fl?(f):/Ru(t)Aeelﬂ(f cotd—2ft cscd-+t>cotb)
:Agei"fchIG/ u(t)e—iZHftcsceeimzcotedt (13)
R

_ Pgdrcot gimZcotd ()] ( f csch).

Replacingu(t) by e ¢ g(t) | we have

Fa(f) = Age™ O [g(1)]( csch). (14)
Putf = &sinf, we have
F2(EsinG) = AgeTe s ®/2 (). (15)
B(E) = e MISNB/2EaEsing),  (16)
Ag

whereu(t) = e=1m*cotb 1)

3 The fractional S-transform

The fractional S-transform(FRST) is a generalization of
the S-transform. Thea" order continuous fractional

S-transform of(t) is defined as]:

FRS'[?(T,f):/u(t)g(r—t,f)Ka(t,f)dt, (17)
R
where the windovg is:
|feseB(P 21 csco)2e a2
t,f)=—¢€ ik p>0, 18
g(t, f) e p (18)
and satisfy the condition:
/g(t,f)dt:lfor alf eR\{0}.  (19)
R

Inverse fractional S-transform is defined by

u(t):/R{/RFRS'[?(T,f)dT} Kt Hdf.  (20)

Note that the fractional S-transform depends on a
parameter® and can be interpreted as a rotation by an
angle 8 in the time-frequency plane. An FRST with
6 = 7 corresponds to the S-transform, and an FRST with
6 = 0 corresponds to the zero operator. The parameters
andk can be used to adjust the window function space.
Let

ht,t,f) =g(t—t, f)Ka(t, T), (22)

and
Ha(r. 1. 11) = [ hit. 7. DKa(t )
R

(22)
:/Rg(r—t,f)Ka(t,f)Ka(t,fl)dt.

Since

Kalt, f)m _ Aeﬁeeirr[(fzf f7) cot—2(f—f1)tcsc]

(23)
By using (L8) and 3) in (22) we obtain
|fcsco|P _0)2(fcscO)2P/2k2 A T
Ha(T, f, 1) = | e (U (Tes)H/AA R
a( 1) R k\/ZT 6/
% ein[(fz—flz) cotd—2(f—f1)tcscd]
|fCSCQ|p — f2_f2
— 2 ALA em[( 1) cot]
kv2m 670
X/e—(r—t)z(fcsc9)2p/2k2e—i2n(f—fl)tcscedt.
R
(24)
By using the technique ob], we obtain
Ha(T, f, f1) = AgA ein[(fz—flz)cote]e—i2n(f—f1)rcsce
a( 1) = AgAg (25)

% e—2n2k2(f—f1)2(csce)2/(fcsce)ZP

)

and by using23) we can write

Ha(r. 1. ) — & PP 2o fesed) i 1 ()R (E Fy)

(26)
Also, the FRST can be also defined as operations on the
fractional Fourier domain

FRS'[?(nf):/R VRFLf(f)mdf} g(T —t, F)Ka(t, f)dt

:/ Fa(f1)Ha(T, f, f1)d fr.
. (27)
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By using (L3) and @5) we can write 27) as which is written as x = f,/¢n. Application of
construction of Boehmians to function spaces with the
FRST(t,f) = convolution product yields various spaces of generalized

imf2cot0 2 cotd * _im(f2—f2)coto functions. The spaces, so obtained, contain the standard
/RAge' He0[emteotou(t)](fr.oscB)AgRge T 110 spaces of generrf):llized functions defined as dual spaces.
y efiszffmcscgefznzkz(fffl>z(cscg)z/(fCscg)zpdfl For example, if¢ :C(RN) and a delta sequence defined
_ - as sequence of functiofg € Z such that
= AglAg|? / g cotd [ gimZcotdy (1] (f, cscl)el (T~ fF) cote] () [¢ndx=1 , VaeN
JR (i) [|¢n]dx<C , for some constar@ andvn € N,

