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Abstract: In this work, we present a computational method for solviigiorder integro-differential equations which is basedtte
use of Chebyshev Wavelets. The solution process is illigstr@nd various physically relevant results are obtainkbtiative examples
have been discussed to demonstrate the validity and apifitigaf the technique and the results have been comparéu thee exact
solution. Comparison of the obtained results with exacutsmhs shows that the used method is an effective and higtusnigsing
method for various classes of high-order integro-difféedrequations.
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1 Introduction equations. Considerable research works have been
conducted recently in applying this method to a class of

Integro-differential equations have gained a lot of insere linear and nqnlmear equat|on§,9,10,'11,12,13]. The
novelty of this paper is an extension of Chebyshev

in many application fields, such as biological, phys'calwavelets method for solving high-order

and engineering problems. Integro-differential equation . . ; . .
are important, but they are hard to solve even numericalIymtegro'd'ﬁereml"jII equationslf} 15,16,17]. This paper

so the progress on how to solve them is slow. ThereforeIcs:hzrbragﬁg\fi aijg:g\gs;:% Stﬁgt'ovr\]/az’ tge cporr?s?t%?:?s tﬁ;
their numerical treatment is desired. Goswami et &|. [ y y

used wavelet on bounded interval to solve the integral‘éOIloc."ét'%lnI techm'que fﬁr this typde ofheggatmn I'acrje

equations, Lakestani et al2][used spline wavelets to oo oed. 1N Sffeﬁ.t'%n 3; e.proposed.ﬁmet 0 IIS applied to
solve the integro-differentail equations, also Nevleslet a some types of high-order mtearo;] lfferentia equlatl'ons,
[3] used orthogonal wavelets to solve the integraland a comparison is made with the existing analytic or

equations, Chrysafinod][used wavelet-Galerkin method exaﬁt .SOIEt'Ol.nS that werellreportgd in bofthfer pu:alls_hed
or integro-differential equations, Abbasa et &}, dpplied WOL Sl'nt e literature. Finally we give a brief conclusion
multiwavelet direct method for solving In the last section.

integro-differential equations. Furthermore other autho

used different methods for solving integro-differential

equations §,7]. Orthogonal functions and polynomials 2 Wavelets and Chebyshev Wavelets

have been used by many authors for solving functional

equations. The main idea of using an orthogonal basis 'Wavelets constitute a family of functions constructed

Lhoar:";féearp;?bleebTaign:eL;?ggy ;i?sucgzntob: ggﬁzr Srfrom dilation and translation of a single function called
9 4 : . . Ythe mother wavelet]]8 19,20].When the dilation
truncated series of orthogonal basis functions for the

solution of problem and using the operational matrices. In . : : .

this paper Chebyshev Wavelets basis, on the int¢dva) SVZT/ZT:tCS)u;;y we have following family of continuous
have been used. The method has been used by many

authors to handle a wide variety of scientific and 1 b

engineering applications to solve various functional Yap(X) =[] 2¢(——), abeR, a#0. (1)

parametera and the translation parametds, vary

X —
a
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If we take dilation and translation parametarg, and  whereC and(x) are XM x 1 matrices given by
nba X respectively wherea > 1,b > 0, n and k are
positive integers, then we have the following family of C=[cL0,C11, -, CLM-1,C20, €21, -, C2M-1
discrete wavelets oo Cok 1 gy ey Cok 1 py_q) |

Wn(X) = |a|5 P(@x—nb). 2) = [C1,C2, -, CM, CM 2, Cok 1] (9)

