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Abstract: Testing of hypotheses is one of the main purpose of statlgtiference. But up to the present, a goodness-of-fit test fo
two competing prior distributions has not introduced. lis fhaper, some preliminary concepts regarding to hyposhesging for prior
distribution based on a primary sample are introduced aglbly an appropriate approach a version of Neyman-Peansonddo find

a most powerful goodness-of-fit test for prior distributisrgiven. Finally, some examples are presented to claréyniethod.
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1 Introduction

One of the primary purpose of statistical inference is td farametric hypotheses based on a random sample
X = (Xq,---,%n) from a parametric population with a probability densitydtion (henceforth PDFj (x|6), wheref is a
constant value of a sé, i.e., parameter space; and according to the random saompdemust choose one of two
hypothesesly : 8 € ©p or Hp : 8 € ©1, where©;’s are two disjoint subsets @; See e.g. [3,4,6,8-11].

In the Bayesian approach is assumed that the random vaéldiale a prior distributiomr(6) with the suppor®. There
are a few well established approaches that deal with prioemainty; For more details, see e.g. [1,2,5,7,12]. Howeve
listed below are some of them:

—Empirical Bayes In this approach, one trusts the model but wants to estithat@inknown prior parameters that
named as hyper-parameters and denoted.hylore precisely, suppos¥|6 has densityf (x|6) and 6|v has prior
densityr(6|v) and distribution(6|v). Then the predictive or marginal densityXfv is given by

m(x|v):/@f(x|6)l'l(d6|v).

This can be taken as a likelihood ferand so ML-II prior density foi is estimated byt(8|V) whereV maximizes
m(x|v).

—Hierarchical Bayes Instead of estimating hyper-parameters, in the two stagearchical Bayes approach, we put a
prior on hyper-parameters. Lat0|v) be a first-stage prior with a hyper-parametewrith range= and letA (v) and
A (v) be prior density and distribution of, respectively. Then the marginal prior density functionfias obtained by

m(9) = /_ m(8|V)A(dv).

—Robust BayesConverse of the above, a whole class of plausible prioes™ is considered instead of a single prior.
This leads to a class of inferences instead of a single inéexelf the inferences differ drastically, then attempts to
revisel” into a smaller class are tried.

—I-Minimax . Instead of a whole class of inferences arising from comatiten of the clasg™ of priors, a suitable
minimax procedure by confining attention to the priorg'iis considered.
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This paper is not related to the above approaches. Spelgifitas applicable to model selection that are the folloin
two approaches:

—Bayesian Suppose there are two competing models:

Model 0:X|6 has densityfp(x|6) and 8 has prior densityn
Model 1:X|6 has densityf1(x|8) and6 has prior densityg.

Of course, iffg and f; are the same, themy andmm must differ. Then, the Bayesian approach is straight fodwahe
Bayes factor of Model O relative to Model 1 is given by

8oy (x) — ™) _ Jo fo(x/6)Mo(d6)
m(X)  Jo f1(x|8)11(d6)
—Frequentist. Suppose thaX |0 has densityf (x|6). Consider now two competing priors:
Ho: 6 ~m
{Hl 10~ T, (1)

whererp andre are two different priors not necessarily in one family oftdisitions; We call the last testing problem
asprior hypotheses testing (henceforth PHT).

Based on a primary sample, if one can introduce a testingaddtr PHT, i.e., the main attempt of this paper, then
in the next stepBayesian statisticians may use the correct prior distribution to make the ordinary Bayesian statistical
inference based on the main random sample.

