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Abstract: In this paper, the maximum likelihood and Bayesian estimations are developed based on an ordered pooled sample from
two independent samples of record values from the left truncated exponential distribution. The Bayesian estimation for the unknown
parameters is discussed using different loss functions. Also, the maximum likelihood and the Bayesian estimators of the corresponding
reliability andpth quantile functions are calculated. The problem of predicting the record values from a future sample from the sample
population is also discussed from a Bayesian viewpoint. A Monte Carlo simulation study is conducted to compare the maximum
likelihood estimator with the Bayesian estimators. Finally, an illustrative example is presented to demonstrate the different inference
methods discussed here.
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1 Introduction

Let X1,X2,X3, ... be a sequence of independent and identically distributed (iid) random variables. Then, an observation
Xj is called an upper record value if it exceeds all previous observations, i.e., ifXj > Xi for every i < j. Record values
are defined as a model for successive extremes in a sequence ofiid random variables such as successive largest insurance
claims in non-life insurance, highest water levels or highest temperatures. Records are also used in reliability theory.
Suppose that a technical system is subject to shocks, e.g. peaks of voltages. If the shocks are viewed as realizations of an
iid sequence, then the model of record statistics (values ofsuccessive peak voltages) is adequate. Moreover, record values
can also be applied in the analysis of a minimal-repair system data; see [1]. In a minimal repair experiment, the system is
put back into operation, after a failure had occurred that necessitated a minimal repair of the system. Interestingly, in this
case, the observed repair times possess the same joint distribution as upper record values. The theory of record values was
introduced for the first time by Chandler in [2], and since then, many authors have studied record values and the associated
statistics; see, for example, [3], [4], [5], [6], [7], [8] and [9].

The expected number of observed record values in a random sample of sizen is approximately logn+ γ , whereγ is
the Eulers constant 0.5772. Thus, in a sequence of 1000 observations, we would expect to observe only 7 records. Hence,
the precision of the statistical inference developed basedon this data will be quite low. In such a situation, if it will be
possible and convenient to take an additional independent sample of record values, it might be possible to use the ordered
pooled sample from these two samples in order to increase theprecision of the statistical inference.

Recently, Beutner and Cramer in [10] derived the joint distribution of the ordered pooled sample from two independent
minimal-repair systems (two independent samples of recordvalues) as a mixture of the joint distribution of particular
generalized order statistics from the same population and then applied these results to construct nonparametric prediction
intervals for the future repair times of an identically structured minimal-repair system. Amini and Balakrishnan in [11]
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discussed the same problem for the general case of pooling from k independent samples of record values. They derived
the joint and marginal distributions of the combined ordered record sample for the general case and then used these
distributional results to develop exact nonparametric confidence intervals for the quantiles of the population and also
exact nonparametric prediction intervals for a future record value. In this paper, we use the joint distribution of the
ordered pooled sample from two independent samples of record values derived by Beutner and Cramer in [10] to develop
maximum likelihood and Bayesian estimation for the two parameters of the left truncated exponential distribution and
also Bayesian prediction for record values from a future sample from the same population.

For the Bayesian estimation in this context, we consider here three types of loss functions. The first is the squared
error SE loss function which is a symmetric function that gives equal importance to overestimation and underestimation
in the parameter estimation. The second is the linear-exponential LINEX loss function, introduced by Varian in [12],
which is asymmetric and gives differing weights to overestimation and underestimation. This function rises approximately
exponentially on one side of zero and approximately linearly on the other side. The third loss function is the generalization
of the entropy GE loss used by several authors (see, for example, [13]). This more general version allows for different
shapes of the loss function.

In many practical problems, one may wish to use past data to predict an observation from a future sample from the
same population. As in the case of estimation, a predictor can be either a point or an interval predictor. Prediction of record
values has potential environmental applications dealing,for example, predicting the flood level of a river that is greater
than the previous ones is of importance to climatologists and hydrologists. Predicting the magnitude of an earthquake
which has a greater magnitude than the previous ones, in a given region, is of importance to seismologists as well. For
more examples, see [14]. Prediction for future records have been discussed by manyauthors, including [15], [16], [17],
[18], [19], [20], [21] and [22].

