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1 Introduction

This paper is a continuation of [19], where the model operator H associated to a system
describing four particles in interaction, without conservation of the number of particles,
acting in the four-particle cut subspace of Fock space, was considered and its essential
spectrum was described by the spectrum of channel operators. Here an analogue of the
Hunziker-van Winter-Zhislin (HWZ) theorem for the operator H was proven and a connec-
tion between the spectrum of H and a variational approach to find boundaries of essential
spectrum and some interior eigenvalues was given. In the present paper we prove that the
essential spectrum of this operator consists of no more than seven bounded closed intervals
and we study the location of these intervals.

The location of the essential spectrum of N -body Schrödinger operators for particles
moving in R3 has been extensively studied in many works, see for example [8,20,23]. The
Hamiltonians of systems of three quantum particles moving on the three dimensional lattice
Z3 were considered in [1, 2, 9, 10, 14] and the essential spectrum has been investigated.
In particular, in [2] it is shown that, the essential spectrum of the three-particle discrete
Schrödinger operator, consists of no more than four bounded closed intervals and the main
result of [1] is that the essential spectrum of the three-particle discrete Schrödinger operator



396 Tulkin H. Rasulov

consists of only finitely many bounded closed intervals, although the corresponding two-
particle operators might posses infinitely many eigenvalues for some value of the two-
particle quasi-momentum. The essential spectrum of discrete Schrödinger operators on
lattice ZN by means of the limit operators method was studied in [15].

In quantum field theory, condensed matter physics and the theory of chemical reactions,
naturally occur in quantum systems, where the particle number is finite, but not conserved.
The study of these systems is reduced to the study of spectral properties of self-adjoint
operators, acting in the cut subspace H(n) of Fock space, consisting of r ≤ n particles
[13, 21, 24]. We note that the location and structure of the model operators acting in H(3)

are studied in detail in [4, 5, 11, 12, 17, 18, 22].

The paper is organized as follows. In Section 2 the model operator H is described as a
bounded self-adjoint operator in H(4). In Section 3 the main results are formulated (Theo-
rems 3.1-3.3) and for completeness, we here reproduce some useful arguments, which have
been proven in [19]. In Section 4 we study some spectral properties of the corresponding
families of the operators. Section 5 is devoted to the proof of the main results.

We recall that for the three-particle continuous Schrödinger operators the three-particle
continuum of the essential spectrum coincides with the semi-axis [0;+∞). Two-particle
branches fill the interval [κ; +∞), where κ ≤ 0 is the lowest eigenvalue of the two-particle
subhamiltonians. Thus, there are no gaps in the essential spectrum. In lattice case the ”two-
particle” and ”three-particle” branches of essential spectrum fill finite-length segments and
might overlap. Theorems 3.2 and 3.3 show that under some natural conditions there exist
gaps of the essential spectrum of H.

Throughout this paper we adopt the following convention: Denote by T3 the three-
dimensional torus, the cube (−π, π]3 with appropriately identified sides. The torus T3 will
always be considered as an abelian group with respect to the addition and multiplication by
real numbers regarded as operations on the three-dimensional space R3 modulo (2πZ)3.

For each sufficiently small δ > 0 the notation Uδ(p0) = {p ∈ T3 : |p − p0| < δ}
stands for a δ > 0 neighborhood of the point p0 ∈ T3.

2 The Model Operator

2.1 The model operator in quasi-momentum representation

Let us introduce some notations used in this work. Let C be the field of complex
numbers and L2((T3)n), n = 1, 2, 3 be the Hilbert space of square-integrable (complex)
functions defined on (T3)n, n = 1, 2, 3.

Denote

H0 = C, H1 = L2(T3), H2 = L2((T3)2), H3 = L2((T3)3),



Investigations of the Essential Spectrum 397

H(n,m) =
m⊕

i=n

Hi, 0 ≤ n < m ≤ 3.

The space H(4) ≡ H(0,3) is called the four-particle cut subspace of Fock space.
Let Hij be annihilation (creation) operators [6] defined in the Fock space for i < j (i >

j). In this paper we consider the case, where the number of annihilations and creations of
the particles of the considering system equal to 1. It means that Hij ≡ 0 for all |i− j| > 1.

So, a model operator H associated to a system describing four particles in interaction,
without conservation of the number of particles, acts in the Hilbert space H(0,3) as a matrix
operator

H =

⎛
⎜⎜⎜⎝

H00 H01 0 0
H10 H11 H12 0
0 H21 H22 H23

0 0 H32 H33

⎞
⎟⎟⎟⎠ ,

where its components Hij : Hj → Hi, i, j = 0, 1, 2, 3 are defined by the rule

(H00f0)0 = w0f0, (H01f1)0 =
∫
T3

v1(s)f1(s)ds, (H10f0)1(p) = v1(p)f0,

(H11f1)1(p) = w1(p)f1(p), (H12f2)1(p) =
∫
T3

v2(s)f2(p, s)ds,

(H21f1)2(p, q) = v2(q)f1(p), H22 = H0
22 − V21 − V22,

(H0
22f2)2(p, q) = w2(p, q)f2(p, q), (V21f2)2(p, q) = v21(p)

∫
T3

v21(s)f2(s, q)ds,

(V22f2)2(p, q) = v22(q)
∫
T3

v22(s)f2(p, s)ds, (H23f3)2(p, q) =
∫
T3

v3(s)f3(p, q, s)ds,

(H32f2)3(p, q, t) = v3(t)f2(p, q), (H33f3)3(p, q, t) = w3(p, q, t)f3(p, q, t).