These functions are a wavelet basis E8(R) and in and
special casa = 2, andb = 1, the functiongjin(x) arean  @(X) = [Y1,0(X), P1.1(X), ..., Yrm-1(X), Y2.0(X), P2.,1(X)

orthonormal basis. T
Chebyshev waveletgn m(x) = @(k,n,m,x) have four e Y210 Wt o) Yot a ()]

argumentsh = 1,2,....21 k is an arbitrary positive = [1(3), Y2(%); -, Ym (X)
integer andm is the order of Chebyshev polynomials of SWUM+1(X), -, Pok1py (X)]T (20)
the first kind. Th fi the int 1 . .
foﬁoleg' ind ey are defined on the intery@j1], as The integration of the product of two Chebyshev
' wavelets vector functions with respect to the weight
Unm(X) = Y(k,n,mx) functionWh(x), is derived as
ko _ 1
{2sz(2kx—2n+1), <x<yy (3 / V(W)W (k1. 1)
= 0
o otherwise wherel is an identity matrix.
where A function f(x,y) defined on[0,1] x [0,1] can be
%T, m=0, approximated as the following
Tm(¥) = (4) T
f(x,y) ~ x)K . 12
\/%Tm(X% m> 0. (xy) =@ (KY(y) (12)

Here the entries of matriX = [Kij]k 1y, k-1 Will be

andm=0,1,..,M—landn=12,..., 2% T(x) arethe i by

famous Chebyshev polynomials of the first kind of degree

m, which are orthogonal with respect to the weight
function W(x) = \/% on the interval[-1,1], and kij = (wi (0 (F(%.y), ¥ (y))wn(y))\/\/n(x>’ (13)
_X - . —
satisfy the following recursive formula: i,j=1,2,..,2<M.
To(X) = 1, Ty(X) = X, The integration of the vectap(x), defined in 10), can be
(5) achieved as .
Ti2(X) = 2XTn(X) — Tm-1(X), m=12.. / Y(t)dt = Py(x) (14)

The set of Chebyshev wavelets is an orthogonal set with
respect to the weight functiofh(x) = W(2*x — 2n+-1).
A function f(x) defined on the intervgD, 1] may be

where P is the ¥ IM x 2“IM operational matrix of
integration B,9]. This matrix is determined as follows

presented as (L F F ... F]

. OL F

z Z Crmnm(X (6) 1 .

= P=X%loo L " (15)
The series representation ©fx) in (6) is called a wavelet T =
series and the wavelet coefficiewts, are given bychm = O--- 0 O L

(F(X), Wnm(X) Jwp () -

The convergence of the seried),(in L?[0,1], means Wherel,F andO areM x M matrices given by

that
sl 2 L=
lim || f(x)— ComWnm(X) @) 1 5 0 0
s1,52— 00 nzlngo ,4 0 % 0 0 0
_ 2 _1 0 19 0
3 2 6

Therefore one can consider the following truncated series o
for series 6) : T (16)

1
22

C oMk

k=1pm_1 .
X) =~ CrmWnm(X) =C" Y(X), (8) s
n;r;o A PZC0MGE, -4 0 0 0 gty 0
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whereP is operational matrix of integration. Also consider
the following approximations

r 2 0.+ O]

gfz 8 - 8 f(x) =~ fl@(x),
—22 )
- : SR a7 a(x) ~ f7 Y(x),
B Q(l—(—l)r _1—(—1)'72) 0---0 n-1 (25)
2 r . r—2 JZOGJ)J(_J' ~ f;—LII(X),
V2 17(71>M' 1—(—pM-2
F(—w vz ) 0 0. k(x,t) ~ @I (x)Ky(t),

where fq, f,, f3 are the #IM x 1 matrices, and is the

—8 8 2-IM x 2-1M matrice.
o=1|. . (18) Substi;ution of approximationg®), (24), (25) into the
Do Eq.@0), will be resulted to:
0O0--
f7 W) =cTP(x) + f P (cTP"Y(x) + £ Y(x)
The property of the product of two Chebyshev X
wavelets vector functions will be as follows +é YT OOKW() (TP (t)+f3 g(t))dt

YoYU (XY =~ Yy(x) (19) =T+ FLPX)(CTPY(x) + f5 Y (X))

whereY is a given vector and is a XM x 2¢-1m 5
matrix. This matrix is called the operational matrix of =cTY(x) + T PX)CTPUYW) + TP T y(x)
X
/

product.

