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Abstract: Secure Hill cipher (SHC) modification based on dynamically changing generalized 

permutation matrix, SHC-GPM is proposed. It provides better security than that of SHC due to the 

significantly larger number of non-repeatedly generated keys ( 482  times greater for the parameters used 

in the conducted experiments). SHC-GPM is shown to be robust against the brute-force, statistical attacks, 

and is resistant also to known plaintext ciphertext attack (KPCA) due to dynamic encryption key matrix 

generating. The proposed modification is applied for colour images encryption. Experimental results show 

that the proposed modification is significantly more effective in the encryption quality of bitmap images 

than SHC in the case of images with large single colour areas and slightly more effective otherwise. 

 

Keywords: Hill cipher, matrix, generalized permutation matrix, dynamic key, key generation, image 

encryption. 

 

1  Introduction 

The Hill cipher (HC) [1], [2] is computationally attractive as using multiplication of an mxm -sized key 

matrix, with entries from {0,1,.., 1}NZ N  , by an m-component plaintext vector, with entries also from 

NZ , to get a ciphertext vector,  but it is vulnerable to the known plaintext-ciphertext attack (KPCA) [4] 

because of the use of the static key matrix. The Secure Hill cipher, SHC, [3] uses a dynamic key matrix 

obtained by random permutation of rows and columns of the master key matrix for each new plaintext. It 

transfers the HC-encrypted permutation to the receiving side together with the ciphertext. Thus, in SHC, 
each plaintext vector is encrypted by a new key matrix that prevents the KPCA on the vectors. But the 

permutations are transferred HC-encrypted, and the master key matrix can be revealed by the KPCA on the 

permutations [5]. A modification of SHC, SHC-M, [6] works as SHC does but without the permutations 
transfer. Instead, both sides use a pseudo-random permutation generator, and only the number of the 

necessary permutation is transferred to the receiver. It is shown in [7], [8] that both SHC and SHC-M fail 

to hide an image if it has large same colored areas. 
Another HC modification [5], HCM-H, also uses dynamic key matrix produced with the help of a one way 

hash function applied to an integer picked up randomly by the sender to get the key matrix, and a vector 

added to the product of the key matrix with a plain text. It is shown in [7], [8] that HCM-H fails to hide an 
image if it has large same colored areas and it is vulnerable [9] to chosen-ciphertext attack because the 

selected random number is transmitted in clear over the communication link and is repeated. 

We propose the modification of SHC/SHC-M denoted as SHC-GPM. The SHC-GPM uses a generalized 

permutation matrix (GPM), tM , each row and column of which has all zero entries excepting only one 

entry co-prime to N, i.e. 

( ) ( , ) 0,

( ) gcd( ( , ), ) 1, , 1, ,

t

t

if j t i then M i j

if j t i then M i j N i j m

 

  
 (1) 

where  gcd denotes the greatest common divisor, t  is a secret permutation over mZ , and ( )t i  is an 

element of the permutation t at position i. To get a new GPM for each new plaintext vector, before 
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encrypting, each non-zero entry of tM  is recalculated. The new key matrix in SHC-GPM is obtained by 

quite the same procedure as in SHC/SHC-M but we use the GPM instead of the permutation matrix. 
Entries of GPM are recalculated in a way allowing generating of a very large number of key matrices 

without repetition. Security of the proposed cipher is significantly better than the security of SHC/SHC-M 

because the number of non-repeatedly generated by SHC-GPM dynamic key matrices (number of dynamic 

keys) is significantly greater than that of SHC/SHC-M (e.g., 482
 
times greater for m=8, N=256). Also, our 

experiments show that SHC-GPM is more efficient in image encryption quality than SHC-M.  

The rest of the paper is organized as follows. Section 2 introduces SHC and SHC-M. Section 3 presents 

the proposed cipher. Section 4 introduces the performance and encryption quality of the proposed cipher. 
Security and statistical analysis of the proposed SHC-GPM are discussed in Section 5. A conclusion is given 

in Section 6. In the Appendix, an example of encryption and decryption by SHC-GPM is given together with 

the example of the images encrypted by SHC-GPM and AES. 