The rest of this paper is organized as follows. In Section 2, the description of the model of the ordered pooled sample
from two independent samples of record values is presented.The maximum likelihood ML estimator and the Bayesian
estimators under SE, LINEX and GE loss functions for the unknown parameters and the corresponding reliability and
pth quantile functions are derived in Section 3. The problem of predicting record values from a future sample is then
discussed in Section 4. Finally, in Section 5, some computational results are presented for illustrating all the inferential
methods developed here.

2 The model description

Let X(1), ...,X(r) andY(1), ...,Y(s) be two independent samples of record values from the same population with cumulative
distribution function (CDF)F . In the following, the ordered pooled sample fromX(1), ...,X(r);Y(1), ...,Y(s) will be denoted
by Z = (Z(1), ...,Z(r+s)) whereZ(1) ≤ ...≤ Z(r+s).

Beutner and Cramer in [10] derived the joint density function of the pooled sampleZ = (Z(1), ...,Z(r+s)) (the joint
distribution of the ordered pooled sample from two independent minimal-repair systems) as a mixture of the joint
distribution of particular generalized order statistics from the same population as follows:

f Z(z) =
r−1

∑
i=0

βi f
W(s+i)

(z)+
s−1

∑
j=0

φ j f V(r+ j)
(z), (1)

where z = (z1, ...,zr+s) is a vector of realizations,W(s+i) = (W(s+i)
(∗1) , ...,W(s+i)

(∗r+s)) for i = 0, ..., r − 1, and

V(r+ j) = (V(r+ j)
(∗1) , ...,V(r+ j)

(∗r+s)) for j = 0, ...,s− 1, are generalized order statistics from the same population based on
parameters

γ(s+i)
ℓ = 1+1[1,...,s+i](ℓ), 0≤ i ≤ r −1,

η(r+ j)
ℓ = 1+1[1,...,r+ j ](ℓ), 0≤ j ≤ s−1, 1≤ ℓ≤ r + s,

respectively (1A(·) denotes the indicator function onA), and the mixture probabilities are given by

βi =

(
s+ i −1

s−1

)
2−(s+i), 0≤ i ≤ r −1,

φ j =

(
r + j −1

r −1

)
2−(r+ j), 0≤ j ≤ s−1.

Using the concept of generalized order statistics given by Kamps in [23], ordered random variablesV1, ...,Vn are
called generalized order statistics based on continuous CDF F with probability density function (PDF)f and on positive
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parametersγ1, ...,γn if they have the joint PDF

fV1,...,Vn(v1, ...,vn) =

(
n

∏
j=1

γ j

)(
n−1

∏
i=1

[1−F(vi)]
γi−γi+1−1 f (vi)

)
[1−F(vn)]

γn−1 f (vn), (2)

for F−1(0)≤ v1 ≤ v2 ≤ ...≤ vn ≤ F−1(1).
By using the joint density function of the generalized orderstatistics in (2), the joint density function of the ordered

pooled sampleZ = (Z(1), ...,Z(r+s)) in (1) becomes

f Z(z) =
r−1

∑
i=0

β ∗
i




r+s−1

∏
q=1

q6=s+i

f (zq)

1−F(zq)


 f (zs+i) f (zr+s)+

s−1

∑
j=0

φ∗
j




r+s−1

∏
q=1

q6=r+i

f (zq)

1−F(zq)


 f (zr+ j ) f (zr+s), (3)

where

β ∗
i = 2s+iβi =

(
s+ i −1

s−1

)
, 0≤ i ≤ r −1,

φ∗
j = 2r+ jφ j =

(
r + j −1

r −1

)
, 0≤ j ≤ s−1.

In this paper, the underlying distribution is assumed to be the left truncated exponential with PDF and CDF as

f (x | θ ,µ) = θ exp(−θ (x− µ)) , x> µ , (4)

and
F (x | µ ,θ ) = 1−exp(−θ (x− µ)) , x> µ , (5)

with rate parameterθ > 0, and location parameterµ > 0. If µ is not restricted to be nonnegative then (5) is more
appropriately referred to as the two-parameter exponential distribution. Introducing distinctive names for these two
distributions is necessary since it is only the former (withµ > 0) which is really appropriate as a lifetime distribution
model.

The reliability functionR(t) and thepth quantileξp of the left truncated exponential distribution are given, respectively,
by

R(t) = exp(−θ (t − µ)) , t > µ , (6)

and

ξp = µ −
log(1− p)

θ
, 06 p6 1. (7)

3 ML and Bayesian estimation

In this section, we derive the ML estimator and the Bayesian estimators under SE, LINEX and GE loss functions for the
unknown parametersθ andµ . Also, the ML and the Bayesian estimators of the corresponding reliability andpth quantile
functions are calculated.