Here fi ∈ Hi, i = 0, 3, w0 is a real number, vi(·), i = 1, 2, 3, v2j(·), j = 1, 2, w1(·)
are real-analytic (nonzero) functions on T3 and w2(·, ·) resp. w3(·, ·, ·) is a real-analytic
(nonzero) function on (T3)2 resp. (T3)3.

Under these assumptions the operator H is bounded and self-adjoint in H(0,3).

2.2 The channel operators and direct integral decompositions

Let us introduce the channel operators Hn, n = 1, 3 resp. H2 acting in H(2,3) resp.
H(1,3) by the following rule

H1 =

(
H0

22 − V21 H23

H32 H33

)
, H2 =

⎛
⎜⎝ H11 H12 0

H21 H0
22 − V22 H23

0 H32 H33

⎞
⎟⎠ ,



398 Tulkin H. Rasulov

H3 =

(
H0

22 H23

H32 H33

)
.

First we consider the channel operator H3, which commutes with any multiplication oper-
ator U

(3)
α by the bounded function α(·, ·) on (T3)2

U (3)
α

(
g2(p, q)

g3(p, q, t)

)
=

(
α(p, q)g2(p, q)

α(p, q)g3(p, q, t)

)
,

(
g2

g3

)
∈ H(2,3).

Therefore the decomposition [20] of the space H(2,3) into the direct integral

H(0,1) =
∫

(T3)2
⊕H(2,3)dpdq

yields the decomposition into the direct integral

H3 =
∫

(T3)2
⊕h3(p, q)dpdq, (2.1)

where a family of the generalized Friedrichs models h3(p, q), p, q ∈ T3 acts in H(0,1) as

h3(p, q) =

(
h

(3)
00 (p, q) h

(3)
01

h
(3)
10 h

(3)
11 (p, q)

)
.

Here

(h(3)
00 (p, q)f0)0 = w2(p, q)f0, (h(3)

01 f1)0 =
∫
T3

v3(s)f1(s)ds,

(h(3)
10 f0)1(t) = v3(t)f0, (h(3)

11 (p, q)f1)1(t) = w3(p, q, t)f1(t).

In analogy with the operator H3 one can give the decomposition

Hn =
∫
T3

⊕hn(p)dp, n = 1, 2, (2.2)

where a family of the operators h1(p), p ∈ T3 resp. h2(p), p ∈ T3 acts in H(1,2) resp.
H(0,2) as

h1(p) =

(
h

(1)
11 (p) h

(1)
12

h
(1)
21 h

(1)
22 (p)

)
resp. h2(p) =

⎛
⎜⎝

h
(2)
00 (p) h

(2)
01 0

h
(2)
10 h

(2)
11 (p) h

(1)
12

0 h
(1)
21 h

(1)
22 (p)

⎞
⎟⎠

with the entries

(h(1)
11 (p)f1)1(q) = w2(p, q)f1(q) − v21(q)

∫
T3

v21(s)f1(s)ds,

(h(1)
12 f2)1(q) =

∫
T3

v3(s)f2(q, s)ds, (h(1)
22 (p)f2)2(q, t) = w3(p, q, t)f2(q, t),
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(h(1)
21 f1)2(q, t) = v3(t)f1(q), (h(2)

00 (p)f0)0 = w1(p)f0, (h(2)
01 f1)0 =

∫
T3

v2(s)f1(s)ds,

(h(2)
10 f0)1(q) = v2(q)f0, (h(2)

11 (p)f1)1(q) = w2(p, q)f1(q) − v22(q)
∫
T3

v22(s)f1(s)ds.

Let us introduce the notations

m = min
p,q,t∈T3

w3(p, q, t), M = max
p,q,t∈T3

w3(p, q, t),

σtwo(Hn) =
⋃

p∈T3

σdisc(hn(p)), n = 1, 2,

σthree(Hn) =
⋃

p,q∈T3

σdisc(h3(p, q)), σfour(Hn) = [m; M ], n = 1, 2, 3.

The following theorem describes the essential spectrum of H (see [19]).

Theorem 2.1. For the essential spectrum σess(H) of H the following equality

σess(H) = σtwo(H) ∪ σthree(H) ∪ σfour(H)

holds, where σtwo(H) = σtwo(H1) ∪ σtwo(H2), σthree(H) = σthree(H3) and

σfour(H) = σfour(H3).

The sets σtwo(H), σthree(H) and σfour(H) are called two-particle, three-particle and
four-particle branches of the essential spectrum of H, respectively.

2.3 Main assumptions

Throughout this paper we assume that the function w3(·, ·, ·) has a unique non-
degenerate minimum (resp. maximum) at the point (p0, q0, t0) ∈ (T3)3 (resp.
(p1, q1, t1) ∈ (T3)3) and for simplicity we also assume that for any p ∈ T3 the opera-
tor h2(p) has no eigenvalues lying in the intervals (−∞;m), (M ; +∞).

Note that if for any p ∈ T3 the operator h2(p) has no eigenvalues lying in the intervals
(−∞; m) and (M ; +∞), then σtwo(H2) ⊂ [m;M ] (see Lemma 4.6).

For any fixed p, q ∈ T3 we define an analytic function ∆3(p, q ; ·) resp. ∆1(p ; ·) in
C \ σess(h3(p, q)) resp. C \ σess(h1(p)) by

∆3(p, q ; z) = w2(p, q) − z −
∫
T3

v2
3(s)ds

w3(p, q, s) − z

resp.