2  Overview of SHC and SHC-M 

 

Before beginning the overview of SHC and SHC-M, we define some notations which will be used 

throughout this paper: MulT , DivT , AddT and SubT , is the time for the scalar modular multiplication, 

division, addition and subtraction, respectively,  MoveT is the time to move or assign a value, PRPGT is the 

time for pseudo-random permutation generator, XorT is the time for xor-operation (exclusive OR). Note 

that the number of clock cycles as an example for Intel 80486 to perform multiplication and division is 18 

while it is 1 for addition, subtraction, move, and exclusive OR operation [10]. It is worth noting that all 

matrices considered throughout the paper are m x m sized with entries over {0,1,.., 1}NZ N  , hence all the 

operations in encryption/decryption algorithms are assumed mod N, where m (block size) and N (alphabet 

cardinality) are selected positive integers (e.g., N=256 for gray scale images). Also, we assume that two 
parties, A and B, want to communicate securely, and A is a sender, and B is a receiver. 

The SHC is a modification of HC. First, we introduce HC, SHC and then we describe SHC-M. Suppose 

two parties, a sender, A, and a receiver, B, want to exchange data using HC; they share an invertible key 
matrix K. If A wants to encrypt a plaintext vector, P, he gets the ciphertext vector, C, as follows: 

 

C KP  (2) 
The receiver, B, decrypts C by 

1P K C  (3) 

 

where 1K   is the key matrix inverse. The SHC differs from (2), (3) in the following. To encrypt a plaintext 

P, A selects a permutation, t, randomly over mZ , builds a permutation matrix tM , according to (1) (but 

with non-zero entries equal to one only), and gets tK   by permuting the rows and columns of a key matrix 

K  
1

t t tK M K M   (4) 

  

The SHC encryption is then performed by (2), but using tK  instead of K . Additionally, sender A encrypts 

t  by (2) using K and getting u as a ciphertext, and sends C and u together to the receiver. In order to 

decrypt the ciphertext, B decrypts t from u  by (3), gets 1 1( ) ( )t tK K   from 1K  [3], and then reveals the 

plaintext by (3), using 1( )tK   instead of 1K  . The number of dynamic keys used in SHC, NDK(SHC), is 

 

( ) !NDK SHC m  (5) 

The computation complexity of SHC, CC(SHC), can be calculated as follows. To obtain the tK  (4) we 

need to perform permutations of the rows and columns. Usually, to perform the permutation in one row we 

need m moves, therefore 
2m moves are required for m rows; similarly 

2m  moves are required to perform 

the permutation over columns. Hence, 
22m  moves are required. To obtain the ciphertext (2), we multiply a 
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matrix with a vector which needs 2m m additions and 2m multiplications; similarly to encrypt the 

permutation t we need 2m m additions and 2m multiplications, thus, 

 
2 2 2( ) 2 2( ) 2

Mul Add Move
CC SHC m T m m T m T     (6) 

 
The SHC-M [6] uses the same initialization and the same encryption/decryption technique as SHC. But 

SHC-M assumes that the sender, A, and the receiver, B, share a secret seed value, SEED, which is used to 

generate a pseudo-random sequence of permutations. In order to encrypt a plaintext, the sender, A, selects a 
number k, and calculates 

( , , )t PRPermutationG SEED k m  (7) 

 
getting the k-th output permutation from the pseudo-random permutation generator (k can be a block 

number in the sequence of transmitted blocks, or its function and m is the length of the permutation). 
Sender A then gets a ciphertext C as in SHC, and sends to receiver B both C and k. 