Using (3), (4) and (5), the likelihood function ofθ andµ based on the pooled sampleZ = (Z(1), ...,Z(r+s)) can be
written as

L(θ ,µ | Z) =
r−1

∑
i=0

β ∗
i θ r+sexp(−θ [ui +2(z1− µ)])+

s−1

∑
j=0

φ∗
j θ r+sexp

(
−θ
[
u∗j +2(z1− µ)

])
(8)

where

ui = (zs+i − z1)+ (zr+s− z1) for i = 0,1, . . . , r −1,

and

u∗j = (zr+ j − z1)+ (zr+s− z1) for j = 0,1, . . . ,s−1.
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3.1 ML estimation

From (8), the log-likelihood function of(θ ,µ) is given by

logL(θ ,µ | z) = log

{
r−1

∑
i=0

β ∗
i θ r+sexp(−θ [ui +2(z1− µ)])+

s−1

∑
j=0

φ∗
j θ r+sexp

(
−θ
[
u∗j +2(z1− µ)

])
}
. (9)

Now, the likelihood function is maximized with respect toµ by takingµ̂ML = z1. To maximize relative toθ , we need to
differentiate (9) with respect toθ and solve the likelihood equation

∂ logL(θ ,µ | Z)
∂θ

= 0

and so the ML estimator̂θML of θ is readily obtained by solving the following equation

r−1

∑
i=0

β ∗
i (r + s−θui)exp(−θui)+

s−1

∑
j=0

φ∗
j

(
r + s−θu∗j

)
exp
(
−θu∗j

)
= 0. (10)

By using the invariance property, the ML estimators of the reliability function and thepth quantile function can be
obtained, respectively, as

R̂ML (t) = exp
(
−θ̂ML (t − µ̂ML)

)
(11)

and

ξ̂pML = µ̂ML −
log(1− p)

θ̂ML
. (12)

3.2 Bayesian estimation

For Bayesian estimation, we use here the natural conjugate prior density function for(θ ,µ) given by

π (θ ,µ) ∝ θ gexp(−θ [h+ c(b− µ)]) , 0< µ < b, θ > 0, (13)

whereg>−1, h> 0 andc> 0; see [24]. By takingg→−1, h→ 0, c→ 0 andb→ ∞, the non-informative prior density
function for(θ ,µ) is given by

π (θ ,µ) ∝
1
θ
, θ > 0. (14)

It follows that the joint posterior density function of(θ ,µ), givenZ = z, is given by

π∗ (θ ,µ) = I−1

{
r−1

∑
i=0

β ∗
i θ G exp(−θ [Hi +C(B− µ)])+

s−1

∑
j=0

φ∗
j θ G exp

(
−θ
[
H∗

j +C(B− µ)
])
}

(15)

whereI is the normalizing constant given by

I =

∞∫

0

B∫

0

π∗ (θ ,µ)dµdθ

=
Γ (G)

C

r−1

∑
i=0

β ∗
i

[
(Hi)

−G− (Hi +CB)−G
]
+

s−1

∑
j=0

φ∗
j

[(
H∗

j

)−G
−
(
H∗

j +CB
)−G

]
, (16)

with G= r +s+g,C= c+2,B= min(b,z1), Hi = ui +h+bc+2z1−CB, H∗
j = u∗j +h+bc+2z1−CB, andΓ (·) denotes

the complete gamma function.
Hence, the Bayesian estimator ofθ under the SE loss function is given by

θ̂BS = E[θ ]

=
Γ (G+1)I−1

C

{
r−1

∑
i=0

β ∗
i

[
(Hi)

−(G+1)− (Hi +CB)−(G+1)
]
+

s−1

∑
j=0

φ∗
j

[(
H∗

j

)−(G+1)
−
(
H∗

j +CB
)−(G+1)

]}
, (17)
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and the Bayesian estimator ofµ under the SE loss function is given by

µ̂BS = E[µ ]

=
Γ (G−1)I−1

C2

{
r−1

∑
i=0

β ∗
i

[
BC(G−1)(Hi)

−G+(Hi +CB)−G+1− (Hi)
−G+1

]

+
s−1

∑
j=0

φ∗
j

[
BC(G−1)

(
H∗

j

)−G
+
(
H∗

j +CB
)−G+1

−
(
H∗

j

)−G+1
]}

. (18)

