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1 Introduction

In this paper we prove certain coincidence point and fixed
point results in partially ordered complex valued metric
spaces for a pair of compatible mappings which satisfy
certain rational weak inequality involving two control
functions. Coincidence points are natural extensions of
fixed points when we deal with more than one mappings.
Metric fixed point theory is widely recognized as have
been originated in the work of S. Banach in 1922 [6]
where he proved the famous contraction mapping
principle. Fixed point theory in partially ordered metric
spaces is of relatively recent origin. An early result in this
direction is due to Turinici [37] in which fixed point
problems were studied in partially ordered uniform
spaces. Later, this branch of fixed point theory has
developed through a number of works some of which are
in [8,9,13,14,20,21,22,28,30,31].

Also there are large efforts for generalizing metric
spaces by changing the form and interpretation of the
metric function. Ghaler [18] introduced 2-metric spaces
where a real number is assigned to any three points of the
space. Probabilistic metric spaces were introduced by
Schweiter et al. [33,34] in which any pair of points is
assigned to a suitable distribution function making

possible a probabilistic sense of distance. Fuzzy metric
spaces were introduced in more than one ways by various
means of fuzzification as, for example in [19] by
assigning any pair of points to a suitable fuzzy set and
spelling out the triangular inequality by using a t-norm.
Another example is in the work of Kaleva et al. [26]
where any pair of points is assigned to a fuzzy number.
G-metric space [29] is another generalization in which
every triplet of points is assigned to a non-negative real
number but in a different way than in 2-metric spaces.
Cone metric spaces [23] are introduced by allowing the
metric to assume values in Banach spaces. There are also
other extension of the metric which are not mentioned
above. It can be seen that in recent times efforts of
extending the concept of metric space has continued in a
rapid manner. Simultaneously, metric fixed point and
coincidence point theory have been extended rapidly in
these spaces over the recent years.

Our interest is in some fixed point and coincidence
point problems in partially ordered complex valued
metric spaces. These spaces are generalizations of metric
space where the metric function takes values from the
field of complex numbers, thus opening the scope of the
concepts from complex analysis for incorporation in the
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metric space structure. The space was originally
introduced by Azam et al. [4]. Fixed point theory has
been studied in this space in a good number of papers,
some of which we mention in [1,7,15,35,36].

Weak contraction principle is a generalization of
Banach’s contraction principle which was first given by
Alber et al. in Hilbert spaces [2]. It was subsequently
extended to metric spaces by Rhoades [32]. Weak
contraction and weak contractive type conditions have
been used and further generalized by many researchers to
establish fixed point and coincidence point results in
metric and generalized metric spaces [10,11,12,13,14,
15,17,28,38].

Dass and Gupta [16] generalized the Banach’s
contraction mapping principle by using a contractive
condition of rational type. Fixed point theorems for
contractive type conditions satisfying rational inequalities
in metric spaces and complex valued metric spaces have
been developed in a number of works [1,7,8,9,15,22,24].

The concept of compatibility was introduced by
Jungck [25]. In common fixed point and coincidence
point problems, this concept and its generalizations have
been used extensively. References [3,5,14,27] are some
examples of such works.

2 Mathematical Preliminaries

Let C be the set of complex numbers andz1, z2 ∈ C .
Define a partial order- onC as follows:

z1 - z2 if and only if Re(z1)≤ Re(z2) and Im(z1)≤ Im(z2).

It follows thatz1 - z2 if one of the following conditions is
satisfied:

(i) Re(z1) = Re(z2), Im(z1)< Im(z2),

(ii) Re(z1)< Re(z2), Im(z1) = Im(z2),

(iii) Re(z1)< Re(z2), Im(z1)< Im(z2),

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will writez1 � z2 if z1 6= z2 and one of (i),
(ii) and (iii) is satisfied and we will writez1 ≺ z2 if only
(iii) is satisfied.

By the notationsP and Int (P), we denote the
following subsets ofC .

P = {z ∈ C : 0- z}= {z = x+ i y ∈ C : x ≥ 0, y ≥ 0},
and

Int (P) = {z ∈ C : 0≺ z}= {z = x+ i y ∈ C : x > 0, y >
0}.

In P every increasing sequence which is bounded
from above is convergent ( or every decreasing sequence
which is bounded from below is convergent).