o @ i2m(f—f1)Tesed o-2mk3 (f—f1)2(cscB)?/(f ese) P 4 f, (iii) supp ¢n(x) — 0,as N — oo ,
o o then the space of Boehmian that is obtained, contains
= Ag|Ag|?e™ Cow/ [@7t?cotdy(t)]( f; csch) properly the space of Schwartz distributions. Similarly,
R

this space of Boehmians also contains properly the space
of tempered distribution$§ , when ¥ is the space of
(28) slowly increasing functions with delta sequence. The
fractional Stransform of tempered Boehmian form a
The S-transform has been studied on the spaces of3ype proper subspace of Schwartz distributioh. Since 2 is
and spaces of tempered ultradistributions by S. K. Singtyense inSthere cannot more than one eIemenS’ltquaI
[16). Pathak and Singhlfl] have studied the wavelet f g having the same restriction @. Therefore, this

transform of Tempered Ultradistributions. The fractional r

S-transform on ultradistribution space is studied by Singhtypde of correspondehcs betvv.eénatgj 7 @'7% cI)Bne LO Qne
[18], which is, in this paper, extended to tempered and®"d SO We express it by saying tHatc 7. Boehmian
ultra Boehmians. space have two types of convergence, namelydthend

A- convergences, which are stated as:

% e7i2rr(f7fl)rcsc9e72n2k2(f7fl)z(cscs)z/(f csc9)2pd f,.

4 Tempered Boehmians for the fractional (i) A sequence of Boehmianss) in the Boehmian
S-transform spaceZ is said to bed- convergent to a Boehmianin

2, which is denoted by, 2 X if there exists a delta
The concept of Boehmian is motivated by the so calledsequencédn) such that(X,8dn), (xddn) € 4.Vn € N and
Regular operators, introduced by Boehn®8. [Regular  (xnfd) — (Xdk) asn — o in ¢, vk € N.
operators form a subalgebra of the field of Mikusinski (i) A sequence of Boehmian,) in Z is said to be

operators and hence they include only such functions, _ convergent to a Boehmianin 2, denoted by, LA™
whose support is bounded from the left. Boehmiansit yhore exists a delta sequen(d) e A such that(x, —
contain all regular operators, all distributions and somex)ﬁén €% vne N and (X, — X)id — 0asn — o in &
objects which are neither operators nor distributionsy the " d7etails of thenproperties and convergénce of

have an algebraic character of Mikusinski operators, anq_%oehmians one can refer t&7][ We have employed
at the same time do not have any restrictions on thq‘ollowing notations and definitions

;quo.rt’ anc: tr:fy _(t:)ontain all Sclhwartz distributionsd, A complex valued infinitely differentiable functiof,
oumieu ultradistributions, regular operators an ' N - C
tempered distribution. Mikusinski 9] introduced the defined orR”, is called rapidly decreasing, if
space of tempered Boehmians, and its Fourier transform
is defined as a classical distribution. In another paper
[10], he enlarged the space of tempered Boehmians, by
introducing larger class of delta sequence, which is
identified with the space of ultradistribution. for every non-negative integer. Here|a| = |ay|+ - +
Tempered Boehmians :The pair of sequencéfy, ¢n) is o], and

called a quotient of sequence, denoted By ¢,, whose

numerator belongs to some $étand the denominator is g 0 glal

a delta sequence such that ox  oxgt-oxN

sup sup (14X +Z +---+&) " D f (X)| < o,
|a|<mxeRN

fnfdm = i, Vn,meN. (29) The space of all rapidly decreasing functionsToM
Two quotients of sequendg/ ¢, andgn/ i, are said to be IS denoted b)& The delta sequence, i.e., sequence of real
equivalent if valued functiongy, ¢, ... € S, is such that
fafh = Ontdn, VneN. (30) (i) [$ndx=1, Yac N
The equivalence classes are called the Boehmians. The () /[#nldx<C, f(k)r some constart andvn € N,
space of Boehmians is denoted b , an element of (iii) im  fjx>¢ [[X["[¢n|dx=0, for everyk € N, & > 0.
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If ¢ € Sand [ ¢ = 1, then the sequence of functions Definition 1. By the fractional S-transfornF of a
¢ is a delta sequence. A complex-valued functioon  tempered Boehmian E [f,/¢n] € B we mean the limit
RN is called slowly increasing if there exists a polynomial of the sequencéfy} is in 2’. The fractional S-transform
p onRN such thatf (x)/p(x) is bounded. The space of all is thus a mapping fronB, to 2’, which is a linear
slowly increasing continuous functions &\ is denoted mapping.
by 7. If fn € 7, {¢n} is a delta sequence under usual
notion, then the space of equivalence classes of quotientsheorem 2. LetF = [fy/¢n] € 2, and G= [gn/ Y] €
of sequence will be denoted 3% » , elements of which Bs.