The Bayesian estimator ofθ under the LINEX loss function is given by

θ̂BL =
−1
υ

log(E [exp(−υθ )])

=
−1
υ

log

(
Γ (G)I−1

C

{
r−1

∑
i=0

β ∗
i

[
(Hi +υ)−G− (Hi +υ +CB)−G

]
+

s−1

∑
j=0

φ∗
j

[(
H∗

j +υ
)−G

−
(
H∗

j +υ +CB
)−G

]})
,

(19)

and the Bayesian estimator ofµ under the LINEX loss function is given by

µ̂BL =
−1
υ

log(E [exp(−υµ)])

=
−1
υ

log


Γ (G+1)I−1





r−1

∑
i=0

β ∗
i

B∫

0

exp(−υµ) [Hi +C(B− µ)]−(G+1)dµ

+
s−1

∑
j=0

φ∗
j

B∫

0

exp(−υµ)
[
H∗

j +C(B− µ)
]−(G+1)

dµ






 . (20)

The Bayesian estimator ofθ under the GE loss function is given by

θ̂BE =
(

E
[
θ−d

])−1
d

=

(
Γ (G−d) I−1

C

{
r−1

∑
i=0

β ∗
i

[
(Hi)

(d−G)− (Hi +CB)(d−G)
]
+

s−1

∑
j=0

φ∗
j

[(
H∗

j

)(d−G)
−
(
H∗

j +CB
)(d−G)

]})−1
d

, (21)

and the Bayesian estimator ofµ under the GE loss function is given by

µ̂BE =
(

E
[

µ−d
])−1

d

=


Γ (G+1) I−1





r−1

∑
i=0

β ∗
i

B∫

0

µ−d [Hi +C(B− µ)]−(G+1)dµ +
s−1

∑
j=0

φ∗
j

B∫

0

µ−d [H∗
j +C(B− µ)

]−(G+1)
dµ








−1
d

. (22)

The Bayesian estimator of the reliability function under the SE loss function is given by

R̂BS(t) = E [exp(−θ (t − µ))]

=
Γ (G)I−1

C+1

{
r−1

∑
i=0

β ∗
i

[
(Hi + t−B)−(G)− (Hi + t+CB)−(G)

]
+

s−1

∑
j=0

φ∗
j

[(
H∗

j + t−B
)−(G)

−
(
H∗

j + t+CB
)−(G)

]}
,

(23)

and the Bayesian estimator of thepth quantile function under the SE loss function is given by

ξ̂pBS = E[µ ]− log(1− p)E[
1
θ
]

= µ̂BS− log(1− p)
Γ (G−1)I−1

C

{
r−1

∑
i=0

β ∗
i

[
(Hi)

(1−G)− (Hi +CB)(1−G)
]
+

s−1

∑
j=0

φ∗
j

[(
H∗

j

)(1−G)
−
(
H∗

j +CB
)(1−G)

]}
.

(24)
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4 Bayesian prediction of order statistics from a future sample

Let W(1),W(2),W(3), . . . be a sequence of record values from a future sample from the same population. We discuss here
the Bayesian prediction ofW(k), for k = 1,2,3..., based on the observed pooled sampleZ = (Z(1), ...,Z(r+s)). We derive
the Bayesian predictive distribution forW(k), and then find the Bayesian point predictor and prediction interval.

It is well known that the marginal density function of thekth record value is given; see [6], by

fW(k)
(w | θ ,µ) =

1
Γ (k)

[
− log

−
F (w)

]k−1

f (w) , w≥ 0. (25)

Upon substituting (4) and (5) in (25), the marginal density function ofW(k) becomes

fW(k)
(w | θ ,µ) =

1
Γ (k)

(w− µ)k−1 θ k exp(−θ (w− µ)) . (26)

By forming the product of (15) and (26), and integrating out(θ ,µ) over the set{(θ ,µ) : θ > 0, 0< µ < min
(
B,W(k)

)}
,

the Bayesian predictive density function ofW(k), givenZ = z, is then

f ∗W(k)
(w|z) =

{
f ∗1,W(k)

(w|z) , 0< w< B,

f ∗2,W(k)
(w|z) , w> B,

(27)

where

f ∗1,W(k)
(w|z)

=

∞∫

0

w∫

0

π∗ (θ ,µ) fW(k)
(w | θ ,µ)dµdθ

=
Γ (G+ k+1)I−1

Γ (k)