The paper is organized as follows:

In Section 2, we provide some definitions and preliminaréggarding to prior hypotheses testing. A Neyman-Pearson
lemma for goodness-of-test for prior distribution is giveisection 3, and finally, some examples are presented im8ect
4,

2 prior hypotheses testing
In this section, we give some concepts for prior hypothesstsyg.
Definition 2.1. Assume thatX = (Xq,---,Xn) is a random sample from a parametric population with PIDRF9) in

which 6 is a random variable and has a prior density functipuinderH;, j = 1,2. We define the weighted probability
density function (henceforth WPDF) &f underH; by

Sulpeo 74 (0) SUlpeo 74 (0)
f(x) = [/ / f(x|6)d6dr} / [/ / dedr] ,
0 {6cOo|m(8)>r} 0 {6cOo|m(8)>r}

if all integrals are finite; Substitutﬁeeewgbr} by 3 (eco|n;(6)>r} IN the case of discrete prior distribution.

Remark 2.1. Not that fj(x) can be assumed as a joint PDF but not the marginal PDK, since f;(X) is nonnegative
and hence using the Fubini theorem, we have

SUsco T (6) Upseo 75 (6
f; (x)dx = / / / f(x|6)dedrdx| / / dedr
RN RN {6cOo|m(8)>r} 0 {QEO\T(J 0)>r}
SURseo 71 (6) SURyco 11 (6
- / / [ 1(x6)dx ) doar / / dedr
/0 {6cOo|m(8)>r} {6cOo|m(8)>r}

[ SURyeo 71 (6) SUpyeo 71 (6)
- / / 1d6dr] / [/ / dedr}
/0 {6cO|m(8)>r} {6cOo|m(8)>r}

=1
Substitute/zn by Srn in the discrete cases. Hentgx) is a joint PDF.
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Remark 2.2.Let T(X) be a sufficient statistic fof. Using the factorization criterion, we havéx|6) = g(t|6)h(x),
wheret = T (x) andg(t|8) can be considered as the PDFIaX). Therefore

Sumpco 71 (6) SUppeo 4 (60)
f;(x) = h(x) [/ / g(t|6)d6dr] / [/ / dedr} ,
0 {0<O|m(8)>r} 0 {0<O|m(8)>r}

Letg;(t) = fj(x)/h(x). gj(t) may be considered as the WPDFIgiX) underH;j, j =0, 1.
Remark 2.3.1f Hj is a simple hypothesis, i.ed; : 6 = 6;, then the priors must be taken(6) =1 if 6 = 6; and zero
otherwise, i.e., a degenerate distribution. In this capg i1 (6) = 1 and{6 € O|m;(6) >r} = {6;} forany O<r <1
and thusy (gcon;(6)>r} f(x/6) = Yoc(e)) f(x|8) = f(x|6;), thenfj(x) = f(x/6;), j = 0,1, i.e, we confront an ordinary
joint pdf of X.

In PHT such as the classical hypotheses testing, we musediest function®(X), based on the sampk. In the
following, we define the test function.

Definition 2.2. Let X be a random sample with the POkX|6). @(X) is called a test function if it is the probability of
rejectingHo providing toX = x is observed.

Definition 2.3. Let @(X) be a test function. The probability of Type | and Il errorsatetl to®(X) for the prior testing
problem (@) is defined byae = Eg[®(X)], and By = 1 — E1[®(X)], respectively, in whictE;[@(X)] is the expected
value of @(X) over the WPDF(x), j =0,1.
Remark 2.4.Using Remark 2.2, we conclude that in the case of simple lngsi¢ against simple alternative, i.e.,

Ho: 6= 90

Hyp: 6= 91,
as in the Neyman-Pearson lemma, the above definitianycdindBe gives the classical probability of errors.

Remark 2.5.Regarding to definitions of error sizes, it is concluded prér hypotheses testind)is really equivalent
to the following ordinary hypotheses testing
{ Hé X~ fo

HiZXNfl (2)

Definition 2.4. A prior hypotheses testing problem with a test functiris said to be a test of (significance) levelf
a¢p < o, wherea € [0,1]. We callag as the size ofp.

Definition 2.5. A prior test® of level a is said to be the most powerful test of levelf By < By, for all test®* of level
a.