In order to decrypt, B calculates t  according to (7), and then gets the plaintext as in SHC. The number of 

dynamic keys used in SHC-M, NDK(SHC-M), is given by (5) and the computation complexity of SHC-M, 

CC(SHC-M), differs from (6) in the following. To generate the pseudo-random permutation (7) PRPGT is 

required; additionally SHC-M does not encrypt the permutation t , therefore 

 
2 2 2( ) ( ) 2

Mul Add Move PRPG
CC SHC M m T m m T m T T       (8) 

 

We can assess PRPGT  by consideration of RC4 [4] as a generator in SHC-M. The RC4 has two phases: the 

key setup and pseudorandom stream generator. We neglect the key setup phase because it is used only 
once in SHC-M for many permutations generated. In order to generate one output number, RC4 uses a 

state vector which is a permutation that is changed by swapping its two elements to produce one output 

number. To have significantly differing state vector permutation, we consider it as the output of PRPG 

after m RC4 iterations each of which requires 3 AddT , 7 MoveT , and 3 odMT , where note that 

odMT = 2Mul Div Sub Mul AddT T T T T     is the time for remainder after division calculation. Hence, 

 
(6 6 7 )PRPG Mul Add MoveT m T T T    (9) 

 

3  THE PROPOSED SCH-GPM 

The proposed cipher has the same structure, initialization, and the same encryption/decryption techniques as those of 

SHC and SHC-M, but it differs from SHC/SHC-M in the following. To start with, A calculates the permutation t  

according to (7) and constructs a GPM, 0
tM  according to (1) but with non-zero entries now not equal to 1. We 

assume 2nN   (in our experiments, n=8), and use the numbers of NZ  co-prime to N, *
NZ , having the maximal 

order as non-zero entries of 0
tM ; we keep them also in a vector 0Re tdM such 

that
*

2
Re ( ) ( , ( )) , 0, 1,i i

t t ndM k M k t k Z i k m     

It is shown in [11] that the maximal order of elements in 
*

2nZ  is 

 
22nmo  . (10) 

Also, we use a state vector, St, initialized by m zeroes, for key matrix modification; it works as a counter 

and may be viewed as an m-digit number base mo : j moSt Z  is it’s j -th digit, 0, 1j m  . The plaintext 

iP is encrypted using the key matrix 

1 1 1
1( )i i

i t i tK M K M  
 . (11) 

as follows 
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1Re i
i i i tC K P dM   , (12) 

 

where  is XOR, 0i  , 0K K , and 

1 0

0, ( )
( , )

( , ) (Re ( )) , ( )

, 1,

i
t i s

t t

j t k
M k j

M k j dM k j t k

j k m




 

 



 (13) 

where  

1, ( 1)

2, ( 1)

j j

j j

if St St
s

if St St

 
 

 

, (14) 

 

and the new value of the state vector is calculated 

 

1St St  . (15) 

 

The numbers in (14) and (15) are added in the base mo  (10). If the new value of St obtained in (15) is 

equal to zero, then a new permutation t is generated by (7): A selects a number of a permutation, generates 
it, and transfers the permutation’s number to the receiver B so that he is able to generate the permutation 

by (7) as well, and all the steps (11)-(15) above are repeated. 

The communicating parties share invertible key matrices K and 0
tM . The sender A sends to the receiver 

B the ciphertext iC and the block number, i . Knowing i , B is able to calculate the key matrix iK using 

(11), (13)-(15), and retrieve the plaintext as 

 
1 1( Re )i

i i i tP K C dM   . (16) 

 
Next key matrix inverse may be obtained from the previous key matrix inverse by (11), with key 

matrices replaced by their inverses. The computation complexity of SHC-GPM, CC(SHC-GPM), both for 

encryption and for decryption, can be computed as follows.  

According to (13)-(14), to obtain one modified element in ( )i
tM , at most two multiplications are 

required, therefore the time to modify m numbers is at most 2 MulmT , where 0i  . Additionally, the first 

part of (11)
 

1
1

i
i t iX M K

 ,
 
 can be performed in 2

Mulm T time due to the structure of 1i
tM  ; similarly 

2
Mulm T time is required to perform the second part of (11), 1 1( )i

i i tK X M   . Inverse is a transposition of 

the original matrix with elements replaced by their inverses. Inverses of elements may be found using 

lookup tables, and, hence time of finding the matrix inverse is MovemT . In addition, to perform (12), we 

need time 2
Mulm T + 2( ) Addm m T + xormT . Also a new permutation will be generated once for each set of 

mmo encryptions by (7), it may be neglected, and time AddmT is used in the worst case for (15). Hence, 

