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Abstract: In this Article, we present an explicit direct proof of thenwolution property for a heavy tailed stable distributidme
distribution arises and is of interest in a variety of thetegts in many disciplines: in probability and statistieselectrical engineering,
computer vision, image and signal processing and in mangipalyand economic processes. We shall refer to this asd distribution
in the sequel. The particular convolution property for thgribution, which entails its stability, shows that thergde mean based
on a random sample af observations from this distribution has the same distidiougs that ofn times a single observation. The
sample mean, thus, is more variable than a single obsemvatid increases by an order mfas the sample size increases. The
central limit theorem, evidently, does not hold for thistdizition. We also give an alternative proof for the aboveperty based on
Laplace transforms. These proofs do not seem to be avaitabtandard text books. The only proofs available use achaoguments
involving the Brownian motion process. In addition, forteeunderstanding of Lévy’s and other stable distribigj@ome contextually
relevant basic properties of stable distributions are discussed and elaborated on. Stable distributions aréntiten distributions,
under appropriate conditions, of normed sums of independ@cdom variables. Their study should be of interest peflsese proofs
in their detailed presentation along with an introductoigcdssion of stable distributions should help to fill up aabte gap in the
available text-book literature. The article should be @éiast from a pedagogical standpoint for seniors, first geaduate students
and beginning researchers in statistics and probability.
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1 Introduction

Consider a random variablev.)X with density
1
fx(X) = —=e @ ,x>0. (1)

The random variablX is distributionally equivalent to the random variabie whereZ ~ N(0,1), the normal random
variable with mean 0 and variance 1. The mean and varianceotlexist for this distribution. The density given by
equation (1) is an example of a heavy-tailed distributi@® e plot below in Fig 1.The density is a special case of an
inverse-gamma family of densities (Johnson et al. 19950 b; @asella and Berger 2002, p.52,)8] given, for parameters
a>0,6>0,by

fy(xa,B) = (r€;)>xale<5>,x>o, )

with the shape and scale parametmand 3, respectively, each set equal%tolt is easy to see that if a r.. follows the
gamma densitgy(y; o, 8) = (%) x@—1e=PX x > 0, then the density (2), as the name inverse gamma suggesiaf i

of the rv.X = % The mean and variance of density (2) are given, respey:tlv;zl(a’%l) and {%} which exist
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only if o > 1 anda > 2, respectively. For the density (1) with= 3 = % in equation (2), thus, the mean and variance do
not exist, and so the central limit theorem(CLT) for thistdimition does not hold. The most basic CLT may be stated as
follows:

CLT (Bagui et al. 2013)]]: Let {X,: n> 1} be a sequence of independent and identically distributed. Jirandom
variables with meap, —o < u < o , and variance?,0 < g2 < o and se, = S X, Xn = [%] and

5 _ Si—nu VA —p)
n — — .
oyn o
ThenZz, 4z~ N(0,1) asn — o . (The notation® stands for "convergence in distributiony, stands for "distributed
as” andN(0,1) for a normal distribution with mean 0 and variance 1 .) O

In fact, the density (1) is an extreme example in which notydhht the central limit theorem does not hold, but
for which the tail heaviness of the distribution leads thegke mean to being more variable than a single observation.

Specifically, for this distribution the sample mesn= [%] has the same distribution as thatrof;. To show thatX, is

distributionally equivalent toaXy, i.e., Xy 4 nX; - which incidentally implies that the distribution (1) igistly stable with
characteristic exponent = % (see Section 4 below for definition; cf. Feller (1971) p. 13P) we shall prove in Section
2 the above-referred convolution property for a generallfaoi densities (defined by equation (4) below) which congai
the density (1). The main aim of this note, as stated eaiditw,present an explicit direct proof of this convolutiooperty
and also a discussion of stable distributions, not read#éylable in standard texts.