∆1(p ; z) = 1 −
∫
T3

v2
21(s)ds

∆3(p, s ; z)

(the Fredholm determinant associated with the operator h3(p, q), p, q ∈ T3 resp.
h1(p), p ∈ T3).
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Since for any fixed p, q ∈ T3 the function ∆3(p, q ; ·) is decreasing in the intervals
(−∞; m), (M ; +∞) and the function has a unique non-degenerate minimum (resp. max-
imum) at the point (p0, q0, t0) ∈ (T3)3 (resp. (p1, q1, t1) ∈ (T3)3) by the dominated
convergence theorem for any fixed p, q ∈ T3 there exist the following finite limits

lim
z→m−0

∆3(p, q ; z) = ∆3(p, q ;m) and lim
z→M+0

∆3(p, q ; z) = ∆3(p, q ;M).

Assumption 2.1. There exist positive numbers δ1, δ2 > 0 and C1, C2 > 0 such that for
all (p, q) ∈ Uδ1(p0) × Uδ1(q0) resp. (p, q) ∈ Uδ2(p1) × Uδ2(q1) the following inequality

|∆3(p, q ; m)| ≥ C1(|p − p0|α + |q − q0|α)

resp.
|∆3(p, q ; M)| ≥ C2(|p − p1|β + |q − q1|β)

holds for some 0 ≤ α, β ≤ 2.

Remark 2.1. The class of functions ∆3(·, · ; m) and ∆3(·, · ; M) satisfying the conditions
of Assumption 2.1 is nonempty (see Lemma 4.12).

Analogously if Assumption 2.1 is fulfilled, then for any fixed p ∈ T3 there ex-
ists the following finite limit limz→m−0 ∆1(p ; z) = ∆1(p ;m). Therefore the functions
∆3(·, · ; m), ∆3(·, · ; M) and ∆1(· ; m) are continuous on (T3)2 and T3, respectively.

3 Statement of the Main Results

In this section we formulate main results of the paper.

Theorem 3.1. The essential spectrum of the operator H consists of no more than seven

bounded closed intervals.

Let us introduce the following notations:

a1 = min σtwo(H), b1 = max σtwo(H),

a2 = min σthree(H) ∩ (−∞; m], b2 = max σthree(H) ∩ (−∞; m],

a3 = min σthree(H) ∩ [M ; +∞), b3 = max σthree(H) ∩ [M ; +∞).

The location and structure of the essential spectrum of H can be precisely described in the
following theorems:

Theorem 3.2. Let Assumption 2.1 be fulfilled and minp∈T3 ∆1(p ; m) ≥ 0.

I. Assume that maxp,q∈T3 ∆3(p, q ; M) ≤ 0.

(1.1) If minp,q∈T3 ∆3(p, q ;m) ≥ 0, then σess(H) = [m; M ].
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(1.2) If minp,q∈T3 ∆2(p, q ;m) < 0 and maxp,q∈T3 ∆3(p, q ; m) ≥ 0, then

σess(H) = [a2; M ] with a2 < m.

(1.3) If maxp,q∈T3 ∆3(p, q ; m) < 0, then σess(H) = [a2; b2] ∪ [m; M ] with b2 < m.

II. Assume that minp,q∈T3 ∆3(p, q ; M) ≤ 0 and maxp,q∈T3 ∆3(p, q ;M) > 0.

(2.1) If minp,q∈T3 ∆3(p, q ;m) ≥ 0, then σess(H) = [m; b3] with b3 > M.

(2.2) If minp,q∈T3 ∆3(p, q ;m) < 0 and maxp,q∈T3 ∆3(p, q ; m) ≥ 0, then

σess(H) = [a2; b3] with a2 < m and b3 > M.

(2.3) If maxp,q∈T3 ∆3(p, q ; m) < 0, then σess(H) = [a2; b2] ∪ [m; b3] with b2 < m

and b3 > M.

III. Assume that minp,q∈T3 ∆3(p, q ; M) > 0.

(3.1) If minp,q∈T3 ∆3(p, q ; m) ≥ 0, then σess(H) = [m;M ] ∪ [a3; b3] with a3 > M.

(3.2) If minp,q∈T3 ∆3(p, q ;m) < 0 and maxp,q∈T3 ∆3(p, q ; m) ≥ 0, then

σess(H) = [a2; M ] ∪ [a3; b3] with a2 < m and a3 > M.

(3.3) If maxp,q∈T3 ∆3(p, q ; m) < 0, then σess(H) = [a2; b2]∪ [m; M ]∪ [a3; b3] with

b2 < m and a3 > M.

Theorem 3.3. Let Assumption 2.1 be fulfilled and minp∈T3 ∆1(p ; m) < 0,

maxp∈T3 ∆1(p ; m) ≥ 0.

I. Assume that maxp,q∈T3 ∆3(p, q ; M) ≤ 0.

(1.1) If minp,q∈T3 ∆3(p, q ;m) ≥ 0, then σess(H) = [a1; M ] with a1 < m.

(1.2) If minp,q∈T3 ∆3(p, q ;m) < 0 and maxp,q∈T3 ∆3(p, q ; m) ≥ 0, then

σess(H) = [a; M ] with a = min{a1, a2} < m.

(1.3) If maxp,q∈T3 ∆3(p, q ;m) < 0, then σess(H) = [a2; b2] ∪ [a1; M ] with b2 < m

and a1 < m.

II. Assume that minp,q∈T3 ∆3(p, q ; M) ≤ 0 and maxp,q∈T3 ∆3(p, q ;M) > 0.

(2.1) If minp,q∈T3 ∆3(p, q ;m) ≥ 0, then σess(H) = [a1; b3] with a1 < m and b3 >

M.

(2.2) If minp,q∈T3 ∆3(p, q ;m) < 0 and maxp,q∈T3 ∆3(p, q ; m) ≥ 0, then

σess(H) = [a; b3] with a = min{a1, a2} < m and b3 > M.