{
r−1

∑
i=0

k−1

∑
h=0

h

∑
q=0

β ∗
i ChCkwk−h−1 (Hi +CB+w)h−q

(q−G− k)(C+1)h+1

[
(Hi +CB+w)q−G−k− (Hi +CB−Cw)q−G−k

]

+
s−1

∑
j=0

k−1

∑
h=0

h

∑
q=0

φ∗
j ChCkwk−h−1 (H j +CB+w)h−q

(q−G− k)(C+1)h+1

[(
H∗

j +CB+w
)q−G−k

−
(
H∗

j +CB−Cw
)q−G−k

]}
(28)

and

f ∗2,W(k)
(w|z)

=

∞∫

0

B∫

0

π∗ (θ ,µ) fW(k)
(w | θ ,µ)dµdθ

=
Γ (G+ k+1)I−1

Γ (k)

{
r−1

∑
i=0

k−1

∑
h=0

h

∑
q=0

β ∗
i ChCkwk−h−1 (Hi +CB+w)h−q

(q−G− k)(C+1)h+1

[
(Hi +CB+w)q−G−k− (Hi +w−B)q−G−k

]

+
s−1

∑
j=0

k−1

∑
h=0

h

∑
q=0

φ∗
j ChCkwk−h−1

(
H∗

j +CB+w
)h−q

(q−G− k)(C+1)h+1

[(
H∗

j +CB+w
)q−G−k

−
(
H∗

j +w−B
)q−G−k

]



, (29)

with Ch = (−1)h (k−1)!
(k−h−1)!h! andCq = (−1)q h!

(h−q)!q! .
From (27), we simply obtain the predictive survival function ofW(k), givenZ = z, as

F̄∗
W(k)

(t|z) =

{
F̄∗

1,W(k)
(t|z) , 0< t < B,

F̄∗
2,W(k)

(t|z) , t > B,
(30)

where

F̄∗
1,W(k)

(t|z) =

B∫

t

f ∗1,W(k)
(w|z) dw+

∞∫

B

f ∗2,W(k)
(w|z)dw, (31)
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and

F̄∗
2,W(k)

(t|z) =

∞∫

t

f ∗2,W(k)
(w|z)dw. (32)

The Bayesian point predictor ofW(k) under SE loss function is the mean of the predictive density,given by

W̄(k) =

B∫

0

w f∗1,W(k)
(w|z)dw+

∞∫

B

w f∗2,W(k)
(w|z)dw (33)

which would of course require numerical integration.
The Bayesian predictive bounds of a two-sided equi-tailed 100(1− γ)% interval forW(k), can be obtained by solving

the following two equations:

F̄∗
W(k)

(L | z) = 1−
γ
2

and F̄∗
W(k)

(U | z) =
γ
2
,

whereF̄∗
W(k)

(t | z) is as in (30), andL andU denote the lower and upper bounds, respectively.

5 Numerical results and an illustrative example

In this section, the ML and Bayesian estimates using the SE, LINEX and GE loss functions are all compared by means of
a Monte Carlo simulation study. A numerical example is finally presented to illustrate all the inferential results established
in the preceding sections.

5.1 Monte Carlo simulation

A simulation study is carried out for evaluating the performance of the ML estimate and all the Bayesian estimates
discussed in Section 3. We choose the parameterθ to be 0.5, 1 and 3 withµ = 1 and different choices ofr ands. For
these cases, we computed the ML estimate and Bayesian estimates ofθ and µ under the SE, LINEX (withυ = 0.5)
and GE (withd = 0.5) loss functions using informative priors (IP) and non-informative prior (NIP). We also computed
the ML estimate and Bayesian estimate under the SE loss function for the corresponding reliability (witht = 3) andpth

quantile (withp = 0.5) functions. We repeated this process 1000 times and computed, for each estimate, the estimated
bias (EB) and the estimated risk (ER) by using the root mean square error. The EB and ER of all the estimates ofθ and
µ are summarized in Tables 1 and 2, respectively. The EB and ER of all the estimates of the reliability andpth quantile
functions are summarized in Table 3.