 
2 2( ) (3 2 ) ( )Mul Add xor MoveCC SHC GPM m m T m m T mT mT       , 

(17) 

From (8), (9), and (17), we have approximately that   

 

 

CC SHC GPM
3

CC SHC M





, (18) 

Since 23 Mulm T  is the heaviest term in (17) and 2
Mulm T  in (8)-(9). For the case of used in our experiments 

m=8 this ratio is 

 
2 2

2 2 2

( ) (3 8 2 8) 18 (8 8) 1 8 1 8 1) (208 18 80) 3824
2

( ) (64 18 184 8 121) 20348 18 (8 8) 1 2 8 1 8(6 18 6 1 7 1)

CC SHC GPM

CC SHC M

             
   

                
. (19) 
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The number of dynamic keys of SHC-GPM is 

( ) ! mNDK SHC GPM m mo   . (20) 

In the case of N=256, m=8,  
8 2 8 48( ) 8! (2 ) 8! 2NDK SHC GPM      . (21) 

( ) 8!NDK SHC   (22) 

according to (5), (10) and (20). From (21), (22), one gets 

48( )
2

( )

NDK SHC GPM

NDK SHC


  (23) 

for N=256, m=8, hence security of the proposed algorithm is substantially better than that of SHC. 

4  SHC-GPM Performance and Encryption Quality versus SHC-M  

 

We developed programs for simulating SHC/SHC-M and SHC-GPM in C# with a Pentium(R)   Duo (3.0 

GHz) processor with 1-GB RAM on Windows XP.  In our experiments, several RGB images are encrypted. 

Firstly, the image, P , of size NxM is converted into its RGB components. Afterwards, each colour matrix (R, 

G, B) is converted into a vector of integers within{0,1,...,255} . Each vector has the length L NxM . Then, 

the so obtained three vectors represent the plaintext (3 )P L which will be encrypted using the block size 

m=8.  

We examine the encryption quality for three different images containing very large single colour areas: 
Blackbox.bmp (Fig. 1), Nike.bmp (Fig. 2), and Symbol.bmp (Fig. 3). Also we examined the encryption 

quality for an image that does not contain many high frequency components: Lena.bmp (Fig. 4). The 

Girl.bmp (Fig. 5) is used as an example of an image containing many high frequency components. Each 
image is encrypted using SHC/SHC-M and SHC-GPM . The quality of encryption of these images is studied 

by visual inspection (Fig. 1, Fig. 2, Fig. 3, Fig.4, Fig. 5) and quantitavely (Table 1, used irregular deviation 
based quality measure ID [12], [13], [14]). This quality measure is calculated as follows: 

1. Calculate the matrix, D, which represents the absolute value of the difference between each pixel 

value of the original and the encrypted image respectively: 
D = |O - E|, 

where O is the original (input) image and E is the encrypted (output) image. 

 
2. Construct a histogram distribution of the D we get from step 1: 

h=histogram (D) 

with 256 levels. 
3. Get the average value of how many pixels are deviated at every deviation value by: 

255

0

1
,

256
i

i

DC h


   

4. Subtract this average from the deviation histogram and take the absolute value by: 

 
AC(i) = |hi - DC|, i=0,..,255. 

5. Count: 
255

0

( ).
i

ID AC i


  

The smaller ID, the better.  

 

Based on visual inspection (Fig. 1, Fig. 2, Fig. 3), it is obvious that the proposed scheme SHC-GPM has 
better encryption quality than the SHC/SHC-M. The SHC/SHC-M fails to hide the plain-image of large 

single color area, especially for the black color represented by zero value for both plaintext/ciphertext 

obtained by SHC/SHC-M but SHC-GPM succeeds in hiding all the features of the image containing large 
single colour areas (Fig. 1, Fig. 2, Fig. 3). On the other hand from the numerical evaluation of encryption 

quality measure ID (Table 1), we note that the proposed scheme SHC-GPM versus SHC/SHC-M give 
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better encryption quality. SHC-GPM, and SHC/SHC-M are all good in encrypting images containing many 

high frequency components; SHC-GPM and SHC/SHC-M give nearly the same results but the SHC-GPM 
is more effective (Table 1, rows 4-5). 