will be called tempered Boehmians. Then (i)(G) is an infinitely differentiable function
For F = [fn/on] € B, define (i) [FIG[ =FG

DIF = [(fnfD%n)/(dnidn)]. If F is a Boehmian and (iii) (F)- (@n) = (fn), VN€N
corresponding to  differentiable  function, then

Proof. (i) LetG = [gn/ ] € Bsand letU be the bounded
open subset dR. Then there exists € N such thaf i} >
ponu . We have, thus

DIF € By .
If F=[fn/¢n] € B, andf, € S for all n € N, then
F is called a rapidly decreasing Boehmian. The space o

all rapidly decreasing Boehmian is denoted®y. If F = B _ LG}
[fn/@n] € B+ andG = [gn/ Y] € HBs,then the convolution [G] = lim {Gn} = lim =00
is n—oo n—co {Vp}
= lim == =—==1lim {{h}
The convolution quotient is denoted Hy ¢ and% o {p} {¥p} noe
denotes a usual quotient. Létc .#. Then the fractional {Gp}
S-transformation off, denoted asf, is defined for = o) onU .
distribution spaces of slowly increasing functidnin the P .
following form: Since{Gp},{¥p} € Sand{}{} > 0 onU, thus{G} is
. an infinitely differentiable function ob.
(f,9)=(f,0), ¢ € SR). (i) Let F = [fn/¢n) € B andG = [gn/ W] € DBs . If

¢ € 2, then there existp € N such that{},} > 0 on the

Moreover, as we know that the Fourier transform of support ofg. We have

the convolution of two functions is the product of their
Fourier transform. Whereas, in the present case, when we ~ o ~
consider this condition for fractional S-transform, it doe (F1G)" {9} = n'ﬁ'l)(f”ﬂg”) ()
not seem to be as nice or as practical. Actually, the . .
convolution operation defined by = lim{(fy-Gn)}(¢) = lim (f1)(Gn, 9)

n—oo n—oo

(f*g)(X)=[mf(t)g(X—t)dt o |'m(f~){gn'~p ¢} npeN
=1 n ~ : ’ )
Y

n—oo

is not the right sort of convolution for the fractional
S-transform. Therefore, we define fractional S

convolution in terms of basic functiod®, p.119]: — lim (an) { @pN- Vh _¢}
00 00 n—e yp
(0@ = [ [ Dixy2iemdy  (32) (G
o) —im (i { %060 }
usually, translatior is defined by P
(tyf)(x) = fx (xy) = / D(x.y.2)f(2dz  (33) = lim () {(C)¢ ()} ;  from (i)
We assuméd(x,y,z) = 1 for fractional S-transform and = (G)lim {(f) ()} (¢)
define . e
fig)~ =f-§. 34 N ~
() =1 49 — (G)m (fatyh) (9)
Theorem 1. If [fn/¢n] € £, then the sequencfn},
n=1,2,...,0 converges inZ’'. Moreover, if[fn/¢n] = = (FE-G)(9).
[On/Wn],then{fy} and {Gn} converges to the same limit )
for the fractional S-transform of tempered Boehmians. The last equality follows from the fact thit, /¢n] =
[(fnidn)/ (Pntvh)]-
The proof is similar to that of Theorem 1; seé®.[ (ii) Let ¢ € 2. Then
(@© 2015 NSP
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) ) For [fn/¢n] € B, andfy € Z', Yn € N, F is called
(F-Pp.¢)=(F,Pp-¢), peN the space of entire function of Boehmians, and is denoted
by %z. If [fn/¢n] € #, andG = [gn/yn] € %z, then the

s I Y convolution, given by
= lim (fn, @p-¢) = lim (fn- Gp. ¢)