Note that
(i) z1 - z2, z2 ≺ z3 =⇒ z1 ≺ z3,

(ii) if 0 - xn - yn, for all n ∈ N, then lim
n→∞

xn = x

and lim
n→∞

yn = y =⇒ 0- x - y,

(iii) if xn - yn - zn, for all n∈N, then lim
n→∞

xn = lim
n→∞

zn =

x =⇒ lim
n→∞

yn = x.

Definition 2.1.[4] Let X be a nonempty set. Suppose that
a mappingd : X ×X → C satisfies:

(i) 0- d(x, y), for all x, y ∈ X andd(x,y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x), for all x, y ∈ X

(iii) d(x, y)- d(x, z)+d(z, y), for all x,y,z ∈ X .

Thend is called a complex valued metric onX and(X , d)
is called a complex valued metric space.

Definition 2.2. Let (X , d) be a complex valued metric
space,{xn} be a sequence inX andx ∈ X .

(i) If for every c ∈ C with 0 ≺ c there existsn0 ∈ N
such that for alln > n0, d(xn, x)≺ c, then{xn} said to be
convergent,{xn} converges tox andx is the limit point of
{xn}. We denote this by lim

n→∞
xn = x, or xn → x asn → ∞.

(ii) If for every c∈C with 0≺ c there existsn0 ∈N such
that for alln, m > n0, d(xn, xm) ≺ c, then{xn} is said to
be a Cauchy sequence.

(iii) If every Cauchy sequence inX is convergent, then
(X , d) is a complete complex valued metric space.

Lemma 2.1.[4] Let (X , d) be a complex valued metric
space and{xn} be a sequence inX . Then{xn} converges
to x if and only if | d(xn, x) |→ 0 asn → ∞.

Note 2.1.We can also replace the limit in lemma 2.1 by the
equivalent limiting conditiond(xn, x)−→ 0 asn −→ ∞.

Lemma 2.2.[4] Let (X , d) be a complex valued metric
space and{xn} be a sequence in X. Then{xn} is a Cauchy
sequence if and only if| d(xn, xm) |→ 0 asn,m → ∞.

Note 2.2.We can also replace the limit in lemma 2.2 by the
equivalent limiting conditiond(xn, xm)−→ 0 asn, m −→
∞.

Definition 2.3.[25] Let (X , d) be a metric space andf , g :
X −→ X . The pair( f , g) is said to be compatible if

lim
n→∞

d( f gxn, g f xn) = 0,

whenever{xn} is a sequence inX such that lim
n→∞

f xn =

lim
n→∞

gxn = t, for somet ∈ X .

In the following we give the definition of compatible
mappings in complex valued metric spaces as follows.
Definition 2.4. Let (X , d) be a complex valued metric

space andf , g : X −→ X . The pair( f , g) is said to be
compatible if

lim
n→∞

d( f gxn, g f xn) = 0,

whenever{xn} is a sequence inX such that lim
n→∞

f xn =

lim
n→∞

gxn = t, for somet ∈ X .
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Definition 2.5.[14] Let f and g be self-maps of a setX
(i.e., f , g : X −→ X). If f x = gx, for somex ∈ X , thenx is
called a coincidence point off andg.

Definition 2.6.[14] Let (X ,�) be a partially ordered set,
f : X −→ X andg : X −→ X . The mappingf is said to
be g - nondecrasing if for allx, y ∈ X , gx � gy implies
f x � f y andg - nonincreasing if for allx, y ∈ X , gx � gy
implies f x � f y.

Definition 2.7. Let (X , d) be a complex valued metric
space, f : X → X and x0 ∈ X . Then the functionf is
continuous atx0 if for any sequence{xn} in X , xn → x0
implies f xn → f x0.

Definition 2.8. A subsetS of a complex valued metric
spaceX is closed if for every sequence{xn} in S which
converges to somex ∈ X implies thatx ∈ S.

Definition 2.9.Let ψ : P → P be a function.
(i)We sayψ is strongly monotone increasing if forx, y ∈
P,x - y ⇐⇒ ψ(x)- ψ(y).
(ii)ψ is said to be continuous at x0 ∈
P if for any sequence{xn} in P, xn → x0 ⇒ ψ(xn) →
ψ(x0).

In our results in the following section we will use the
following class of functions.