(2.3) If maxp,q∈T3 ∆3(p, q ;m) < 0, then σess(H) = [a2; b2] ∪ [a1; b3] with b2 < m,

a1 < m and b3 > M.

III. Assume that minp,q∈T3 ∆3(p, q ; M) > 0.

(3.1) If minp,q∈T3 ∆3(p, q ; m) ≥ 0, then σess(H) = [a1; M ] ∪ [a3; b3] with a1 < m

and a3 > M.

(3.2) If minp,q∈T3 ∆3(p, q ;m) < 0 and maxp,q∈T3 ∆3(p, q ; m) ≥ 0, then

σess(H) = [a; M ] ∪ [a3; b3] with a = min{a1, a2} < m and a3 > M.

(3.3) If maxp,q∈T3 ∆3(p, q ; m) < 0, then σess(H) = [a2; b2]∪ [a1; M ]∪ [a3; b3] with

b2 < m, a1 < m and a3 > M.
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Remark 3.1. We recall that if Assumption 2.1 is fulfilled and the following inequality
maxp∈T3 ∆1(p ; m) < 0 holds, then we can formulate theorem analogously to Theorems
3.2 and 3.3, which obtains from Theorem 3.3 if we replace [a1; M ] by [a1; b1] ∪ [m; M ]
with b1 < m.

Remark 3.2. We also remark that Theorems 3.2 and 3.3 play a crucial role in the proof
of the existence of finitely many or infinitely many eigenvalues lying in the gaps of the
essential spectrum of H (see for example [16], where the finiteness of the discrete spectrum
of a model operator acting in the three-particle cut subspace of Fock space was proved).

4 Some Spectral Properties of the Families of Operators hn(p),
h3(p, q), n = 1, 2, p, q ∈ T3

In this section we study some spectral properties of the families of operators hn(p), p ∈
T3, n = 1, 2 resp. h3(p, q), p, q ∈ T3.

The following statement was proven in [19].

Lemma 4.1. The following equalities hold:

σdisc(hn(p)) = {z ∈ C \ σess(hn(p)) : ∆n(p ; z) = 0}, n = 1, 2, p ∈ T3, (4.1)

σdisc(h3(p, q)) = {z ∈ C \ σess(h3(p, q)) : ∆3(p, q ; z) = 0}, p, q ∈ T3. (4.2)

First for the study of some spectral properties of h2(p), p ∈ T3 we rewrite the operator
h

(2)
11 (p), p ∈ T3 in the form

h
(2)
11 (p) = h

(2,1)
11 (p) + h

(2,2)
11 , p ∈ T3

with

(h(2,1)
11 (p)f1)(q) = w2(p, q)f1(q), (h(2,2)

11 f1)(q) = −v22(q)
∫
T3

v22(s)f1(s)ds.

Then the operator h2(p), p ∈ T3 can be written in the form

h2(p) = h0
2(p) + V (p), p ∈ T3

with

h0
2(p) =

⎛
⎜⎝

0 0 0
0 h

(2,1)
11 (p) h

(1)
12

0 h
(1)
21 h

(1)
22 (p)

⎞
⎟⎠ and V (p) =

⎛
⎜⎝ h

(2)
00 (p) h

(2)
01 0

h
(2)
10 h

(2,2)
11 0

0 0 0

⎞
⎟⎠ .

It is easy to show that the perturbation V (p), p ∈ T3 is a bounded self-adjoint operator of
rank of no more than 3 and hence, it is compact. It is easy to see that for any p ∈ T3 the
equality σess(V (p)) = {0} holds. Therefore, for any p ∈ T3 the operator V (p) may have
only positive and negative discrete eigenvalues.
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Lemma 4.2. Let w1(·) be a positive function on T3. For any fixed p ∈ T3 the operator

V (p) has no more than two negative (resp. one positive) simple eigenvalues.

Proof. Let us consider the equation V (p)f = zf, z �= 0, f ∈ H(0,2), p ∈ T3 or the
system of equations {

(w1(p) − z)f0 + (v2, f1)1 = 0
v2(q)f0 − v22(q)(v22, f1)1 = zf1,

(4.3)

where (·, ·)1 is the scalar product in H1.

Since z �= 0 from the second equation of (4.3) we find

f1(q) =
v2(q)

z
f0 − v22(q)

z
Cf1 , (4.4)

where
Cf1 =

∫
T3

v22(s)f1(s)ds. (4.5)

Substituting the expression (4.4) for f1 into the first equation of the system of equations
(4.3) and the equality (4.5) we have that the system of equations (4.3) has a solution if and
only if P(v2,v22)1(p ; z) = 0, where ‖ · ‖1 is the norm in H1 and

P(v2,v22)1(p ; z) = −(z2 − w1(p)z − ‖v2‖2
1)(z + ‖v22‖2

1) − (v2, v21)21, z �= 0, p ∈ T3.

We note that, if v2(·) and v21(·) are linear dependent, then |(v2, v22)1| = ‖v2‖1‖v22‖1.

Therefore, P(v2,v22)1(p ; z) = P0(p ; z) − |(v2, v22)1|2 and

P‖v2‖1‖v22‖1(p ; z) = P0(p ; z) − ‖v2‖2
1‖v22‖2

1.

By the inequality |(v2, v22)1| ≤ ‖v2‖1‖v22‖1 we obtain that

P0(p ; z) ≥ P(v2,v22)1(p ; z) ≥ P‖v2‖1‖v22‖1(p ; z).

There are three cases possible: 1) v2(·) and v22(·) are orthogonal; 2) v2(·) and v22(·)
are parallel; 3) v2(·) and v22(·) are neither orthogonal and nor parallel.