 

Image/Algorithm SHC/SHC-M SHC-GPM 

Blackbox.bmp 34036.281 8960.135 

Nike.bmp 23980.791 13455.083 

Symbol.bmp 10482.25 4289.96 

Lena.bmp 10256 10238.67 

Girl.bmp 11459.55 9791.92 

Table 1 The numerical evaluations of irregular deviation ID for encrypted images with SHC/SHC-M and 
SHC-GPM; the smaller ID, the better. 

 
(a) 

 
(b) 

 
(b) 

Figure 1 a) Original Blackbox.bmp encrypted by: b) SHC/SHC-M, c) SHC-GPM 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2 a) Original Nike.bmp encrypted by: b) SHC/SHC-M, c) SHC-GPM 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3 a) Original Symbol.bmp encrypted by: b) SHC/SHC-M, c) SHC-GPM 
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(a) (b) (c) 

Figure 4 a) Original Lena.bmp encrypted by: b) SHC/SHC-M, c) SHC-GPM 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5 a) Original Girl.bmp encrypted by: b) SHC/SHC-M, c) SHC-GPM 

 

We examined the encryption time for the Blackbox.bmp image having 138 × 138 pixels and 56.1 KB 

size. The encryption time measured when applying SHC-GPM is 137 ms, while it is 59 ms when applying 
SHC-M that complies with (19). Based on the encryption time, and the obtained number of clock cycles 

according to (8), (9), (17), it is clear that SHC-M roughly is two-three times better than SHC-GPM  in the 

encryption time, but (5), and (20)-(23) show that NDK(SHC-GPM) is significantly greater than NDK(SHC-
M), therefore SHC-GPM is more secure. 

5  Security and Statistical Analysis  

The security of a cryptosystem is determined by the ability to resist all kinds of cryptanalysis and attacks 
[15], [16], [17], [18]. Robustness against attacks is used to evaluate the security of our scheme. The results 

show the satisfactory security of the SHC-GPM as explained and discussed in the following subsections. 

5.1. Key Space Analysis 

Key space is known as the total number of different keys that can be used in encryption. For a good 

encryption algorithm, it is necessary to have a large enough key space to make brute force attack 

infeasible. For the SHC-GPM, the key space is the same as that of HC [3], [19]. Therefore the key space of 
the scheme is large; hence it is secure against brute force attack. 

5.2. Known Plaintext-Ciphertext Attack 

The KPCA is effective if a same key is used to encrypt many plaintexts. Similar to SHC [3], our proposed 
scheme SCH-GPM is secure against the KPCA since each plaintext is encrypted by a different key, and the 

number of such dynamic keys is significantly large (20). Equations (5) and (20) show that the NDK(SHC-

GPM) (20) is larger than the NDK(SHC) (5); hence SHC-GPM is more secure. 

5.3. Statistical Analysis Resistance 

A good cipher should be robust against any statistical attack. If this proposed scheme can confuse images 

to the one with random distribution, then it is difficult for statistical attackers. To prove the robustness of 
the proposed scheme, the statistical analysis has been performed. It is usually evaluated by the following 

measures [15], [17], [20], [21], [22], [23]: calculating the histograms of the encrypted images and the 

correlation of two adjacent pixels in the plain/encrypted image demonstrating their superior confusion and 
diffusion property. The obtained results show that SHC-GPM strongly withstands statistical attacks. 

5.3.1. Histograms of encrypted images 

We have computed and analyzed the histogram of the encrypted image as well as its original image; a 
typical example is given in Fig. 6. The histogram of the encrypted image is very close to uniform 

distribution; it is significantly different from the original image, and bears no statistical resemblance to the 
original image. 



 
                          A. Mahmoud et al:  Secure Hill Cipher Modification Based on ….  98 

 
Figure 6 Histogram of RGB layers for original/encrypted Nike.bmp: a) SHC-GPM-encrypted, b) 

histogram of the original image, c) histogram of SHC-GPM-encrypted. 