From Tables 1-3, we observe that, for the different choices of θ , the estimated bias and risk of the Bayesian estimates
based on the SE, LINEX and GE loss functions are smaller than those of the ML estimates. We also observe that the
estimated bias and risk of all the estimates decrease with increasingr ands. Moreover, a comparison of the results for the
informative priors with the corresponding ones for non-informative priors reveals that the former produce more precise
results, as we would expect. Finally, we observe that the estimated bias and risk of the ML estimates are close to the
corresponding ones of the Bayesian estimates based on the SEloss function under non-informative priors.

From Table 1, we observe that the estimated bias and risk of all the estimates ofθ increase with increasingθ . But,
from Tables 2 and 3, we observe that the estimated bias and risk of all the estimates ofµ , R(3) andξ0.5 decrease with
increasingθ .

5.2 Illustrative example

In order to illustrate all the inferential results established in the preceding sections, we consider two simulated samples
of record values with sizesr = 4 ands= 4 from the left truncated exponential distribution withθ = 3 andµ = 1. The
simulated samples are as follows:

The first simulated sample 1.3090 1.8571 3.1230 3.1973
The second simulated sample 1.2832 1.3403 1.6357 1.6368
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Table 1: The values of EB and ER of the ML and Bayesian estimates ofθ for different choices ofθ , r ands with µ = 1.