3 Neyman-Pearson lemma for PHT
In this section, a version of Neyman-Pearson lemma for PHtaied and proved.

Theorem 3.1.Let X = (Xy,...,Xn) be a random sample with observed value: (xi,...,X,) and the PDFf (x|8). For

testing
Ho: 6 ~1p
{ H(l) 0~ Tm, (3)
a) any test with test function
1, if fo(x)/f1(X) <
?(x) = { 3(x), if fo(x)/f1(x) = (4)
0, if fo(x)/f1(x) > k

for somek > 0 and 0< §(x) < 1, is the MP test of levatr, wherea = ag.
If k=0, then the test

1,if fo(x) =0
Px) = { 0. if fZEx§ >0, ®)
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is the MP test of size zero.

b) for 0 < a < 1, there is a test of formdj or (5) with d(X) = J (a constant), for whiclwe = a.

Proof. Regarding to the definitions df,, a and 3, where were stated in Section 2, and also the equivalenagsting
problem @) and @), all parts are proved from the classical Neyman-Pearsomkz; See e.g. Lehmann and Roma8ip [
pp. 60-61 or Shaalll] 394-395. [J

Using Remark 2.2, the following corollary is resulted.

Corollary 3.1 Under the conditions of Theorem 3.1, the MP test functiondsting @) is
1, ifgo(t)/gu(t) <k
@(t) =4 O(t), if go(t) /gu(t) =k ©)
0, ifgo(t)/gu(t) >k

for somek > 0, wheret = T (X) is the observation of a sufficient statisTi¢X) for 6.

4 Some Examples
In this section, we present two examples to clarify the tageal discussions so far.

Example 4.1. Let Xq, Xy, --- , X, be a random sample from a normal population with mgaand known variance?,
i.e.,N(u,a?). We have

(x=m)?
f(X|u) = e 22  xeR, ueR, g>0.
(Xp) =——=—e "2 u
In two casequ; > Lo andpy < Mo, we want to find a MP test for testing problem
Ho:p~ 1o
Hi:tp~mm,
based on the random sam{ewhere
1 20972
(1) — —(H—pj)/(2%) 5
T = e I , =01, pueR, 1>0,
i (M) T j u

andyj, j = 1,2 andr are all known. Note that undétj, 6 ~ N(uj,rz), j=0,1.
liis remarkable that iff — 0, then the above testing problem tends to the testing proble

Ho: = Lo
Hi:p=p.

We know thafT (X) = X is a sufficient statistic fop and alsoT ~ N(u,a2/n);i.e.,

1 (t—p)?
g(tjp) = meXp{ " 202)n }

But it is easy to show thafu|m(u) > r} = (uj — u*(r),4j + H*(r)), where p*(r) = ty/—2log(rt/2m), and
SUReg T4 (1) = 1/(T+/2m). Hence

1(tv2m)  ppjtp(r) 1/(Tv2m)  ppj+pt(r)
0,0 = | /“ githyauar/ [ [ audr

j— K (r) j—H(r)
1/(tv2m)  ppjtpt(r) 1/(rv2m)
-/ / Ly St/ [T oy or
Thus we must con3|der the following test
{ H() T~ Jo
Hi: T~ Ji1.
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But using corollary 3.1, the MP test function is like &.(t is easy to show thajy(t)/g1(t) is decreasing (increasing)
intif pp > po (L < Ho); i.e., the MP critical region in the casgs > Lp anduy < Lo are the set oK’s whereT (X) > ¢
andT(X) < c, respectively, in whiclt is determined by size of test and the PB#.). Hence, in the casgi > Lo
(M1 < Ho), we havec = Gy (1— a) (c= Gy }(ar)), whereG, ! is the inverse function of the corresponding CDFgef.).

Let o = 0, 1 = 1 ando? = 16. Figuresl and2 show the plots ofjp andg; for the special case = 4 andn = 25.

Fig. 1: The plot ofgy for n= 25, g = 0, p1 = 1 ando? = 16.

Fig. 2: The plot ofgg for n =25, g = 0, p1 = 1 ando? = 16.