5.3.2. Correlation of Two Adjacent Pixels 

There is a very good correlation between adjacent pixels in the plain-image. We studied the correlation 
between two adjacent pixels in plain-image and encrypted image in three different orientations (horizontal, 

vertical and diagonal). We use the following procedure: first 1000 pairs of two adjacent pixels in three 

different orientations are selected randomly from image to test correlation, and then we calculate the 
correlation coefficient C.C (explained in the Appendix) of each pair. 

Table 2 shows the numerical evaluation of the calculated correlation coefficients of two adjacent 
pixels in Nike.bmp encrypted by SHC/SHC-M and SHC-GPM in three different orientations as a practical 

example. It is clear that, the neighboring pixels in the plain-image have a very high correlation while they 

have a very small correlation (the closer to zero, the better) for encrypted image. This proves that the 
proposed encryption scheme SHC-GPM satisfies very small correlation and is better than SHC. 

 

 

 Image Direction Plain Image 
Encrypted Image 

SHC/SHC-M SHC-GPM 

Nike.bmp 

Horizontal 0.9413 0.0849 0.0583 

Vertical 0.9031 0.1484 0.0098 

Diagonal 0.9801 0.5743 0.0140 

Table 2 Correlation coefficients of two adjacent pixels in original and SHC/SHC-M-encrypted images and 

SHC-GPM-encrypted images. 

 

6  Conclusion 

A new cipher, SHC-GPM, is presented that is a modification of SHC/SHC-M. In this paper, SHC/SHC-M 
and the proposed SHC-GPM have been implemented for image encryption. Quality of image encryption is 

studied using visual inspection and numerical quality measures. From the obtained results, it follows that 

the proposed SHC-GPM is more effective in encryption quality than SHC/SHC-M especially for images 
having substantial same color areas (see Fig. 1, Fig. 2, Fig. 3, Table 1). Versus SHC/SHC-M, the proposed 

cipher SHC-GPM significantly increases the security, based on the greater number of dynamic keys used 

(see (23)). These improvements are got by expense of two-three times decreasing performance because 
SHC-GPM uses generalized permutations matrices which need approximately three times greater number 

of multiplications compared  to the  permutations used by SHC/SHC-M. An important feature of the 

proposed cipher is the use of numbers having known in advance maximal order (10) allowing guaranteeing 
non-repeating sequence of the key matrices of any length by respective choice of the parameters (for 

parameter values used in the reported experiments, the length (NDK) is given by (21)).  Proposed for SHC-
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GPM method of the sequence of keys generation (represented by (7), (10), (11), and (13)-(15)) might be 

used also as a basis for a cryptographically strong pseudo-random number generator with guaranteed very 

large period. SHC-GPM resists the KPCA because of the use of dynamically changing key matrices similar 
to SHC but the proposed SHC-GPM is more secure than SHC because of the significantly larger number of 

dynamic keys generated: (20) versus (5). Experimental analysis also shows that the SHC-GPM resists the 

statistical attacks. 

APPENDIX 

 

Correlation Based Quality Measure 
 

A good encryption algorithm   must produce encrypted image totally random patterns hiding all the features of the 

original image; the encrypted image must be independent of the original image. This means that the two images must 
have a correlation coefficient very close to zero. The correlation coefficient is given by the following expression: 

 

1

2 2

1 1

( ( ))( ( ))

. .

( ( )) ( ( ))

N

i i

i

N N

i i

i i

x E x y E y

C C

x E x y E y



 

 



 



 

 

 

where 
1

1
( )

N

i

i

E x x
N 

  , x and y are grayscale values of two adjacent pixels of the original and encrypted 

images. Note that: the closer C.C to zero, the better. 
 

SHC-GPM Encryption and Decryption Example 

Let N=256, m=2 , [0,0]St  , [2,1]t  , 0 0 43

37 0
tM

 
  
 

,  
0 1 0 173

( )
131 0

tM   
  
 

, 
0 43

Re
37

tdM
 

  
 

 , 
14 95

3 27
K

 
  
 

 , 

and the plaintext to be encrypted is “251, 241, 13, 25, 28, 31”. Note that by (10), 8 22 64mo   in the case of 

N=256, det( ) 93mod256K  , and 1 27 95 215 21
245 .