θ̂ML θ̂BS θ̂BL θ̂BE
θ r s EB ER EB ER EB ER EB ER

0.5 4 4 IP 0.1969 0.3870 0.0930 0.2326 0.0809 0.2190 0.0384 0.1966
NIP – – 0.1347 0.3196 0.1178 0.2949 0.0679 0.2662

6 4 IP 0.1579 0.3023 0.0832 0.2062 0.0734 0.1962 0.0376 0.1775
NIP – – 0.1113 0.2561 0.0989 0.2413 0.0579 0.2174

6 6 IP 0.1198 0.2454 0.0650 0.1791 0.0576 0.1721 0.0290 0.1587
NIP – – 0.0848 0.2130 0.0760 0.2036 0.0441 0.1866

8 6 IP 0.0995 0.2122 0.0560 0.1630 0.0497 0.1574 0.0244 0.1461
NIP – – 0.0710 0.1873 0.0636 0.1802 0.0358 0.1662

8 8 IP 0.0831 0.1940 0.0482 0.1543 0.0429 0.1498 0.0213 0.1407
NIP – – 0.0587 0.1738 0.0527 0.1682 0.0294 0.1574

1 4 4 IP 0.3939 0.7740 0.0614 0.3739 0.0239 0.3411 0.0362 0.3352
NIP – – 0.2453 0.6256 0.1813 0.5352 0.1110 0.5212

6 4 IP 0.3158 0.6046 0.0574 0.3373 0.0264 0.3128 0.0245 0.3068
NIP – – 0.2030 0.5006 0.1553 0.4455 0.0958 0.4254

6 6 IP 0.2396 0.4907 0.0490 0.3037 0.0242 0.2859 0.0178 0.2808
NIP – – 0.1535 0.4173 0.1194 0.3820 0.0718 0.3665

8 6 IP 0.1989 0.4244 0.0400 0.2809 0.0184 0.2668 0.0189 0.2627
NIP – – 0.1277 0.3672 0.0992 0.3405 0.0572 0.3269

8 8 IP 0.1662 0.3880 0.0326 0.2691 0.0143 0.2574 0.0179 0.2543
NIP – – 0.1055 0.3421 0.0823 0.3211 0.0468 0.3107

3 4 4 IP 1.1816 2.3221 0.5146 1.5259 0.1197 1.1052 0.1698 1.3071
NIP – – 0.6622 1.8592 0.1671 1.2493 0.2491 1.5553

6 4 IP 0.9473 1.8138 0.4478 1.2824 0.1088 0.9909 0.1645 1.1154
NIP – – 0.5495 1.4874 0.1480 1.0952 0.2213 1.2699

6 6 IP 0.7188 1.4722 0.3474 1.1025 0.0919 0.8983 0.1247 0.9856
NIP – – 0.4113 1.2415 0.1296 0.9822 0.1618 1.0963

8 6 IP 0.5968 1.2732 0.2967 1.0036 0.0841 0.8396 0.1017 0.9080
NIP – – 0.3399 1.0931 0.1020 0.8957 0.1251 0.9786

8 8 IP 0.4985 1.1639 0.2521 0.9442 0.0733 0.8100 0.0872 0.8676
NIP – – 0.2802 1.0212 0.0838 0.8629 0.1014 0.9319

These samples are now assumed to have come from the left truncated exponential distribution, with both parametersθ
and µ being unknown. Based on the ordered pooled sample
Z = (1.2832,1.3090,1.3403,1.6357,1.6368,1.8571,3.1230,3.1973) from these two samples, we computed the ML
estimate and the Bayesian estimates ofθ and µ based on the SE, LINEX (withv = 0.5) and GE (withd = 0.5) loss
functions using informative prior with (g,h,c,b) = (1,0.1,0.1,1.5) and non-informative prior with
(g,h,c,b)→ (−1,0,0,∞). Also, we computed the ML estimate and Bayesian estimates ofthe reliability (witht = 3) and
pth quantile (with p = 0.5) functions. Moreover, we computed the point predictors aswell as the bounds of the
equi-tailed prediction intervals for the future record valuesW(k), for k = 1,2, ...,7, from a future sample from the same
population. All these results are summarized in Tables 4 and5.
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Table 2: The values of EB and ER of the ML and Bayesian estimates ofµ for different choices ofθ , r ands with µ = 1.
µ̂ML µ̂BS µ̂BL µ̂BE

θ r s EB ER EB ER EB ER EB ER
0.5 4 4 IP 1.0056 1.4154 0.2835 0.5388 0.2327 0.4955 0.0044 0.4451

NIP – – 0.3926 0.9408 0.3162 0.8537 0.0434 0.8133
6 4 IP 1.0355 1.4465 0.3021 0.5523 0.2511 0.5085 0.0254 0.4537

NIP – – 0.4168 0.9667 0.3392 0.8755 0.0681 0.8375
6 6 IP 0.9926 1.4119 0.2657 0.5332 0.2159 0.4914 0.0106 0.4492

NIP – – 0.3764 0.9472 0.3018 0.8638 0.0307 0.8371
8 6 IP 0.9999 1.4199 0.2683 0.5332 0.2182 0.4911 0.0085 0.4489

NIP – – 0.3779 0.9467 0.3022 0.8617 0.0293 0.8308
8 8 IP 0.9930 1.3606 0.2837 0.5392 0.2329 0.4961 0.0066 0.4475

NIP – – 0.3658 0.8757 0.2910 0.7952 0.0140 0.7579

1 4 4 IP 0.4577 0.5583 0.0600 0.0742 0.0326 0.0823 0.1154 0.1366
NIP – – 0.0650 0.2641 0.0676 0.2471 0.1563 0.2890

6 4 IP 0.4630 0.5468 0.0562 0.0734 0.0353 0.0812 0.1082 0.1335
NIP – – 0.0678 0.2317 0.0635 0.2131 0.1526 0.2558

6 6 IP 0.5589 0.6813 0.0596 0.0718 0.0666 0.0792 0.1075 0.1271
NIP – – 0.1784 0.4527 0.1486 0.4413 0.1725 0.4737

8 6 IP 0.3169 0.4741 0.0715 0.0917 0.0782 0.0984 0.1178 0.1431
NIP – – 0.0577 0.3055 0.0850 0.3002 0.2662 0.3956

8 8 IP 0.3108 0.3964 0.0465 0.0582 0.0527 0.0647 0.0852 0.1029
NIP – – 0.0688 0.2172 0.0958 0.2204 0.2817 0.3476

3 4 4 IP 0.1676 0.2359 0.0007 0.0410 0.0014 0.0418 0.0094 0.0475
NIP – – 0.0183 0.0952 0.0273 0.0971 0.0817 0.1329

6 4 IP 0.1726 0.2411 0.0041 0.0400 0.0023 0.0405 0.0043 0.0445
NIP – – 0.0153 0.0834 0.0241 0.0853 0.0752 0.1218

6 6 IP 0.1654 0.2353 0.0024 0.0392 0.0006 0.0396 0.0049 0.0426
NIP – – 0.0218 0.1623 0.0138 0.1640 0.0337 0.1925

8 6 IP 0.1625 0.2270 0.0032 0.0380 0.0015 0.0384 0.0037 0.0409
NIP – – 0.0633 0.1332 0.0715 0.1374 0.1213 0.1801

8 8 IP 0.1683 0.2372 0.0041 0.0390 0.0025 0.0393 0.0023 0.0416
NIP – – 0.0616 0.0990 0.0692 0.1042 0.1131 0.1448
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Table 3: The values of EB and ER of the ML and Bayesian estimates for R(3) andξ0.5 for different choices ofθ , r ands with µ = 1.