Note thatg;(t) is a unimodal and symmetric PDF abqyt j = 1,2.
For the sizex = 0.05, Tablel summarizes andf (Type |l error) for some various values oand?.

Table 1: The values ot andp for n= 2550 and 100.

[n?]] | 4 [ 2 | 1 | 05 [025]001]p=0versusu=1]
c [ 3354] 2.672] 2.106 | 1.7564 | 1.552 | 1.327 1.316
25
B | 0.881] 0.848| 0.806 | 0.761 | 0.721| 0.657 0.654
c | 3.417| 2.505 | 1.889 | 1.4898 | 1.242 0.945 0.931
50
B | 0.878| 0.838| 0.780 | 0.705 | 0.626 | 0.462 0.451
c [ 3353 2.417| 1.771] 1.3361| 1.053| 0.678 0.658
100
B | 0.876] 0.832| 0.763 | 0.660 | 0.533| 0.217 0.196

Table 1 illustrates that ift — O then all results are completely coincided with the ordinsimple case, i.e.,
Ho : 1 =0 versusH; : u = 1, because in this case the MP test of size 0.05 refégts T > ¢, wherec = 1.6454//n)
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and 8 = @(y/n(c—1)/4), where @(.) is the CDF of the standard normal distribution . From thedali is also
concluded that i — o, thenf3 — O.

Example 4.2.Let X3, Xp,--- , Xy be a random sample from a Bernoulli distribution with parené, i.e., Ber(6),
0<0O<1.
It is interested to find a MP test for testing problem

Ho : eNle
Hi: 6~m

()

where

m(0) = Zio_jSin((e—ej)/O'j), 0<6<0<B+ojm<l j=01

It is obvious that the PDFy is unimodal, thereforet(8) > r is equivalent to8 < (L;j(r),Uj(r)), whereLj(r) =
0; + ojarcsin(2raj) andUj(r) = 6; + oj(mm— arcsir(2roj)). On the other hand, it can be shown that
sup 1(0) = — =:
0¢(0,1) J 20

In addition, we know that (X) = S, X; is a sufficient statistic fof and alsoT ~ B(n,0); i.e.,

g(t|e) = (':) 61— 6™, t=0,1,..,n.

Hence

m  rUj(r) m  Uj(r)
gi(t) :/ / g(t|6)d6dr// / dedr
0 JLj(r) 0 JLj(r)

_ /Om/:(jr(;) g(t|6)d6dr//om(Uj (r) — L (r))dr.

Thus, the PHTTY) is equivalent to
Ho: T~ Jo
H1 T~ J1.

Letn=05,6,=0, 6, =05 andoy = g1 = 1/(2n). It is easy to verify thago(t)/gi1(t) is decreasing in; Also, see
Table2.

Table 2: The PDFgyp andgs (t) and their ratio fon = 5.

[ t [ o | 1 [ 2 [ 38 [ 4 5 |
0 0.289 | 0.341 | 0.236] 0.104 | 0.027 | 0.003
0 (t) 0.003 | 0.027 | 0.104| 0.236 | 0.341 | 0.289
o(t)/01(t) || 96.333 | 12.630 | 2.269 | 0.441 | 0.079 | 0.010

Hence the structure of the MP critical region isTas c. Hence the MP test at size= 0.03 rejectsHg if T > 4.

Note 77; is unimodal and symmetric aboflf + 110j/2. Thus if the Bayesian statistician believes that urtdigro is
near tof;" € (0,1), then he may choose a approprigteand a small enougtrj, such thatd;” = 6; + mnoj/2, since the
support ofr is (uj, 4j + 10j). In this case, the PHT tends to ordinary simple versus sitesking problenty : 6 = 6;
versusHs : 8 = 6] and the ordinary MP test is also obtained.

5 Conclusion

In this paper, we introduced some concepts and definitiggasdéng to prior hypotheses testing problem. Then a Neyman-
Pearson lemma for finding a most powerful goodness-of-fitfeegrior hypotheses testing was introduced and finally,
two examples were presented.
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