Fig. 1: Plot of the density (1)

2 The Convolution Property

To prove the above-referred convolution property of dgr(di}, let us consider a more general family of densities\aér.

x2
defined byX;) = %; whereZ ~ N(0,1) with (cumulative) distribution functiod(t) = P(Z <t) = [* (\/%1) e_(7>dx

and 0< 1 < . The considered family is just the family (2) withandf replaced with(%) and (T—zz) respectively (see
equation (4) below). The cumulative distribution functmfiX ) calculates to

2
2 T T T T
(since®(—x) = 1— ®(x)), with the probability density function given by

d

f(r) (X) = dx

2
ez x>0. (4)

T
Foy(¥)] = m

In (4) above when we sat= 1, we get the density (1). Now denote bythe family of densitieq f;) : 0 < T < o},
This family of densities] is closed under convolutions. We put this in a Theorem below:

Theorem 1.7 is closed under convolutions, i.€) * f) = f(r1a), forall 0 < 7,4 < eo.
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Proof. Let X; y) = X(r) + X1 ), then the density ; ) of X7 5 is given by, for 0< t < o,

t TA [t 1 _;[£+£} TA [t 1 _;[i+£]
f t:/ft—f d:—/iez‘*yyd: / e 2t vlgy (5
() O(n( y) fa) (y)dy 21 o [y’ y 272 Jo w1 w2 (5)

the last equality following by substituting= () as the variable of integration on the RHS integral (sinegy0< t yields

@2
0 < u < 1 as the limits of integrations). From (5), by multiplyingfbee the integral with factoe [ z } and dividing
with it inside the integral, we obtain after some simplifioatthat, for O< t < oo,

() = 2 - il N S L (6)
() ==—e /7e uT-ul du.
AT o2 0 [u(1—u)?
Now we make a further variable of integration substitutiomhie RHS integral in (6) by setting
v:w70<u<1; (7)
u(l—u)

clearly,v increases from-o to 0 asu increases from 0 tt%ﬁ} and from 0 to+o asu increases fro ﬁ} to 1. So

v 7 from —e to +00 asu ~ from 0 to 1. Now to evaluate the integral on the right of (6), seéve equation (7) fou in
terms of the variable. From (7), we obtain the quadratic equation
[(THA)2 4+ V2 = [2A(T+A) +vIu+A2=0, (8)
which yields two solutionsi; andu, given by (signst and—, respectively)
A(T+A) + v+ VVA41Av2 ©)
2[(T+A)2+v?
Both solutionau; andus in (9) are valid: This follows since firstly

Ug,Up =

VVATATAVE = | /(v2 4 21A)2 - 41202 < V2 210 < 2A(T+A) + V2, (10)

so that both solutions clearly are positive; and secondiy, iih view of (10), the numerator in (9) does not exceed the
expression below, namely,

[2A(T+A) 4+ V24 (2TA + V)] = 2[v24+2TA + A% < 2[V2 + (T+A)?]. (11)

Equation (9) and the inequality (10) show thiatu, > 0 and equation (9) and the inequality (11) thatu, < 1.
In fact, as we shall see, either of these two solutiprsndu, do enable us to evaluate the integral on the right side of (6).
Now note that from (7) we obtain, after some simplificatidratt

yo HAQ=U,, (12)
2u(l—u))2

so that using (7) and (12) in (6), we obtain

2

Cen2
Tt e* dv. (13)

f (t) — e /°° ;
)™ 2 o [TUFA(1—U)]
Now to simplify the integral in (13), we evaluafeu+ A (1 —u)] in terms ofv by using one of the valuag andu, in

(9), say,u; (that the othets, would yield the same result becomes clear readily): Nateghbstituting the valued, we
obtain

TRA(T+A) + V2 VVAFTAVZ +A2(T+A)2+2V2 = 2A(T+A) — V2 — VA + 4VA
2[(T+A)%2+v?

(T (VHATA) + (T=D)VVEHATAVZ V2 HATA[(T+A)VVZHATA + (T — A)V]

N 2[(t+A)2+ v B 2(t+A)2+v7 ’

TU+A(l—u)=

(14)

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

176 NS 2 S. C. Bagui, K. L. Mehra: On The Convolution Property of a He@iled...

so that from (14) we have, after multiplying numerator andafeinator in (14) witht +A+v/v2+4tA — (T —A)v] , that

1 2T+ AV [(THA)VVZHATA — (T—A)V]
TU+A(L1—U)  VVZEATA[(T+A)2(V2+4TA) — (T—A)2v2)
T+ AR+ VA[(T+AVVEFATA — (T-A)V]  (T+A) (T1-A) v