We denote byΨ the set of all functionsψ : Int (P)∪
{0} −→ Int (P)∪{0} satisfying

(iψ ) ψ is continuous and strongly monotonic increasing,

(iiψ ) ψ(t) = 0 if and only if t = 0;

and byΦ we denote the set of all functionsφ : Int (P)∪
{0} −→ Int (P)∪{0} such that

(iφ ) φ(t) = 0 if and only if t = 0,

(iiφ ) φ(t)≺ t for t ∈ Int (P).

Recently Choudhury and Metiya [15] proved these
following lemmas which will be used in our results.
Lemma 2.3.[15] Let (X , d) be a complex valued metric

space such thatd(x,y) ∈ Int (P), for x,y ∈ X with x 6= y.
Let φ ∈ Φ be such that eitherφ(t) - d(x,y) or
d(x,y) - φ(t), for t ∈ Int (P) andx,y ∈ X . Let {xn} be a
sequence inX for which {d(xn, xn+1)} is monotonic
decreasing. Then{d(xn, xn+1)} is convergent to either
r = 0 or r ∈ Int (P).

Lemma 2.4.[15] Let (X , d) be a complex valued metric
space,{xn} a sequence inX andφ ∈ Φ. Then the sequence
{xn} is a Cauchy sequence if and only if for everyc ∈ C

with 0≺ c there existsn0 ∈ N such thatd(xn, xm)≺ φ(c),
for all m,n > n0.

3 Main Results

Theorem 3.1.Let (X , �) be a partially ordered set and
suppose that there exists a complex valued metricd on X
such that(X , d) is a complete complex valued metric

space withd(x, y) ∈ Int (P) for x,y ∈ X with x 6= y. Let
f andg be two continuous self mappings onX such that
f (X) ⊆ g(X), f is g - nondecrasing with respect to� and
( f , g) is compatible pair. Suppose there existψ ∈Ψ and
a continuous functionφ ∈ Φ such that

(i) φ(t)- d(x, y) or d(x, y)- φ(t)

(ii) ψ(d( f x, f y))- ψ(u(x, y))−φ(d(gx, gy)), for all x, y ∈ X

with gy � gx,

where

u(x,y) =
d( f y, gy) d( f y, gx)

1+ d(gx, gy)
+ d(gx, gy).

If there existsx0 ∈ X such thatgx0 � f x0, then f andg
have a coincidence point inX .

Proof. Let x0 ∈ X be such thatgx0 � f x0. Since f (X) ⊆
g(X), we can choosex1 ∈ X such thatgx1 = f x0. Again
we can choosex2 ∈ X such thatgx2 = f x1. Continuing this
process we construct a sequence{xn} in X such that

gxn+1 = f xn, for all n ≥ 0. (1)

Sincegx0 � f x0 andgx1 = f x0, we havegx0 � gx1 which
implies thatf x0 � f x1. Now, f x0 � f x1, that is,gx1 � gx2
implies thatf x1 � f x2. Again, f x1 � f x2, that is,gx2� gx3
implies thatf x2 � f x3. Continuing this process, we have

gx0 � gx1 � gx2 � gx3 � ...� gxn � gxn+1 � ...,

and

f x0 � f x1 � f x2 � f x3 � ...� f xn � f xn+1 � ....

Since forx = xn andy = xn−1, gxn−1 � gxn, applying the
condition(ii) of the theorem, we have

ψ(d(gxn+1, gxn)) = ψ(d( f xn, f xn−1))

- ψ(u(xn, xn−1))−φ(d(gxn, gxn−1)),

where

u(xn, xn−1) =
d( f xn−1, gxn−1)d( f xn−1,gxn)

1+ d(gxn, gxn−1)
+ d(gxn, gxn−1)

=
d( f xn−1, gxn−1) d(gxn, gxn)

1+ d(gxn, gxn−1)
+ d(gxn, gxn−1)

= d(gxn, gxn−1).
Then it follows that

ψ(d(gxn+1, gxn))-ψ(d(gxn, gxn−1))−φ(d(gxn, gxn−1)).
(2)

Using a property ofφ , we have

ψ(d(gxn+1, gxn))- ψ(d(gxn, gxn−1)), for all n ≥ 1,

which, by a property ofψ , implies that

d(gxn+1, gxn)- d(gxn, gxn−1), for all n ≥ 1.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