(fnion)
FiG= € By, (37)
= im,(fo- 0.9} = Jim (. 6n-4) i<

is well defined.

ie. = (fp,¢> Theorem 4. If [fy/¢n] € %, then the fractional
Hence F.-§,—f S-transform  converges in Z'. ' Moreover,  if
p— 'p- [fn/®n] = [On/Un] € Az, then the fractional S-transform
Thus, the fractional S-transform of an arbitrary converges to the same limit of ultraBoehmians.
distribution can be defined as a tempered Boehmian. Thnei’roof.

theorem is, therefore, completely proved. Let ¢ € 9 (testing function space) aride N be

such that@, > 0 on the support of. Since fof¢m =

Theorem 3. A distribution f is the fractional fmi¢n, ¥m.ne N, we havefn: §m= fm- dn. Thus,

S-transform of tempered Boehmian if and only if there . - PPy
exists a delta sequencgd,} such that{f(d,)}" is a (fn,0) = <fn, F; >
tempered distribution for everya N. k
Proof. Let F = [fn/¢n] € #, and f = {F}. Then :< ]Fn-(ﬁk,£>
f{#s) = {F}{#n}. Thus, f(d,) is a tempered Px
distribution. Now let fe 2', and (&,) be a delta - ¢
sequence such thaft(d,) is tempered distribution for =< fk"ﬁnaa>
everyn € N. We define o
i.e.
z = ¢Pn
(8280 (5.
F_ 35 Pr
l (31250 59

Since the sequenc%%i—“} converges to;,% in 2, the
where {f(d)}" is the inverse fractionab-transform of  sequence{f,, ¢} converges inZ. This proves that the
{f(on)}. Since {f(dn)} is a tempered distribution, sequence f,} converges inZ’ (dual of spaceZ). Now,
therefore{f(d,)}" is also a tempered distribution. we consideffn/¢n] = [gn/ W] € B~ , and define

fn+1ﬁyn+1 ,|f n |S Odd
. . _ 2 Tz
5 UltraBoehmians for the fractional hn = L :
S-transform gpi¢y if niseven
and
Consider a complex valued infinitely differentiable L
function f, defined orR", which satisfies { ¢u5_1ﬁVn_5_1 ,if nis odd
&«l p—
ZMf@ <GV, vz Im@) =y, (36) dgtvy if niseven.

wherek is a non-negative integer. Such a space of all entire! €N [n/ | = [fn/én] = [gn/1n], and the sequencign}
function over the complezplane is denoted by and the ~ CONVergesiry’. Moreover,

delta sequence is such that rl'_’ll, <F12n71, 8 — rli_fgc<(fnﬁyn)~, 5
(l) /¢n:1 :r!mo<fn)7n,¢>:r!mo<Fn,Vn¢>
and ie o
(i) [12/19n(@)] < G, vkeN. = lim (f2.9).

o , . o Thus, this proves that sequende} and{h,} have the
Considerings asZ , which satisfiesZ9) and B0) and the

properties of the delta sequence, is called thesame limit. Similarly, it can be shown that the sequences
ultraBoehmian. It is denoted b¥,, wheref, € Z . {hn} and{§n} will have the same limit.
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Remark(l) For the classical Fourier transform, [12] R.S. Pathak, The Wavelet Transform, Atlantis Pressfivo

/ . . - -re .
ZCSCcS cZ [21 p. 201], and owing to this fact, the Scientific, Amsterdam, Paris, 2009 } _
elements of ultraBoehmians will be contained in the [13] Abhishek Singh, D. Loonker, and P.K. Banerji, Fourier-
tempered Boehmians. Therefore, the fractional Bessel transform for tempered Boehmians, Int. Journal of
S-transform of ultraBoehmians and tempered Boehmians, Math. Analysis4 (45), 2199-2210 (2010).
discussed in this paper, shows thé¢ C Bs C B, C B, [14] Abhishek Singh and P.K. Banerji, Fractional integrals