= == - . . 15
V2L ATA (V2 + (T4 A)2)(4TA) oA 20h P iamh (15)
Now substituting (15) in (13), we obtain
(TH+A) =22 {/w -2 (T—)\)/‘” v -2
f t) = @) @ dv — @ dv|; 16
() 12 e 7°°e v T+ M) ) /7\}2_'_41_/\9 v (16)

while the first integral on the RHS of (16) equal@mt using the property of normal density, the second integraishees
since its range i$—o, o) and the integrand is an odd function. Thus from (16), we agethat

A)  —@a)?
fron(t) = (T+A) <+/\).:f(r+)\ for0<t <, (17)

\/_iT(tz)

the last equality in (17) following by definition, with, 5, € . Thus we have proved thatis closed under convolutions.
O

Theorem 2. Let X, X1,X,---, X, be an i.i.d sample from the densifyl). Set§, = § X and X, = [%} Then, X, is
i=1

distributionally equivalent tmX, or equivalently thag, 4 12X for all n.
Proof. The preceding Theorem 1, coupled with a simple inductioni@ent and equation (4), yields that the density of

S= Z X is f(n) (namely, then- fold convolution off ;) with itself, i.e. f*'} equalsf(y), given by (4) witht = n. In view

of (3), by definition it implies tha, 4 n’X, whereX = (?) or equivalently thak, 94 X for all n. To see this, we use

equation (3) to deriv@[(&) <X = P[S, < n?X] = Fpp)(n?x) = 2[1— w(\/L_X)] =2 {1 @(ﬁ)} F1)(X),x> 0.
The last equation implies th%lx—“} X, or equivalently tha§, = d 12X This completes the proof. O

3 Proofs of Theorems 1 and 2 based on Laplace transforms

We shall now furnish alternative proofs of Theorem 1 and Taen2 based on the Laplace transformation technique.

Definition. If F denotes a probability distribution function concentratad®* = [0, »), the Laplace transform of F is
the function defined far> 0 by ¢ (t) = [5° e *dF(x).

Proposition 1. Distinct probability distributions ofR* have distinct Laplace transforms.
Proof. See Feller (1971); Xl p. 430g. O

We first derive the Laplace transform & given by (1):

Lemma 1.The Laplace transform of densify;, of (1) is given by (t) = e VZfort>0.
Proof. First note that fot > 0

¢(1>(t):/we“xf<1)(x)dx= i/wxfzgef(lzx2tx dx
0 \V211J0
~V2 o 1 /Ax-1)?
-< [x2e 0 a (18)
V2 Jo
Now if we sety = [ ‘F} 1)} as the transformed variable of integration in the precedhtegral, we note that as

1+xf

x / from 0 toeo,y 7 from —oo to 0 and the differentiatly evaluates taly = {
2x

] dx. Also solving the quadratic
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equationy/2tx — y,/Xx— 1 = 0 for /X, we obtain the only valid solution agx = {Mi M} (sincex > 0), with the

2v2t
last equality yielding (upon squaringdd= y? + 2v/2t +y4/y2 + 4+/2t, which leads to
1
QX+ 2V = Y+ 4V Hy Y2+ AVt = {y2+4\/ﬁ} : [(y2+4\/ﬁ)% +y} : (19)

Now note from (18) that, using the- expressions for the transformed variable of integragiand its differentiaty
from above, we can writg,(t) as

V2 1
(\/1_n> f/ 4tx4+2\/—] e ay

with the last equality obtained by multiplying the numeraaad the denominator witt2,/2t). Now substituting the
expression fof4tx + 2+/2t] from (19) in the preceding integral, we obtain

1 _\/z/ ¥
—€ ———e 2d
Vamn 4tX—|—2\/2t Y

_ 1 \/—/ (4\/—)eT dy
W+4«*]KW+4¢‘ﬁ+v]

d)(t) =

1 V2442t )2 -y -
= / e dy
- y2+4\/ 124y/2t
= ie“/z/ e’ y—ie“ﬁ/ 7e:2yzdy
V2 e V2 o [y2+ 4y/2)2
—e V2, (20)

where for evaluating the second equality on the right in (20 have multiplied the integrand’s numerator and

denominator withj(y? +4\/Z)% —V] , the last equality following since\/% 1%, e:2yE dy =1 and the latter integral being

identically equal to zero- since, as in the proof of Theorerthé integrand here is again an odd function. This proves
Lemma 1. 1