164 B. S. Choudhury et al.: Coincidence point results with mappings in...

Therefore,{d(gxn+1, gxn)} is a monotone decreasing
sequence. Hence by lemma 2.3, there exists anr ∈ P with
eitherr = 0 or r ∈ Int (P) such that

d(gxn+1, gxn)−→ r asn −→ ∞. (3)

Taking the limit asn → ∞ in (2), using (3) and continuities
of φ andψ , we have

ψ(r)- ψ(r)−φ(r) =⇒ φ(r) - 0,

which is a contradiction unlessr = 0. Therefore,

d(gxn+1, gxn)−→ 0 asn −→ ∞. (4)

Next we show that{gxn} is a Cauchy sequence. If
{gxn} is not a Cauchy sequence, then there existsc ∈ C

with 0 ≺ c, for all n0 ∈ N, ∃ n, m ∈ N with n > m ≥ n0
such that

d(gxm, gxn)⊀ φ(c).

Hence by a property of φ in the theorem,
φ(c) - d(gxm, gxn). Therefore, there exist two sequences
{m(k)} and{n(k)} in N such that for all positive integers
k,

n(k)> m(k)> k and d(gxm(k), gxn(k))% φ(c).

Assuming thatn(k) is the smallest such positive integer,
we get

d(gxn(k), gxm(k))% φ(c) and d(gxn(k)−1, gxm(k))≺ φ(c).

Now,
φ(c)- d(gxn(k), gxm(k))- d(gxn(k), gxn(k)−1)

+ d(gxn(k)−1, gxm(k)),
that is,

φ(c)- d(gxn(k), gxm(k))- d(gxn(k), gxn(k)−1)+φ(c).

Letting k −→ ∞ in the above inequality and using (4), we
have

lim
k→∞

d(gxn(k), gxm(k)) = φ(c). (5)

Again,
d(gxn(k), gxm(k))- d(gxn(k), gxn(k)+1)

+ d(gxn(k)+1, gxm(k)+1)

+ d(gxm(k)+1, gxm(k))
and
d(gxn(k)+1, gxm(k)+1)- d(gxn(k)+1, gxn(k))

+ d(gxn(k), gxm(k))
+ d(gxm(k), gxm(k)+1).

Letting k −→ ∞ in above inequalities, using (4) and (5),
we have

lim
k→∞

d(gxn(k)+1, gxm(k)+1) = φ(c). (6)

Again,

d(gxn(k), gxm(k))- d(gxn(k), gxm(k)+1)+d(gxm(k)+1, gxm(k))

and

d(gxn(k), gxm(k)+1)- d(gxn(k), gxm(k))+d(gxm(k), gxm(k)+1).

Letting k −→ ∞ in above inequalities, using (4) and (5),
we have

lim
k→∞

d(gxn(k), gxm(k)+1) = φ(c). (7)

Since forx = xn(k) andy = xm(k), gxm(k) � gxn(k), applying
the condition(ii) of the theorem, we have

ψ(d(gxn(k)+1, gxm(k)+1)) = ψ(d( f xn(k), f xm(k)))

- ψ(u(xn(k), xm(k)))−φ(d(gxn(k), gxm(k))), (8)

where

u(xn(k), xm(k)) =
d( f xm(k), gxm(k))d( f xm(k), gxn(k))

1+ d(gxn(k), gxm(k))

+ d(gxn(k), gxm(k))

=
d(gxm(k)+1, gxm(k))d(gxm(k)+1, gxn(k))

1+ d(gxn(k), gxm(k))

+ d(gxn(k), gxm(k)).

Now

lim
k→∞

u(xn(k), xm(k)) = φ(c) (using(4),(5) and(7)). (9)

Letting k −→ ∞ in (8), using (5), (6), (9) and the
continuities ofφ andψ , we have

ψ(φ(c)) - ψ(φ(c))−φ(φ(c)) =⇒ φ(φ(c)) - 0,

which is a contradiction by virtue of a property ofφ . Hence
{gxn} is a Cauchy sequence. From the completeness ofX
there existsz ∈ X such that

f xn = gxn+1 −→ z as n −→ ∞. (10)

Since f andg are compatible, andgxn −→ z, f xn −→ z as
n −→ ∞, we have

lim
n→∞

d( f gxn, g f xn) = 0,

which, by the continuities off and g, implies that
d( f z, gz) = 0, that is, f z = gz, that is, z ∈ X is a
coincidence point off andg.