+PT (K O' (WE)CTP () + Y(t) 3 g(t))dt
3 Solution of high-order integro-differential =cTY(x) + L Y(x)cTPyY(x)
equations via Chebyshev wavelets method W) T3 Px) + YT (NKYPY(x),

(26)
To illustrate the basic ideas of this method, let us consider
the following integro-differential equation
. where Y is 2<IM x 2-IM operational matrix for
y(n>(x)+f(x)y(x)+/ k(x,)y(t)dt =g(x), (20) Pproduction andP is the 2~'M x 2“"!M operational
0 matrix of integration§,9,10].
o . According to the Galerkin method by multiplying
with initial conditions Wh(X)WT(x) in both sides of the EcRF) and then
1

y(0) = a0,y (0)=ay,..y" V(0)=an1.  (21)  applying(.)dx linear or non-linear equation in terms of
0

Let's consider the following approximation for unknown the entries ofC will be obtained. The elements of vector
functiony(™ (x), functionsC can be computed by solving these equation.

Y (x) =CTy(x) (22)

whereC is 2"IM x 1 matrices given by

Error analysis

Theorem 1 [21]: Assumep be the number of vanishing
C=[C10,C11,---,CLM-1,C2,0,C2,1, ---,C2M-1 moments for a waveleynm(x) and let f(x) € CP[0,1].

s G gy Czkfl7M—1]T Then the wavelet coefficientay, decays as follows

= [C1,C2,-,CM, Ot 1, Ca]” (23) Jcom] < G2 P2 max | 1P)(€)]. (27)
andy(x) is defined in L0). Use this approximation will be ¢elod
resulted to: WhereCy, is an independent constant framm and f (x).
1 o The above theorem implies that wavelet coefficients are
y(X) ~ cTpn Wx) + Z) a X_ (24) exponentially qlecayed with_respectFtcand by increasing
= J! p the decay increases. Since the truncated Chebyshev
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wavelets series is approximate solution of a system, so
one has an error functicaror (f(x)) for f(x) as follows Multiply Wh(x)@T (x), on both sides of the E@L), apply
1

KM=l J ()dx, and then solve the equation. The elements of

error(f(x) = |f0 -5, Z ComPom(¥)|  (28)

0
vector function€ can be obtained as follow

where setting = xj, Xj € [0, 1], the absolute error value of
Xj can be obtained. C = [2.4599218072.2227299640.6356289576

The error bound of the approximate solution by using 0.18263610120.03662164888).007330474902

Chebyshev wavelets series is given by the following 0.001184876223.0001879434420
theorem. ' ’

Theorem 2 [21] Suppose f(x) € CP[0,1] and  Therefore, the following solution will result.

CTqJ( X) = 2 2 cnqunm( ) is the approximate solution

T T
using Chebyshev wavelets method. Then the error bound(X) = €' PY(X) + f3 y(X)
would be obtained as follows =0.391164970%" — 0.681334788%°

f 4+0.8428981638 -+ 0.06099955548"
lervor ()1l < 10.122341633% -+ 0.98397029582
+0.0008239011610+ 0.9999933725

- (p)
pI2P0D) £loy ’f (E)’ - @9

4 Numerical examples .
Table 1 shows some values of the solutions and absolute

In this section, some examples of high-order errors at some,sand plots of the exact and approximate
integro-differential equations are considered and will besolutions are shown in Figurd)(and Figure 2). In this
solved. These examples are solvedkes 1 andM = 8. example use the Taylor expansiongd¥ ! in x= 0.

Example 1. Consider the following integro-differential
equation

Y (X) +y(X) = 1+ 2x+ [3X(1+ 2x) e Vy(t)dt, o)
30
y(0)=1.

The exact solution isy(x) = e®. Let's consider the
following approximations

1~ T (X,

142X~ fT Y(x),

Y () ~ T y(x),

Y(X) ~ CTPY(X) +y(0)
— TPY() + H (X,

X(1+ 20 ~ @T (K y(t).
Substitution into the Eq.3(Q), lead to the following
equation

f;w( )—CT (X)—I—f L[J(X)(CTPLII( ) fs,TL[J(X)) [=— exact solution © numerical solution|

—fWT (X)KW(t)(CTPW( )+ W(t))dtv Fig. 1. Comparison of the exact and approximate solution of
W) + 5 wCTPY(X) + T w(x) £ w(x) Example 1.