Let v2(·) and v22(·) be orthogonal.
Then P0(p ; z) = P(v2,v22)1(p ; z) > P‖v2‖1‖v22‖1(p ; z). In this case the numbers

ẑ1(p) = −‖v22‖2
1 < 0, ẑ2(p) =

w1(p) −
√

w2
1(p) + 4‖v2‖2

1

2
< 0

and

ẑ3(p) =
w1(p) +

√
w2

1(p) + 4‖v2‖2
1

2
> 0

are zeroes of P(v2,v22)1(p ; z) = P0(p; z), p ∈ T3, i.e., the eigenvalues of V (p).
We remark that the numbers ẑn(p), n = 1, 2, 3 are also zeroes of P0(p ; ·), p ∈ T3 in

the case where v2(·) and v22(·) are not orthogonal.
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Let v2(·) and v22(·) be parallel. Then

P0(p ; z) > P(v2,v22)1(p ; z) = P‖v2‖1‖v22‖1(p ; z).

In this case the polynomial P(v2,v22)1(p ; z) can be written in the form

P(v2,v22)1(p ; z) = −z(z2 − z(‖v22‖2
1 − w1(p)) − (‖v2‖2

1 + w1(p)‖v22‖2
1)).

From here it follows that the numbers

z̃1(p) = 0, z̃2(p) =
‖v22‖2

1 − w1(p) −
√

(‖v22‖2
1 + w1(p))2 + 4‖v2‖2

1

2
< 0

and

z̃3(p) =
‖v22‖2

1 − w1(p) +
√

(‖v22‖2
1 + w1(p))2 + 4‖v2‖2

1

2
> 0

are zeroes of P(v2,v22)1(p ; z) = P‖v2‖1‖v22‖1(p ; z), p ∈ T3, i.e., the eigenvalues of V (p),
where the number z̃2(p) is negative, because the function w1(·) is positive function on T3.

We remark that the numbers z̃n(p), n = 1, 2, 3 are also zeroes of P‖v2‖1‖v22‖1(p ; ·),
p ∈ T3 in the case where v2(·) and v22(·) are not parallel.

Let v2(·) and v22(·) be neither orthogonal and nor parallel. Then we have

P0(p ; z) > P(v2,v22)1(p ; z) > P‖v2‖1‖v22‖1(p ; z).

Set a1(p) = min{ẑ1(p), ẑ2(p)}, a2(p) = max{ẑ1(p), ẑ2(p)}, p ∈ T3.

Without loss of generality (otherwise we would be prove the following facts in the
same way) we assume that for any p ∈ T3 the inequalities z̃2(p) < ẑ2(p), z̃2(p) < ẑ1(p),
ẑ3(p) < z̃3(p) hold. Then it follows that

z̃2(p) < a1(p) ≤ a2(p) < z̃1(p) = 0 < ẑ3(p) < z̃3(p), p ∈ T3.

Since the numbers z̃2(p) and a1(p) are zeroes of P‖v2‖1‖v22‖1(p ; ·) and P0(p ; ·),
respectively, we have P(v2,v22)1(p ; z̃2(p)) > P‖v2‖1‖v22‖1(p ; z̃2(p)) = 0 and 0 =
P0(p ; a1(p)) < P(v2,v22)1(p ; a1(p)), i.e., on the boundary of [z̃2(p), a1(p)] the polyno-
mial P(v2,v22)1(p ; ·) has a different sign. Hence, there exists a point z1(p), such that
z̃2(p) < z1(p) < a1(p) and P(v2,v22)1(p ; z1(p)) = 0.

Analogously one can prove that there exist the numbers z2(p) ∈ (a2(p), z̃1(p)) and
z3(p) ∈ (ẑ3(p), z̃3(p)), which are zeroes of the polynomial P(v2,v22)1(p ; ·).

Since P(v2,v22)1(p ; ·) is a polynomial of degree 3 these zeroes are simple.
One can see z1(p) < z2(p) < 0 and z3(p) > 0.

Lemma 4.2 is completely proved.

Let us introduce the notations

|V (p)| =
√

(V (p))2, V+(p) = 1
2{|V (p)| + V (p)} and V−(p) = 1

2{|V (p)| − V (p)},
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where
√

(V (p))2 is a nonnegative square root of (V (p))2. Then V+(p) ≥ 0, V−(p) ≤ 0
and V (p) = V+(p) + V−(p).

Since the operators V+(p) and −V−(p) are non negative, there exist non negative square
roots V

1/2
+ (p) and (−V−(p))1/2, respectively.

Let
m2(p) = min σess(h2(p)), M2(p) = max σess(h2(p)).

For any fixed z < m2(p) resp. z > M2(p) the operator h0
2(p)− zI + V+(p) resp. h0

2(p)−
zI + V−(p) is invertible and positive resp. negative, where I is an identical operator in
H(0,2).

Set

r+(p; z) = (h0
2(p)−zI+V+(p))−1, r

1/2
+ (p; z) = (h0

2(p)−zI+V+(p))−1/2, z < m2(p),

r−(p; z) = (h0
2(p)−zI+V−(p))−1, r

1/2
− (p; z) = (h0

2(p)−zI+V−(p))−1/2, z > M2(p).

Let us denote by N−(p; z) resp. N+(p; z) the number of eigenvalues of h2(p) lying below
z < m2(p) resp. upper z > M2(p).

For any bounded self-adjoint operator A, acting in Hilbert space H not having any
essential spectrum on the right of the point z we denote by HA(z) the subspace such that
(Af, f) > z(f, f) for any f ∈ HA(z) and set

n(z, A) = sup
HA(z)

dimHA(z).