In our next theorem we relax the continuity and
compatibility assumption of the mappingsf and g in
Theorem 3.1 by consideringg(X) to be a closed subset of
X and imposing the following order condition of the
complex valued metric spaceX :

If {xn} is a non-decreasing sequence inX such that
xn −→ x, thenxn � x, for all n ∈ N.

Theorem 3.2.Let (X , �) be a partially ordered set and
suppose that there exists a complex valued metricd on X
such that(X , d) is a complete complex valued metric
space withd(x, y) ∈ Int (P) for x,y ∈ X with x 6= y.

c© 2016 NSP
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Assume that if{xn} is a nondecreasing sequence inX
such thatxn −→ x, thenxn � x, for all n ∈ N. Let f andg
be two self mappings onX such thatf (X) ⊆ g(X), f is g
- nondecrasing with respect to� andg(X) is closed inX .
Suppose that the conditions(i) and (ii) of theorem 3.1
hold, where the conditions upon(φ , ψ) are the same as in
theorem 3.1. If there existsx0 ∈ X such thatgx0 � f x0,
then f andg have a coincidence point inX .

Proof. We take the same sequence{xn} as in the proof of
theorem 3.1. Then we have

gx0 � gx1 � gx2 � gx3 � ...� gxn � gxn+1 � ...,

and

f x0 � f x1 � f x2 � f x3 � ...� f xn � f xn+1 � ....

Arguing similarly as in the proof of the theorem 3.1, we
can prove that sequence{ f xn}, that is,{gxn+1} satisfies
(10), that is, there existsz ∈ X such that

f xn = gxn+1 −→ z as n −→ ∞.

Since{ f xn}, that is,{gxn+1} is a sequence ing(X) and
g(X) is a closed subset ofX , we have thatz ∈ g(X). So,
there existsw ∈ X such thatz = gw. Now, by the condition
of the theorem,gxn � z = gw, for all n ∈ N. Applying the
condition(ii) of the theorem 3.1 forx=w, y = xn, we have

ψ(d( f w, f xn))- ψ(u(w, xn))−φ(d(gw, gxn)), (11)

where

u(w, xn) =
d( f xn, gxn)d( f xn, gw)

1+ d(gw, gxn)
+ d(gw, gxn).

Now

lim
n→∞

u(w, xn)= d(gw, z) = d(z, z)= 0 (using(10)). (12)

Taking the limit asn −→ ∞ in (11), using (10), (12) and
the properties ofφ andψ , we have

ψ(d( f w, z))- 0, that is, ψ(d( f w, gw))- 0.

It follows by a property ofψ thatd( f w, gw) = 0, that is,
f w = gw, that is,w is a coincidence point off andg.

Consideringg to be the identity function in theorems
3.1 and 3.2, we have following corollaries.

corollary 3.3. Let (X , �) be a partially ordered set and
suppose that there exists a complex valued metricd on X
such that(X , d) is a complete complex valued metric
space withd(x, y) ∈ Int (P) for x,y ∈ X with x 6= y. Let
f : X −→ X be a continuous and nondecrasing mapping
with respect to� such that for allx, y ∈ X with y � x,

ψ(d( f x, f y))- ψ(u(x, y))−φ(d(x, y)), (13)

where u(x,y) =
d( f y, y)d( f y, x)

1+ d(x, y)
+ d(x, y), and the

conditions upon(φ , ψ) are the same as in theorem 3.1. If

there existsx0 ∈ X such thatx0 � f x0, then f has a fixed
point in X .

corollary 3.4. Let (X , �) be a partially ordered set and
suppose that there exists a complex valued metricd on X
such that(X , d) is a complete complex valued metric
space withd(x, y) ∈ Int (P) for x,y ∈ X with x 6= y.
Assume that if{xn} is a nondecreasing sequence inX
such thatxn −→ x, then xn � x, for all n ∈ N. Let
f : X −→ X be a nondecrasing mapping with respect to
�. Suppose that (13) holds, where the conditions upon
(φ , ψ) are the same as in theorem 3.1. If there exists
x0 ∈ X such thatx0 � f x0, then f has a fixed point inX .