—tIJT(X)K({X(w(t)CTPw(t) +W(O I Y())dt

= TP+ F YCTPY(X) + T Y(x) I Y (x)

—YT (KYPY(x)

(31)
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Fig. 2: The absolute errors of Example 1 for various [0, 1].

Table 1: Numerical results of Example 1.

X

Exact solution Chebyshev wavelets Absolute Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.0000000000 ©999933725 000066275
10100501670 0100516940 000015270
10408107740 D408244260 000136520
10941742840 10942322870 M000580030
11735108710 11736310480 ®001201770
12840254170 842537610 002283440
14333294150 14337538760 004244610
16323162200 5330463770 ®007301570
18964808790 B976441010 011632220
22479079870 2496863700 017783830
27182818280 7208571040 025752760

The vectorC is computed by solving the equation of
nonlinear for eight unknowns, via the Maple package, as
follow

C =[—1.0310855990.207102747680.04809969975
—0.002205020154-0.0002510004840

—0.000033910154.4812730x 108,
—0.000005586572553

Therefore, we have the following approximate solution

y(x) ~ —0.000389607975¢ + 0.000154671381¢
—0.00213376445¢ + 0.0433975543¢"
—0.0006676702148 — 0.499939572%?
+2.074417985¢ 10~ "x+ 1.000000000

Table 2 shows some values of the solutions and absolute
errors at some, s and plots of the exact and approximate
solutions are shown in Figur&)(and Figure 4). In this

example use the Taylor expansion of

—(14x)cosx— X—Zz(ex(cosx+ sinx) — 1), X2 in x = 3.

Table 2: Numerical results of Example 2.
X  Exact solution Chebyshev wavelets Absolute Error

Example 2. Consider the following equation

Y'(X) —xy(x) = g(x) + Jo X y(t)dt,
y(0)=1y(0)=0,

(32)

whereg(x) = —(1+ X) cOSX — X—Zz(e?‘(cosx+ sinx) — 1).

The exact solution ig(x) = cosx. Let’s consider the

following approximations

x~ T g(X),

9(x) ~ f7 g(x),

y' (%) = CT (%),

Y (x) = CTPY(x) +Y(0),

y(x) = CTPy(x) +xy'(0) +y(0)
=CTP2Y(x) + f3 (%),

x2e ~ YT (X)KY(t).

0.0 10000000000 1D0O00000000 000000000
0.1 0.9950041653 ©950042759 000001106
0.2 0.9800665778 ©800658754 000007024
0.3 09553364891 553338363 000026528
0.4 09210609940 210561434 000048506
0.5 0.8775825619 B775767918 000057701
0.6 0.8253356149 3253323731 000032418
0.7 0.7648421873 (648479860 M000057987
0.8 0.6967067093 ®967322754 000255691
0.9 06216099683 ®216714208 M000614525
1.0 05403023059 (6404218182 001195123

Example 3. Consider the following integro-differential
equation

Y () + (2 — D)y(x) + xet-2y(t)t = xe X(x-+e )

y0) =1 y(0)=-1 y'(0) =1 y"(0)=-1

with the exact solutiog(x) = e *.

(33)
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be achieved.

C = [0.5267139138-0.50917737170.01820611575
0.01008902560-0.002251757235
0.0003590418624-0.00003021554629
7.50394458% 10~ /]"

Therefore,the following solution will result.

y(x) ~ CTPAY(x) + f5 g (x)
=0.0004006501638 — 0.0008180424276
—0.0097701576 7%+ 0.0423048605%"
—0.1668084476°+ 0.500016737

’ s o ) o o K —1.000000758 + 1.000000006

Some numerical results of this solution are presented in
Table (3) the Taylor expansion ef=2) xe X(x+ € ) in

Fig. 3: Comparison of the exact and approximate solution of X= 3-

| == exactsolution © numerical solution|

Example 2.
0.00010 7
{
1.0
! :
0.00008 !
! 0.9-
!
!
0.00006- / 0.8
b
f: /
& / 0.7
0.00004- /
!
] 0.6
/
0.00002- / 0.5+
/
/
0 ___..--"""-ﬁ"'--.// 0.44
0 02 04 06 08 1
& 0 02 04 0.6 0.8 1

|—exar:t luti O numerical soluti |

Fig. 4: The absolute errors of Example 2 for various [0, 1].