We now present the alternative proofs:

Proof of Theorem 1 based on Lemma 1First note that, by Lemma 1, the Laplace transforiX@fy ) = X(z) +X» ), with
X(r) andX,, independent, is given far> 0 by

¢(T‘)\)(t) = E[e—t(x(r)‘f‘X()\))] — E[e—tX(T)]E[e—IX()\)]
—e VAgNVA_ g (VA (21)
and the Laplace transform &f; ), evaluates by Lemma 1 to

Biesa(t) = EleXiren] = E[e T N0] = e (reAVE (22)

fort > 0. From (21) and (22), in view of Proposition 1, the conclasod Theorem 1 follows, namely thdf;) = f,) =
fr4a) forall 7,A > 0. The proof is complete. O

Proof of Theorem 2 based on Lemma 1Let X, X3, Xz,--, Xy be an i.i.d. sample from the distributidfy,. First note

n
that the Laplace transform df X; is given by
i=1

Pn(t) = (e i£1 ) rlE (™) = ¢ t)=e ™2 (23)
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the last equality following by Lemma 1. Also the Laplace sfmm ofY,, = nX; by Lemma 1 is given by

0 (t) = E[e K] = ¢y (nt) = e V2P g V2 (24)
The proof of Theorem 2 now follows from (23) and (24) in viewRybposition 1. The proof is complete. O

4 Stable Distributions

For the sake of completion, and a better understanding afleeant aspects &) as a heavy tailed stable distribution,
we present below two equivalent definitions and some basjegsitions concerning stable distributions.

Definition 1. A non-degenerate distributidn is said to be stable (in the broad sense) if, for each positiegern and
any i.i.d. sample<y, Xz, - - - , X and a r.vX from F, there exist constanty > 0, y;, such that

S g ChX + W, (25)

n=12 ... F is said to be strictly stable if (25) holds with = O. O

We now state some basic results concerning stable distitsutWhile a deeper discussion of Stability does need the
use of advanced probability concepts and tools, for thaudson of some basic properties of stable distributions,ivee
shall confine ourselves to only elementary methodology eadaning:

Proposition 2.1f F is a stable distribution, whether in the broad or strict sgascording to Definition 1, then

(&) The norming constants,n=1,2, ..., in (25) are of the forne, = na for some 0< a < 2 (the constantr,0 < o < 2,
is called the characteristic exponent (c.e.Fof

(b) A stable distribution, by virtue of its definition, is arnuous one;

(c) If F is strictly stable with c.ea (i.e., yp = 0, in Definition 1), then for any constargg > 0 and r.v.sX, Xy, X5 - with
X1 andX; independent - fronfr, we have

ST X +taXo L (s+1)a X, (26)

Proof. For the proof of Proposition 2(a), we refer the reader to éiditheorem 1 on p.170 of Feller (197%)where an
excellent exposition is available. For the proofs of paits) 2nd 2(c) , however, we shall add some elaborations (see
Exercise 2 on p. 215 and Theorem 3 on p. 172 of this book). Tasvénis end, for given integens,n > 0, let
Xi,i =1,2..mm+1.nXY X? and X be iid. rv's from a strictly stable distributioff. Then denoting

Sn= E Xi,§1m> = % Xm+i and similarly Spen, and noting thaSy, + gm — Snin, We obtain from equation (25) of
i=1 i£1

Definition 1 and Proposition 2(a) thate X% + nz X £ (m-+n)a X, or equivalently that

1 1
M) x4 (D) x@2x. 27)
m-+n m-+n

We first prove Proposition 2(b): For this, we may assume whagF is symmetric. This is because the symmetrized
distribution F - the distribution of[X’ — X”] when r.v/sX’. X" are i.i.d. fromF, which itself is evidently stable and
symmetric and therefore strictly stable - is continuousiifl @nly if F is continuous. Thus, the proof of continuity of a
strictly stable distribution implies that of the symmetRcwhich in turn implies that of the (broadly) stable disttiion
F.