By the definitions of N−(p ; z) and N+(p ; z) we have

N−(p ; z) = n(−z,−h2(p)), −z > −m2(p),

N+(p ; z) = n(z, h2(p)), z > M2(p).

The following lemma is a realization of the well-known Birman-Schwinger principle for
the operator h2(p) (see. [4, 10]).

Lemma 4.3. For any z < m2(p) the operator (−V−(p))1/2r+(p; z)(−V−(p))1/2 is com-

pact and

N−(p ; z) = n(1, (−V−(p))1/2r+(p ; z)(−V−(p))1/2). (4.6)

Proof. Since (−V−(p))1/2 is a finite rank operator and r+(p; z)(−V−(p))1/2) is a bounded
operator, the operator −V−(p))1/2r+(p; z)(−V−(p))1/2 is compact.

The operator h2(p) can be decomposed as

h2(p) = h0
2(p) + V+(p) + V−(p).

Assume that u ∈ H−h2(p)(−z), i.e., ((h0
2(p)−zI +V+(p))u, u) < ((−V−(p))u, u). Then

(r1/2
+ (p ; z)(−V−(p))r1/2

+ (p ; z)g, g) > 0, g = (h0
2(p) − zI + V−(p))1/2u.
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Thus N−(p ; z) ≤ n(1, r
1/2
+ (p ; z)(−V−(p))r1/2

+ (p ; z)). Reserving the argument we get
the opposite inequality, which proves the equality

N−(p ; z) = n(1, r
1/2
+ (p ; z)(−V−(p))r1/2

+ (p ; z)). (4.7)

Now we use the following well-known fact (see [7]).

Proposition 4.1. Let T1, T2 be bounded operators. If λ �= 0 is an eigenvalue of T1T2, then

λ is an eigenvalue for T2T1 as well of the same algebraic and geometric multiplicities.

By Proposition 4.1 the discrete spectrum of r
1/2
+ (p; z)(−V−(p))r1/2

+ (p; z), away from
zero, coincides with the discrete spectrum of (−V−(p))1/2r+(p; z)(−V−(p))1/2. There-
fore,

n(1, r
1/2
+ (p ; z)(−V−(p))r1/2

+ (p ; z)) = n(1, (−V−(p))1/2r+(p ; z)(−V−(p))1/2). (4.8)

Taking into account the equalities (4.7) and (4.8) we obtain (4.6). Lemma 4.3 is completely
proved.

The following lemma can be proved similarly to Lemma 4.3.

Lemma 4.4. For any z > M2(p) the operator V
1/2
+ (p)r−(p ; z)V 1/2

+ (p) is compact and

N+(p ; z) = n(−1,−V
1/2
+ (p)r−(p ; z)V 1/2

+ (p)).

Now we are ready to get the proof of the following lemma.

Lemma 4.5. Let w1(·) be a positive function on T3. For any fixed p ∈ T3 the operator

h2(p) has no more than two (resp. one) simple eigenvalues lying on the l.h.s. of m2(p)
resp. on the r.h.s. of M2(p).

Proof. By Lemma 4.2 the following inequalities hold

n(1, (−V−(p))1/2r+(p ; z)(−V−(p))1/2) ≤ 2,

n(−1,−V
1/2
+ (p)r−(p ; z)V 1/2

+ (p)) ≤ 1.

From Lemmas 4.3, 4.4 and the latter inequalities it follows that

N−(p ; z) ≤ 2, z < m2(p) and N+(p ; z) ≤ 1, z > M2(p).

Lemma 4.5 is completely proved.

Remark 4.1. If in Lemmas 4.2 and 4.5 for some p′ ∈ T3 the number w1(p′) is negative,
then the number z̃2(p′) either negative or positive, i.e., for some p′ ∈ T3, the operator
h2(p′) may have two positive eigenvalues. But in the proof of Theorem 3.1 we use only
the fact that for any p ∈ T3 the operator h2(p) has no more than three eigenvalues.
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Lemma 4.6. If for any p ∈ T3 the operator h2(p) has no eigenvalues lying in the intervals

(−∞; m) and (M ; +∞), then σtwo(H2) ⊂ [m; M ].

Proof. Let the condition of the lemma be fulfilled. Then for any p ∈ T3 the inclusion
σdisc(h2(p)) ⊂ [m; M ] holds. Then the assertion

σtwo(H2) =
⋃

p∈T3

σdisc(h2)(p) ⊂ [m; M ]

and Theorem 2.1 complete the proof.

Next we will study the operator h3(p, q).

Lemma 4.7. For any fixed p, q ∈ T3 the operator h3(p, q) has no more than one simple

eigenvalue lying on the l.h.s. of m3(p, q) resp. on the r.h.s. of M3(p, q).

Proof. Since for any fixed p, q ∈ T3 the function ∆3(p, q ; ·) is monotone decreasing on
(−∞; m3(p, q)) and (M3(p, q);+∞), Lemma 4.1 completes the proof of lemma.

The following lemma describes the set of eigenvalues of h3(p, q).

Lemma 4.8. 1) Assume that minp,q∈T3 ∆3(p, q ; m) ≥ 0. Then for any p, q ∈ T3 the

operator h3(p, q) has no eigenvalues lying on the l.h.s. of m.

2) Assume that minp,q∈T3 ∆3(p, q ; m) < 0 and maxp,q∈T3 ∆3(p, q ;m) ≥ 0. Then

there exists a non void open set D ⊂ (T3)2 such that D �= (T3)2 and for any (p, q) ∈ D

the operator h3(p, q) has a unique eigenvalue lying on the l.h.s. of m and for any (p, q) ∈
(T3)2 \ D the operator h3(p, q) has no eigenvalues lying on the l.h.s. of m.