Fig. 5: Comparison of the exact and approximate solution of
Example 3.

Let’s
(¢ =1) = fl Y (x),
xe X(x+ &%) ~ 17 (x), Example 4. Consider the following equation with the

Y (x) ~ CT(x) exact solutiory(x) = x* — x3.
y(x) ~ CTP*p(x) + 33y (0)
+3x2%y"(0) + %y (0) +y(0)
=CTP*Y(x) + fJ p(x), = Ix8 — Z29x0 | 4x104 11
(t-2) ~ gyT _
¢ T EYRe Y(0) =Y/(0) =y'(0) = 0.y"(0) = -6,

By applying the Chebyshev wavelets method and solving
the resulted linear equation, the following results would y<4>(0) — 24,y(5>(0) =0.

YO () +x(x+5)y(x) + fo (t* —x)y(t)dt

(34)
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Error

0.0020

0.00154

0.0010+

0.00054

Fig. 6: The absolute errors of Example 3 for various [0, 1].

Table 3: Numerical results of Example 3.

08 1

C =[0.034146802340.0366645616(0.01488269850
0.001861353490-0.0007517563843
—0.0003093780003-0.00009320203923
—0.00004079964123

Therefore,the following solution will result.

y(x) = CTPOY(x) + 3 (x)
=0.00001440179736 —0.00003315141048
+0.0000324599021%7 + 0.999983487x%*
—0.9999955652% — 5.769157089%« 10~ /%2
+2.834107322< 10 8 — 2.245887356¢ 1010

Some values of exact, approximate solutions and absolute
error are presented in Table (4) and the plots of exact and

X

Exact solution Chebyshev wavelets Absolute Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.0000000000 2D000000006
0.9048374180 9048374211
0.8187307531 3187305704
0.7408182207 (r408158760
0.6703200460 ®703069038
0.6065306597 ®064818399
0.5488116361 (5486709834
0.4965853038 2962444591
0.4493289641 2486003494
0.4065696597 21051534496
0.3678794412 (3653248482

000000006
000000031
®000001827
®000023447
000131422
000488198
M001406527
M003408447
M007286147
014162101
025545930

approximate solutions are shown in Figuré) (and

Figure @).

Table 4: Numerical results of Example 4.
X Exact solution  Chebyshev wavelets  Absolute Error
0.0 0.0000000000 —0.0000000002 ®000000002
0.1 —0.0009000000 —0.0090000001 @®O00000001
0.2 —0.0064000000 —0.0064000001 000000001
0.3 —0.0189000000 —0.0188999998 ®000000002
0.4 —0.0384000000 —0.0383999999 ®000000001
0.5 —0.0625000000 —0.0624999990 ®000000010
0.6 —0.0864000000 —0.0863999925 ®O00000075
0.7 —0.1029000000 —0.1028999652 ®000000348
0.8 —0.1024000000 —0.1023998733 ®000001267
0.9 —0.0729000000 —0.0728996051 ®000003949
1.0 0.0000000000 000010840 000010840

Let’s consider the following approximations

The vectorC is computed by solving the equation of
linear for eight unknowns, via the Maple package, as
follow

x®(x+5) ~ f{ (x),
X8 — 2290 1 ax104 XM~ 1] (x),
YO (x) ~ CTy(x),

y(x) = CTPOY(X) + 5%y (0) + 2x'y ¥ (0)

+6Y"(0)+ 3x%Y'(0) +xy (0

=CTPoY(x) + ff Y(x),

(t4 =) ~ YT (OKW(1).

) +y(0)

0 02 0.4 0.6 0.8 1

| O mumerical solution === sxact solution)

Fig. 7: Comparison of the exact and approximate solution of
Example 4.
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Fig. 8: The absolute errors of Example 4 for various [0, 1].
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