Theorem 3.5.In addition to the hypotheses of Corollary
3.3 and Corollary 3.4, in both of the corollaries, suppose
that for everyx, y ∈ X there existsz ∈ X such thatx � z
andy � z. Then f has a unique fixed point.
Proof. It follows from the corollary 3.3 or corollary 3.4,
the set of fixed points off is non-empty. If possible, let
x, y ∈ X (x 6= y) be two fixed points off , that is,x = f x
andy = f y. We distinguish two cases:

Case 1.
If y � x, then by the condition (13), we have for alln ≥ 1,

ψ(d(x, y)) = ψ(d( f x, f y))- ψ(u(x, y))−φ(d(x, y)),

where

u(x, y) =
d( f y, y)d( f y, x)

1+ d(x, y)
+ d(x, y)

=
d(y, y)d(y, x)

1+ d(x, y)
+ d(x, y)

= d(x, y).

Then it follows that

ψ(d(x, y))-ψ(d(x, y))−φ(d(x, y)) =⇒ φ(d(x, y))- 0,

which is a contradiction by a property ofφ , unless
d(x, y) = 0, that is,x = y.

Case 2.
If y � x, then there existsz ∈ X such thatx � z andy � z.
Monotonicity of f implies that f nx = x � f nz and f ny =
y � f nz, for n = 0, 1, 2, ...
By the condition ((13), we have for alln ≥ 1,

ψ(d( f nz, x)) = ψ(d( f nz, f nx))

- ψ(u( f n−1z, f n−1x))−φ(d( f n−1z, f n−1x))

- ψ(u( f n−1z, x))−φ(d( f n−1z, x)),

where

u( f n−1z, x)=
d( f x, x)d( f x, f n−1z)
1+d( f n−1z, f n−1x)

+d( f n−1z, f x)= d( f n−1z, x).

Hence it follows from the above inequality

ψ(d( f nz, x))- ψ(d( f n−1z, x))−φ(d( f n−1z, x)). (14)

Using a property ofφ , we have

ψ(d( f nz, x))- ψ(d( f n−1z, x)),
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which, by monotone property ofψ , implies that

d( f nz, x)- d( f n−1z, x).

Therefore, {d( f nz, x)} is a monotone decreasing
sequence. Following the lemma 2.3, it can be proved that
there existsq ∈ Int (P)∪{0} such that

lim
n→∞

d( f nz, x) = q. (15)

Letting n −→ ∞ in (14), using (15) and the continuities of
φ andψ , we have

ψ(q)- ψ(q)−φ(q) =⇒ φ(q)- 0,

which is a contradiction unlessq = 0.
Hence

lim
n→∞

d( f nz, x) = 0.

Similarly, it can proved that

lim
n→∞

d( f nz, y) = 0.

Finally, the uniqueness of the limit gives usx = y.
From above two cases we have that fixed point off is

unique.

Example 3.6.Let X = [0, 1] with usual partial order′ ≤′.
Let d : X ×X −→C be given as

d(x, y) = |x− y|
√

2 e
i
π
4 = |x− y|(1+ i), for x, y ∈ X .

Then(X , d) is a complex valued metric space with the
required properties of theorem 3.1 and theorem 3.2.
Let ψ , φ : Int (P)∪ {0} −→ Int (P)∪ {0} be defined
respectively as follows:

for z = x+ i y ∈ Int (P)∪{0},

ψ(z) =



















0, if x = 0 and y = 0,
x+ i y, if 0 < x ≤ 1 and 0< y ≤ 1,
x2+ i y, if x > 1 and 0< y ≤ 1,
x+ i y2, if 0 < x ≤ 1 and y > 1,
x2+ i y2, if x > 1 and y > 1,

and

φ(z) =
v
2
+ i

v
2
, where v = min {x, y}.

Thenψ andφ have the properties mentioned in theorem
3.1 and theorem 3.2.
Let f , g : X −→ X be defined respectively as follows:

f x =
x
32

and g(x) =
x
4
, for x ∈ X .

Then f andg have the required properties mentioned in
theorem 3.1 and theorem 3.2.
It can be verified that for allx, y ∈ X with gy � gx,
condition (ii) of Theorem 3.1 and Theorem 3.2 are
satisfied. Hence the conditions of theorem 3.1 and
theorem 3.2 are satisfied and it is seen that 0 is a
coincidence points off andg.