3) Assume that maxp,q∈T3 ∆3(p, q ; m) < 0. Then for any p, q ∈ T3 the operator

h3(p, q) has a unique eigenvalue lying on the l.h.s. of m.

Proof. First we prove part 2). Let

min
p,q∈T3

∆3(p, q ; m) < 0, max
p,q∈T3

∆3(p, q ; m) ≥ 0.

Introduce the notation: D ≡ {(p, q) ∈ (T3)2 : ∆3(p, q ;m) < 0}.
Since (T3)2 is compact and the function ∆3(·, · ; m) is continuous on (T3)2, there exist

points (p′, q′), (p′′, q′′) ∈ (T3)2 such that the inequalities

min
p,q∈T3

∆3(p, q ; m) = ∆3(p′, q′ ; m) < 0,

max
p,q∈T3

∆3(p, q ;m) = ∆3(p′′, q′′ ; m) ≥ 0

hold. Hence we have that D is a non void open set and D �= (T3)2.
For any p, q ∈ T3 the function ∆3(p, q ; ·) is continuous and decreasing on (−∞; m]

and limz→−∞ ∆3(p, q ; z) = +∞.
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Then there exists a unique point z(p, q) ∈ (−∞;m) such that ∆3(p, q ; z(p, q)) = 0
for any (p, q) ∈ D. By Lemma 4.1 the point z(p, q) is the unique eigenvalue of the operator
h3(p, q) lying on the l.h.s. of m.

For any (p, q) ∈ (T3)2 \ D and z < m we have ∆3(p, q; z) > ∆3(p, q ;m) ≥ 0.

Hence by Lemma 4.1 for each (p, q) ∈ (T3)2 \ D the operator h3(p, q) has no eigen-
values lying on the l.h.s. of m.

If minp,q∈T3 ∆3(p, q ; m) ≥ 0 resp. maxp,q∈T3 ∆3(p, q ;m) < 0, then D = ∅ resp.
D = (T3)2 and the above analysis leads again to the case 1) resp. 3). The lemma is
completely proved.

The following two lemmas can be proved similarly to Lemma 4.8.

Lemma 4.9. 1) Assume that maxp,q∈T3 ∆3(p, q ; M) ≤ 0. Then for any p, q ∈ T3 the

operator h3(p, q) has no eigenvalues lying on the r.h.s. of M.

2) Assume that maxp,q∈T3 ∆3(p, q ; M) > 0 and minp,q∈T3 ∆3(p, q ; M) ≤ 0. Then

there exists a non void open set D′ ⊂ (T3)2 such that D′ �= (T3)2 and for any (p, q) ∈ D′

the operator h3(p, q) has a unique eigenvalue lying on the r.h.s. of M and for any (p, q) ∈
(T3)2 \ D′ the operator h3(p, q) has no eigenvalues lying on the r.h.s. of M.

3) Assume that minp,q∈T3 ∆3(p, q ; M) > 0. Then for any p, q ∈ T3 the operator

h3(p, q) has a unique eigenvalue lying on the r.h.s. of M.

Lemma 4.10. Let Assumption 2.1 be fulfilled.

1) Assume that minp∈T3 ∆1(p ; m) ≥ 0. Then for any p ∈ T3 the operator h1(p) has

no eigenvalues lying on the l.h.s. of m.

2) Assume that minp∈T3 ∆1(p ; m) < 0 and maxp∈T3 ∆1(p ; m) ≥ 0. Then there

exists a non void open set D′′ ⊂ T3 such that D′′ �= T3 and for any p ∈ D′′ the operator

h1(p) has a unique eigenvalue lying on the l.h.s. of m and for any p ∈ T3\D′′ the operator

h1(p) has no eigenvalues lying on the l.h.s. of m.

3) Assume that maxp∈T3 ∆1(p ;m) < 0. Then for any p ∈ T3 the operator h1(p) has

a unique eigenvalue lying on the l.h.s. of m.

In the proof of Theorem 3.1 we also use the following lemmas.

Lemma 4.11. For any p ∈ T3 the operator h1(p) has no eigenvalues lying on the r.h.s. of

M.

Proof. Since for any p ∈ T3 the function ∆1(p ; ·) is monotone decreasing on (M ; +∞)
and limz→+∞ ∆1(p ; z) = 1, by Lemma 4.1 for any p ∈ T3 the operator h1(p) has no
eigenvalues lying on the r.h.s. of M.

Lemma 4.12. Let the functions v3(·), w2(·, ·) and w3(·, ·, ·) be defined by

v3(t) ≡ √
µ, w2(p, q) = ε(p) + ε(q) + λ, w3(p, q, t) = ε(p) + ε(q) + ε(t),
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where

ε(t) = 3 − cos t(1) − cos t(2) − cos t(3), t = (t(1), t(2), t(3)) ∈ T3

and

µ = (b − a − 12)
( ∫

T3

ds

ε(s)
−

∫
T3

ds

ε(s) + 12

)−1

, λ = a + µ

∫
T3

ds

ε(s)

for some real nonzero numbers a and b such that b− a > 12. Then there exist the numbers

C1, C2 > 0 and δ1, δ2 > 0 such that the functions ∆3(·, · ; m) and ∆3(·, · ; M) satisfy

Assumption 2.1 with α = β = 0.

Proof. First we note that p0 = q0 = θ = (0, 0, 0) ∈ T3, p1 = q1 = π̄ = (π, π, π) ∈ T3.

