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Abstract: In this paper, we introduceα-ψ-contractive mapping in S-metric space and we prove the existence of a fixed point for such
mapping under some conditions.

Keywords: fixed point theory, S-metric space

1 Introduction

Throughout this paper denote all natural numbers byN
and all real number byR. The work in this paper is
inspired by Samet’s generalization of Banach’s
contraction principles in a metric space by introducing
α-ψ-contraction in [1]. In this paper study the existence
of a fixed point for anα-ψ-contractive self mappingT on
an S-metric space. Many recent results in the past few
years showing the existence of a fixed point for a
contractive self mapping in deferent types of metric
spaces, see [2],[4],[5],[6], [7],[8],[9],[10]. In this paper,
we give a generalization of the results of [3] in the
S-metric space. First, we start by giving a few definitions.

Definition 1. Let X be a nonempty set. An S-metric space
on X is a function S : X3 → [0,∞) that satisfies the
following conditions, for allx,y,z, t ∈ X :
(i) S(x,y,z)≥ 0,
(ii) S(x,y,z) = 0 if and only if x = y = z,
(iii) S(x,y,z)≤ S(x,x, t)+ S(y,y, t)+ S(z,z, t)
The pair(X ,S) is called an S-metric space.

Here some examples of such space which were
presented in [3].
1)Let X = Rn and || � || a norm on X , then
S(x,y,z) = ||yz−2x||+ ||x+ y|| is an S-metric space.
2)Let X = Rn and || � || a norm on X , then
S(x,y,z) = ||x− z||+ ||y− z|| is an S-metric space.
3)LetX be a nonempty set,d the ordinary metric space on
X , thenS(x,y,z) = d(x,z)+ d(y,z) is an S-metric space.

Definition 2.[3] Let (X ,S) be an S-metric space.
1)A subsetA of X is said to be S-bounded if there exists
r > 0 such thatS(x,x,y)< r for all x,y ∈ A.

2)A sequence{xn} in X converges tox if and only if
S(xn,xn,x) → 0 asn → ∞. That is for eachε > 0, there
exists a natural numbern0 such that for alln ≥ n0, we
haveS(xn,xn,x)< ε and we donate this by limn→∞ xn = x.
3)A sequence{xn} in X is called a Cauchy sequence if for
eachε > 0, there exists a natural numbern0 such that for
all n,m ≥ n0, we haveS(xn,xn,xm)< ε.
4)An S-metric space(X ,S) is said to be complete if every
Cauchy sequence is convergent.

These next two lemmas are very useful for our
purpose.

Lemma 3.[3] In an S-metric space, we have

S(x,x,y) = S(y,y,x)

for all x,y ∈ X .

Lemma 4.[3] Let (X ,S) be an S-metric space. Ifxn → x
andyn → y, thenS(xn,xn,yn)→ S(x,x,y).

Definition 5. [1] Denote by Ψ the family of
nondecreasing functionsψ : [0,+∞) → [0,+∞) such that
∑+∞

n=1 ψn(t) < +∞ for eacht > 0, whereψn is the n-th
iterate ofψ .

Also, this next lemma is very useful for our purpose.

Lemma 6.[1] For every functionψ : [0,+∞) → [0,+∞)
the following holds:
if ψ is nondecreasing, then for eacht > 0,
limn→+∞ ψn(t) = 0 implies thatψ(t)< t.
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Now, we define theα-ψ-contractive self mapping in
S-metric space.
Definition 7. Let T be a self mapping on a complete S-
metric space(X ,S). We say thatT is α-ψ-contractive self
mapping if there exists a functionα : X ×X ×X → [0,∞)
andψ ∈Ψ such that for allx,y ∈ X we have

α(x,x,y)S(T x,T x,Ty)≤ ψ(S(x,x,y)).