3 14 33 102
K     

     
   

  

First block key and encryption: 

 

1

1 1

0 43 14 95 0 37 129 137 0 173 27 45

37 0 3 27 6 187 131 0 177 1443 0
K





          
            

           
 , then 

1

27 45 251 43 214 43 253

177 14 241 37 185 37 156
C

           
               
           

 

 

Second block key and encryption:  

[0,1]St  by (15) and according to (13)-(14) 1 0 0 2 3(1,2) (1,2) (Re (1)) 43 147t t tM M dM    , 

1 0 0 1 2(2,1) (2,1) (Re (2)) 37 89t t tM M dM      

1

2 1

0 147 27 45 0 89 163 10 0 233 14 91

89 0 177 14 99 165 155 0 231 27147 0
K





          
            

           
 ,  

then 2

14 91 13 147 153 147 10

231 27 25 89 94 89 7
C

           
               
           

 

 

Third block key and encryption: 

[0,2]St  by (15) and according to (13)-(14)  

2 1 0 2 2(1,2) (1,2) (Re (1)) 147 43 187,t t tM M dM     2 1 0 1(2,1) (2,1) (Re (2)) 89 37 221t t tM M dM    
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1

3 1

0 187 14 91 0 221 189 185 0 117 27 97

221 0 231 27 22 143 115 0 61 14187 0
K





          
            

           
 ,  

then 3

27 97 28 187 179 187 8

61 14 31 221 94 221 131
C

           
               
           

.

 
 

Thus far, the ciphertext is “253, 156, 10, 7, 8, 131”. 

 

The decryption process is depicted as follows. Since the receiver has the key matrices K , 0
tM  and the encrypted 

block number, the receiver can calculate the inverse of the key matrix 
1

iK 
using (11), (13)-(15) as in encryption 

process, and use (16) to retrieve the plaintext. 

 

First key matrix inverse according to (11): 

1
1

0 43 215 21 0 173 102 239

37 0 33 102 131 0 155 215
K         

        
       

 . Then, according to (16) 

1

102 239 253 43 102 239 214 251
.

155 215 156 37 155 215 185 241
P

            
                
              

 

Second block key and decryption:  

 

1
2

0 147 102 239 0 233 215 233

89 0 155 219 155 0 237 102
K         

        
       

 .  

Then according to (16) 2

215 233 10 147 215 233 153 13

237 102 7 89 237 102 94 25
P

            
                
              

Third block key and decryption: 

1
3

0 187 215 233 0 117 102 43

221 0 237 102 115 0 159 215
K         

        
       

 . Then according to (16) 

3

102 43 8 187 102 43 179 28
.

159 215 131 221 159 215 94 31
P

            
                
              

Thus far,  the plaintext revealed is “251, 241, 13, 25, 28, 31”  that is equal to the original one.

 

 

SHC-GPM versus AES 

 

To give adequate performance comparison, we examine our proposed SHC-GPM versus other well known algorithms 

(e.g. AES). We examined the encryption quality of several images. Based on visual inspection, the proposed SHC-

GPM encrypts the images with large single colour areas (identical plaintext blocks), it successfully hides data 

patterns. The AES fails to hide the data patterns for the images contain large single colour areas (Mecky.bmp: Fig. 8, 

Penguin.bmp: Fig. 9, and bicycle.bmp: Fig. 10). That is, the proposed SHC-GPM has advantage in encryption of 

identical plaintext blocks over the AES. 
 

Image/Algorithm SHC-GPM AES 

Mecy.bmp 12872.58 47726.75 

bicycle.bmp 9736.79 25031.32 

Penguin .bmp 6440.06 20745.34 

Table 3 ID for encrypted images using SHC-GPM and AES, m=16. 
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(a) 

 
(b) 

 
(c) 

Figure 7 a) Mecky.bmp encrypted by: b) SHC-GPM, c) AES 

 

   
Figure 8 a) Penguin.bmp encrypted by: b) SHC-GPM, c) AES. 

 

   
Figure 9 a) Bicycle.bmp encrypted by: b) SHC-GPM, c) AES. 
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