By the definition of the numbers µ and λ we have

∆3(p0, q0 ;m) = a �= 0, ∆3(p1, q1 ; M) = b �= 0. (4.9)

Since the functions ∆3(·, · ; m) and ∆3(·, · ;M) are continuous on (T3)2 it follows in ac-
cordance with (4.9) that there exist the numbers C1, C2 > 0 and δ1, δ2 > 0 such that the
inequalities stated in the Assumption 2.1 hold with α = β = 0.

5 Proof of the Main Results

Using the assertions were proved in section 4, we prove the main results of this paper.

Proof of Theorem 3.1. By Lemma 4.7 for any p, q ∈ T3 the operator h3(p, q) has no more
than two simple eigenvalues lying outside of its essential spectrum. Then the theorem on
the spectrum of decomposable operators and the equality (2.1) imply that the set σthree(H)
consists of no more than two bounded closed intervals. Similarly, using Lemmas 4.5, 4.10,
4.11 and the equality (2.2) one can prove that the set σtwo(H) consists of no more than
four bounded closed intervals. Then Theorem 2.1 completes the proof of Theorem 3.1.

Proof of Theorem 3.2. First we prove part III.
Suppose that minp,q∈T3 ∆3(p, q ; M) > 0. By Lemma 4.9 for any p, q ∈ T3 the op-

erator h3(p, q) has a unique eigenvalue E1(p, q) > M. Since the functions v3(·), w2(·, ·)
and w3(·, ·, ·) are analytic functions on its domains, the function E1 : (p, q) ∈ (T3)2 →
E1(p, q) is continuous on the compact set (T3)2. From here it follows that the range ImE1

of E1(·, ·) is a closed subset of (M ; +∞), i.e., ImE1 = [a3; b3] with a3 > M. Hence,
equality (2.1) and Theorem 2.1 imply that σthree(H) ∩ [m; +∞) = [m;M ] ∪ [a3; b3].

3.1) Suppose that minp,q∈T3 ∆3(p, q ; m) ≥ 0. For any p, q ∈ T3, Lemma 4.8 implies
that the operator h3(p, q) has no eigenvalues lying on the l.h.s. of m. Then equality (2.1)
and Theorem 2.1 complete the proof of assertion 3.1) of Theorem 3.2.
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3.2) Suppose that minp,q∈T3 ∆3(p, q ; m) < 0 and maxp,q∈T3 ∆3(p, q ; m) ≥ 0. Then
by Lemma 4.8 there exists a non void open set D ⊂ (T3)2 such that D �= (T3)2 and for
any (p, q) ∈ D the operator h3(p, q) has a unique eigenvalue E2(p, q) lying on the l.h.s. of
m.

The functions v3(·), w2(·, ·) and w3(·, ·, ·) are analytic functions on its domain, the
function E2 : (p, q) ∈ D → E2(p, q) is continuous on D.

Since for any p, q ∈ T3 the operator h3(p, q) is bounded and (T3)2 is compact set,
there exists a positive number C such that supp,q∈T3 ‖h3(p, q)‖ and for any p, q ∈ T3 we
have

σ(h3(p, q)) ⊂ [−C; C]. (5.1)

For any (p, q) ∈ ∂D = {(p, q) ∈ (T3)2 : ∆3(p, q ; m) = 0} there exist {(pn, qn)} ⊂ D

such that (pn, qn) → (p, q) as n → ∞. Set E
(n)
2 = E2(pn, qn). Then by Lemma 4.8

for any {(pn, qn)} ∈ D the inequality E
(n)
2 < m holds and from (5.1) we get {E(n)

2 } ⊂
[−C; m]. Without loss of generality (otherwise we would have to take a subsequence) we
assume that E

(n)
2 → E

(0)
2 as n → ∞ for some E

(0)
2 ∈ [−C; m].

From the continuity of the function ∆3(·, · ; ·) in (T3)2 × (−∞; m] and (pn, qn) →
(p, q) and E

(n)
2 → E

(0)
2 as n → ∞ it follows that

0 = lim
n→∞∆3(pn, qn ;E(n)

2 ) = ∆3(p, q ; E(0)
2 ).

Since for any p, q ∈ T3 the function ∆3(p, q; ·) is decreasing in (−∞; m] and (p, q) ∈
∂D we see that ∆3(p, q ;E(0)

2 ) = 0 if and only if E
(0)
2 = m.

For any (p, q) ∈ ∂D we define

E2(p, q) = lim
(p′,q′)→(p,q), (p′,q′)∈D

E2(p′, q′) = m.

Since the function E2(·, ·) is continuous on the compact set D ∪ ∂D and E2(p, q) = m for
all (p, q) ∈ ∂D we conclude that ImE2 = [a2;m], a2 < m.

Hence the set {z ∈ σthree(H), z ≤ m} coincides with the set ImE2 = [a2; m]. Then
equality (2.1) and Theorem 2.1 complete the proof of assertion 3.2) of Theorem 3.2.

3.3) Let maxp,q∈T3 ∆3(p, q ; m) < 0. Then by Lemma 4.8 for all p, q ∈ T3 the opera-
tor h3(p, q) has a unique eigenvalue E2(p, q) lying on the l.h.s. of m.

The functions v3(·), w2(·, ·) and w3(·, ·, ·) are analytic functions on its domain, the
function E2 is continuous on (T3)2. Therefore the range ImE2 of the function E2 is a
connected closed subset of (−∞; m), that is, ImE2 = [a2; b2] with b2 < m. Then the
equality (2.1) and Theorem 2.1 complete the proof of assertion 3.3) of Theorem 3.2. Other
assertions of Theorem 3.2 are proved similarly.

Theorem 3.3 can be proved similarly to Theorem 3.2. Therefore, to avoid repetition, it
is not given here.
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