Definition 8. Let (X ,S) be a S-metric space and
T : X −→ X be a given mapping. We say thatT is
α−admissible if x,y,z ∈ X , α(x,y,z) ≥ 1 implies that
α(T x,Ty,T z)≥ 1.

Example:
Let X = [0,∞), d the ordinary metric space onX , then
S(x,y,z) = d(x,z) + d(y,z) is an S-metric space. Let
α : X ×X ×X −→ [0,∞) defineT by:

Tx =
√

x,

and defineα by

α(x,y,z) = emax{x,y}−z i f max{x,y} ≥ z

and
α(x,y,z) = 0 i f max{x,y}< z.

It is easy to see thatT is α−admissible.

2 Fixed point of α-ψ-contractive self
mapping in S-metric space

In this section we prove the existence of a fixed point for
anα-ψ-contractive self mapping.
Theorem 1.1.Let T be anα-ψ-contractive self mapping
on a complete S-metric space(X ,S), where ψ ∈ Ψ ,

satisfying the following conditions:
(i) T is α-admissible;
(ii) there existsx0 ∈ X such thatα(x0,x0,T x0)≥ 1;
(iii) T is continuous.
Then,T has a fixed point.

Proof. Consider the sequence{xn} defined by
x1 = T x0,x2 = Tx1 = T 2x0, · · · ,xn = T xn−1 = T nx0, · · · .
By assumption we know thatα(x0,x0,Tx0) ≥ 1, hence
sinceT is α-admissible, therefore,α(x1,x1,x2) ≥ 1. So,
using the fact thatT is α-admissible and by induction on
n we conclude that

α(xn,xn,xn+1)≥ 1.

Now, since forn ∈ N we haveα(xn,xn,xn+1) ≥ 1 and
T be anα-ψ-contractive we deduce,

S(xn,xn,xn+1) = S(Txn−1,T xn−1,T xn)

≤ α(xn−1,xn−1,xn)S(Txn−1,T xn−1,T xn) (1)

≤ ψ(S(xn−1,xn−1,xn)).

Hence, by induction onn we get,

S(xn,xn,xn+1)≤ ψn(S(x0,x0,x1)) f or all n ∈ N.

Fix ε > 0, let n(ε) ∈ N such that

∑n≥n(ε)ψn(S(x0,x0,x1)) <
ε
2
. Now, let n,m ∈ N with

m > n > n(ε), by the triangle inequality property of the
S-metric space we deduce,

S(xn,xn,xm)≤ 2
m−2

∑
i=n

S(xi,xi,xi+1)+ S(xm−1,xm−1,xm)

(2)

≤ 2
m−1

∑
k=n

ψk(S(x0,x0,x1))+ψm−1(S(x0,x0,x1))

≤ 2 ∑
n≥n(ε)

ψn(S(x0,x0,x1))< 2× ε
2
= ε.

Thus, {xn} is a Cauchy sequence. Since(X ,S) is a
complete, there exista ∈ X such that limx→+∞ xn = a.
Also, sinceT is continuous we have

a = lim
n→+∞

xn+1 = lim
n→∞

T xn = Ta.

Thus,T has a fixed point as desired.

In our next theorem we omit the continuityT
hypothesis.

Theorem 1.2.Let T be anα-ψ-contractive self mapping
on a complete S-metric space(X ,S), and ψ ∈ Ψ ,

satisfying the following conditions:
(i) T is α-admissible;
(ii) there existsx0 ∈ X such thatα(x0,x0,T x0)≥ 1;
(iii) if {xn} is a sequence in X such that
α(xn,xn,xn+1) ≥ 1 for all n ∈ N and xn converge tox,
thenα(xn,xn,x)≥ 1 for all n ∈ N.
Then,T has a fixed point.

Proof. Using all the notations in the proof of Theorem2,
and by that proof, we know that{xn} converges say toa ∈
X . and for alln ∈ N we have,

α(xn,xn,a)≥ 1.