R̂ML R̂BS ξ̂0.5ML ξ̂0.5BS
θ r s EB ER EB ER EB ER EB ER

0.5 4 4 IP 0.5166 3.4632 0.0592 0.1534 0.7951 1.3638 0.3853 0.7431
NIP – – 0.7571 2.4993 – – 0.4857 1.1109

6 4 IP 0.4162 1.8468 0.0633 0.1503 0.8507 1.3852 0.3746 7080
NIP – – 0.2497 1.9744 – – 0.4784 1.0871

6 6 IP 0.3902 1.2743 0.0598 0.1459 0.8463 1.3659 0.3295 0.6693
NIP – – 0.2035 0.9183 – – 0.4292 1.0390

8 6 IP 0.4277 2.1525 0.0626 0.1444 0.8776 1.3898 0.3299 0.6597
NIP – – 0.2696 2.8214 – – 0.4298 1.0372

8 8 IP 0.4051 2.8984 0.0681 0.1430 0.8937 1.3284 0.3405 0.6398
NIP – – 0.2452 3.2733 – – 0.4175 0.9486

1 4 4 IP 0.0975 0.6007 0.0161 0.0730 0.3976 0.6819 0.0751 0.2240
NIP – – 0.0768 0.5706 – – 0.1760 0.5363

6 4 IP 0.0999 0.4721 0.0096 0.0668 0.4254 0.6926 0.0985 0.2128
NIP – – 0.0659 0.3236 – – 0.1704 0.5270

6 6 IP 0.0978 0.3160 0.0041 0.0610 0.4231 0.6829 0.1191 0.2049
NIP – – 0.0575 0.2039 – – 0.1406 0.5074

8 6 IP 0.1086 0.4081 0.0023 0.0587 0.4388 0.6949 0.1260 0.2031
NIP – – 0.0619 0.2847 – – 0.1393 0.5075

8 8 IP 0.1001 0.3254 0.0003 0.0548 0.4468 0.6642 0.1317 0.1968
NIP – – 0.0528 0.2136 – – 0.1337 0.4619

3 4 4 IP 0.0030 0.0117 0.0113 0.0186 0.1325 0.2273 0.0236 0.0808
NIP – – 0.0130 0.0215 – – 0.0285 0.1717

6 4 IP 0.0030 0.0120 0.0090 0.0155 0.1418 0.2309 0.0228 0.0725
NIP – – 0.0103 0.0183 – – 0.0247 0.1713

6 6 IP 0.0028 0.0098 0.0072 0.0124 0.1410 0.2276 0.0123 0.0655
NIP – – 0.0081 0.0144 – – 0.0193 0.1682

8 6 IP 0.0031 0.0105 0.0065 0.0115 0.1463 0.2316 0.0120 0.0635
NIP – – 0.0073 0.0136 – – 0.0190 0.1691

8 8 IP 0.0029 0.0087 0.0056 0.0098 0.1489 0.2214 0.0096 0.0587
NIP – – 0.0062 0.0112 – – 0.0192 0.1548

Table 4: The ML and Bayesian estimates forθ , µ, R(3) andξ0.5.

θ̂ML θ̂BS θ̂BL θ̂BE µ̂ML µ̂BS µ̂BL µ̂BE R̂ML(3) R̂BS(3) ξ̂0.5ML ξ̂0.5BS
IP 3.3407 2.7985 2.5689 2.5242 1.2832 1.0180 1.0157 1.0078 0.0032 0.0148 1.4907 1.3031

NIP – 2.8996 2.6221 2.5748 — 1.0895 1.0782 1.0200 — 0.0167 — 1.3708

Table 5: Bayesian prediction ofW(k) for k= 1, ...,7.

Point predictor Equi-tailed interval
k IP NIP IP NIP
1 1.5155 1.4953 (0.7799,2.7608) (0.7875,2.8435)
2 1.9414 1.9011 (1.0219,3.7634) (1.0349,3.8976)
3 2.3674 2.3069 (1.2297,4.7053) (1.2465,4.8873)
4 2.7933 2.7127 (1.0291,5.6236) (1.0173,5.8519)
5 3.2193 3.1184 (1.5818,6.5300) (1.6087,6.8038)
6 3.6452 3.5242 (1.7543,7.4293) (1.7883,7.7482)
7 4.0712 3.9299 (1.9281,8.3240) (1.9698,8.6876)
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