' z

[2]. for fractional Fourier transform of integrable Boehmains.
. . (Submitted)

(2) Integrable Boehmians of fractional S-transform: [15] Abhishek Singh and S. K. Singh, Integral transform

Let G be the space of complex-valued Lebesgue o ytradistributions and their extensions to Boehmians,

Integrable functions on real lin® and & be the delta Integration: Theory and applications, (To appear).

sequence. Then the equivalence class of quotients igi6]S. K. Singh, The S-Transform on spaces of type S, Integ.
called the integrable Boehmians, space of which is Trans. Spl. Func23(7), 481-494 (2012).

denoted by#,,. One may refer to Mikusinskig], where  [17] S. K. Singh, The S-Transform on spaces of type W, Integ.
Fourier transform for integrable Boehmian is investigated  Trans. Spl. Func23 (12), 891899 (2012).

By using the relation between fraction Fourier transform,[18] S. K. Singh, The fractional S-Transform for tempered
fractional S-transform given, one can define and find ultradistributions, Invest. Math. S@.(2), 315-325 (2012).

fractional S-transform for integrable Boehmians. [19] R. G. Stockwell, L. Mansinha and R. P. Lowe, Localizatio
of the complex spectrum: The S transform, IEEE Trans.

Signal Processi4 (4), 998-1001 (1996).

[20] S. Ventosa, C. Simon, M. Schimmel, J. Dafobeitia,and A
Manuel, The S-transform from a wavelet point of view, IEEE
Trans. Signal Proces&6 (07), 2771-2780 (2008).

[21] A. H. Zemanian, Generalized Integral Transformatjons
Interscience Publishers, New York, 1996.

Acknowledgement

This work is partially supported by the University Grants
Commission, Govt. of India under the Dr. D.S. Kothari
Post-Doctoral Fellowship, Sanction No.

F.4-2/2006(BSR)/13-663/2012(BSR). The author is
grateful to the anonymous referee for their valuable
comments and suggestions.

References

[1] L. B. Almeida, The fractional Fourier transform and time
frequency representations, IEEE Trans. Signal Prod@ss
(11), 3084-3091 (1994).

[2] S.K.Q. Al-Omari, D. Loonker, P.K. Banerji and S.L. Kalla
Fourier sine (cosine) transform for ultradistributions imeir
extensions to tempered and ultraBoehmian spaces, Integ.
Trans. Spl. Functl9 (6), 453-462 (2008).

[3] T. K. Boehme, Support of Mikusinski operators, Trans.&m
Math. Soc.176, 319-334 (1973).

[4] C. K. Chui, An Introduction to Wavelets, Academic Press,
New York, 1992.

[5] D. P. Xu and K. Guo, Fractional S transform -Part 1:Theory
Applied Geophysic9 (1), 73-79 (2012).

[6]1. M. Gelfand and G. E. Shilov, Generalized Functions,
Volume 2, Academic Press, New York, 1968.

[7] P. Mikusinski, Convergence of Boehmains, Japan. J. Math
(1), 159-179 (1983).

[8] P. Mikusinski, Fourier transform for integrable Boeiams,
Rocky Mountain J. Mathl7, 577-582 (1987).

[9] P. Mikusinski, The Fourier transform of tempered
Bohemians, Fourier Analysis, Lecture Notes in Pure
and Applied Math., Marcel Dekker, New York, 303-309
(1994).

[10] P. Mikusinski, Tempered Boehmians and Ultradistridos,
Proc. Amer. Math. Sod23(3), 813-817 (1995).

[11] R. S. Pathak and S. K. Singh, The Wavelet Transform
on spaces of type S, Proceedings of the Royal Society of
Edinburgh,136A, 837-850 (2006).

(@© 2015 NSP
Natural Sciences Publishing Cor.



	Introduction
	Fractional Fourier transform
	The fractional S-transform
	Tempered Boehmians for the fractional S-transform
	UltraBoehmians for the fractional S-transform