So, by using Lemma1, we deduce that,

S(Ta,Ta,a) ≤ 2S(Ta,Ta,T xn)+S(a,a,xn+1)

≤ 2S(T xn,T xn,Ta)+S(a,a,xn+1) (3)

≤ 2α(xn,xn,a)S(T xn,T xn,Ta)+S(a,a,xn+1)

≤ 2ψ(S(xn,xn,a))+S(a,a,xn+1).

Sinceψ is continuous at 0 and when we take the limit as
n → +∞ we obtain S(Ta,Ta,a) = 0. Hence, Ta = a.
Hence,T has a fixed point as required.

Next, we prove the following corollary.
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Corollary 1.3. Let T be a self mapping on a complete S-
metric space(X ,S), T is α-admissible, and there exists
x0 ∈ X such thatα(x0,x0,T x0) ≥ 1 and there existsL ∈
[0,1) such that for allx,y ∈ X we have

α(x,x,y)S(T x,T x,Ty)≤ LS(x,x,y),

thenT has a fixed point.

Proof. Considerψ(t) = Lt, it is not difficult to see that
ψ ∈Ψ . Also, by the remark in section 3 of [3], we know
thatT is continuous. Thus, all the conditions of Theorem
2 are satisfied. Therefore,T has a fixed point.

To have uniqueness, we need have some restrictions on
α.

Theorem 1.4.Let T be anα-ψ-contractive self mapping
on an S-metric space that satisfies all the hypothesis of
Theorem2, and assume that for every two fixed pointsx,y
of T, there existsz ∈ X such thatα(x,x,z) ≥ 1 and
α(y,y,z) ≥ 1. Then the fixed point ofT is unique.

Proof. Let x,y be two fixed points ofT, we know by the
hypothesis of the theorem that there existsz ∈ X such that
α(x,x,z) ≥ 1 andα(y,y,z) ≥ 1. SinceT is α-admissible
and by induction onn, we obtain for alln α(x,x,T nz)≥ 1
andα(y,y,T nz)≥ 1. Thus,

S(x,x,T nz) = S(Tx,T x,T (T n−1z) (4)

≤ α(x,x,T n−1z)S(T x,T x,T (T n−1z)

≤ ψ(S(x,x,T n−1z).

So, by induction onn we get,

S(x,x,T nz)≤ ψn(S(x,x,z)).

Hence, asn → +∞ we have T nz → x. Similarly, as
n → +∞ we haveT nz → y. By the uniqueness of the limit
we obtainx = y as desired.

Example:
Let X = [0,1]∪ [2,3], and define the S-metric space byS :
X3 −→ (−∞,+∞) by S(x,y,z) = max{x,y,z} if {x,y,z}∩
[2,3] 6= /0 andS(x,y,z) = |x− z|+ |y− z| if {x,y,z} ⊂ [0,1].
Now defineT : X −→X andα : X ×X×X −→ X by: T x=
x+1

2
if 0 ≤ x ≤ 1, T2= 1.5, andT x =

x+2
2

if 2 ≤ x ≤ 3.

Also, defineα as follows:

α(x,y,z) = emax{x,y}−z i f max{x,y} ≥ z

and
α(x,y,z) = 0 i f max{x,y}< z.

It is easy to see thatT is α−admissible. Note that, we can
always pick ourx and y such thatx > y. Also T is an
increasing function. So, for everyx ≥ y ∈ X we have:

S(Tx,T x,Ty)≤ α(x,x,y)S(T x,T x,Ty)≤ 1
2

S(x,x,y),{x,y} ⊂ [0,1]

and similarly,

S(Tx,T x,Ty)≤ α(x,x,y)S(T x,T x,Ty)≤ 1
2

S(x,x,y),{x,y}∩ [2,3] 6= /0.

Note that in this case our fixed point is 1, andL =
1
2
.

Remark:
In closing, we want to bring to the reader’s attention that
α does not have to be defined onX3, it should be enough
definingα onX2.
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