Remark.Complex valued metric spaces have close
similarities with cone metric spaces in its structure,
although conceptually they are very different. In cone
metric spaces the metric takes up values in linear spaces
over the real field where the linear space may be infinite
dimensional, whereas in the case of complex valued
metric spaces the metric values are in the set of complex
number which is a one dimensional vector space over the
complex field. The type of rational inequality we consider
here is not meaningful in a cone metric space. This is an
instance which implies why fixed point theory should be
pursued independently in a complex valued metric space.
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[22] J. Harjani, B. López, K. Sadarangani, A fixed point theorem
for mappings satisfying a contractive condition of rational
type on a partially ordered metric space, Abstract Appl.
Anal. 2010(2010), Article ID 190701.

[23] L. G. Huang, X. Zhang, Cone metric spaces and fixed point
theorems of contractive mappings, J. Math. Anal. Appl.
332(2007), 1468 - 1476.

[24] D. S. Jaggi, B. K. Das, An extension of Banach’s fixed point
theorem through rational expression, Bull. Cal. Math. Soc.
72(1980), 261 - 264.

[25] G. Jungck, Compatible mappings and common fixed points,
Int. J. Math. Math. Sci. 9(1986), 771 - 779.

[26] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets
Systems. 12(1984), 215 - 229.

[27] S. M. Kang, Y. J. Cho, G. Jungck, Common fixed point of
compatible mappings, Int. J. Math. Math. Sci. 13(1990), 61
- 66.

[28] N. V. Luong, N. X. Thuan, Fixed point theorem
for generalized weak contractions satisfying rational
expressions in ordered metric spaces, Fixed Point Theory
Appl. 46(2011), 1 - 10.

[29] Z. Mustafa, B. Sims, Some remarks concerning D-metric
spaces, Proc. Int. Conf. on Fixed Point Theory Appl.
Valencia Spain July (2003), 189 - 198.

[30] J. J. Nieto, R. Lopez, Contractive mapping theorems
in partially ordered sets and applications to ordinary
differential equations, Order 22(2005), 223 - 239.

[31] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem
in partially ordered sets and some applications to matrix
equations, Proc. Amer. Math. Soc. 132(2004), 1435 - 1443.

[32] B. E. Rhoades, Some theorems on weakly contractive maps,
Nonlinear Anal. 47(200l), 2683 - 2693.

[33] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J.
Math. 10(1960), 314 - 334.

[34] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Dover
Pub. Incorporated (2011).

[35] W. Sintunavarat, P. Kumam, Generalized common fixed
point theorems in complex valued metric spacers and
applications, J. Inequal Appl. 2012, 84(2012).

[36] K. Sitthikul, S. Saejung, Some fixed point theorems in
complex valued metric space, Fixed Point Theory Appl.
2012(2012) :189.

[37] M. Turinici, Abstract comparison principles and
multivariable Gronwall-Bellman inequalities, J. Math.
Anal. Appl. 117(1986), 100-127.

[38] Q. Zhang, Y. Song, Fixed point theory forϕ-weak
contractions, Appl. Math. Lett. 22(2009), 75 - 78.

B. S. Choudhury
is a Professor of Mathematics
in IIEST, Shibpur, Howrah,
711103, West Bengal, India,
since 2003. He has supervised
several Ph.D. students
in different areas of pure
and applied mathematics and
theoretical physics and has
published a good number of

research articles in international journals. Particularly he
has published more than 100 research articles in metric
space related studies. He has served his institute in several
administrative capacities.

Nikhilesh Metiya is
an Assistant professor in the
Department of Mathematics,
Sovarani Memorial
College, Jagatballavpur,
Howrah-711408, West
Bengal, India. He got his
Ph.D from IIEST (Formerly
BESUS), Shibpur, Howrah,
711103, West Bengal, India,

in 2013. He has 28 international publication in fixed point
theory and allied subjects. His research interests include
with mathematical analysis, non linear analysis and
optimization.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


168 B. S. Choudhury et al.: Coincidence point results with mappings in...

Pulak Konar completed
his master degree in
2007 from GGU, C.G, India.
At present he is pursuing
his Ph.D from IIEST,
Shibpur, Howrah, 711103,
West Bengal, India. He is
also working as an Assistant
Professor in the Department
of Mathematics in NITMAS,

24 PGS(S), 743368, West Bengal, India, since 2009. His
research interest is mathematical analysis, nonlinear
analysis, topology and optimization.

c© 2016 NSP
Natural Sciences Publishing Cor.


	Introduction
	Mathematical Preliminaries
	Main Results