Suppose now that the (wlog assumed) symmétrie not continuous and has an atom at an arbitrary g0 with
a positive (probability) weightp(0 < p < 1). Then the LHS of equation (27) tells us that the point

ton = [(%)g’ + (ﬁ);] -t must also be an atom dF -the distribution of the RHS - with a (probability) weight

> PIXM =1]-PX®@ =1t] = p?, for each pair(m,n),m,;n=1,2,---. This is impossible, since the total (probability)
weight cannot exceed one. In case the assumed discontifudwss only a unique atom at the origin= 0 of
(probability) weightp > 0, then the RHS and LHS of the same equation imply differeriability) weightsp and p?,
respectively, at the origin, leading again to a contradittA stable distribution, thus, has to be a continuous one.

We elaborate now on the proof of part 2(c). From equalltion &boye, which is valid for all strictly stable distributions

F, it follows at once by dividing the equation withﬁn)} “ on both sides tha@ﬁ")%x(h +x@ 4 1+ (M)] % X, or
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1 1
equivalently tha($) @ X1 + X2 4 [14 (§)] @ X for any real numberst > 0 as long a4 ) is a rational number. Since
the set of all rational numbers is dense on the real line, loyling this fact with the continuity of, it follows that the
last equation and, therefore, the equation (26) of projposi(c) holds for all reak,t,> 0 and all strictly stablé-. The
proof is complete. O

Remark 1. In view of Definition 1 of stability and Proposition 2(a), amdegenerate distributidn is strictly stable with
a(0< a <2)asc.e. if and only if, given an i.i.d. samp{&y, Xp,...,Xn} and a r.vX fromit, S, 4 ha X forall n. Upon
comparing this last equation with the result of Theorem 2, that forFy), the preceding result holds & d n?Xy for

n=1,2..., the strictly stability ofF,) with c.e.a = % follows forthwith. O

We now state a Proposition dealing with conversion of "bfdadstrict” stability:

Proposition 3.1f F is a stable distribution with c.ex for some 0< a < 2), then retaining the notations of Definition 1
and Proposition 2, it follows that

(a) Whena # 1, we can select a centering consthrsich that the distributioR (x — b), —c0 < X < o, is strictly stable;
or equivalently, that the equation (25) in Definition 1 oftslidy is satisfied withS,, X, and y, in (25) replaced,

respectively, with§,, X', and 0, where, = 2 Xj with Xi = Xj +bandX' = X +b;
(b) Whena = 1, there exists a constaynsuch that the following analogue of equation (26) in Progasi2(c) holds,
namely, that for alk,t >0

S(X1 + yIns) + t(Xo+ yint) < (s+)[X + yin(s+1)]. (28)

Proof. For the proofs of Propositions 3(a) and 3(b), we refer thdeeto Theorem 2 on p. 171 and Exercise 4 on p. 215,
respectively, of Feller (19713]. However, some elaboration for the proofs seems in order
Let F be a stable distribution with c.ex,0 < a < 2 . Then if §m = Z Snj = Z (Z Xij ) where r.v.s
=

Xij,i=12,..,mandj=12..nareiid. rv's fromF, it follows from equatlon (25) of Definition 1 that, if r.v.'s
X1, Xo, -« ,van,X are also i.i d fronF we have

=}

g (CmXj + Ym) = CmSh + Ny 4 CmCnX + (CmY + Nym) = CmCnX + Ymn(say), (29)
1

S

]

whereymn = CmVh + Nym. We first prove Proposition 3(a) and assume- 1. Then, interchanging the role ofandn in
(29), we also obtaitm 4 CmCnX + Vam. SinceSym = Smn, it follows from comparing the two equations that, = Ym

or equivalently that[Cn”jn} = {Cm”jm}, implying that{Tan}does not depend amand, therefore, equals a constant (say)

b. This means thag, = b(c, — n), which transforms equation (25) & 4 cnX +b(ch —n), or equivalently tdS, 4 X/,
whereS, = 2 X" with X/ = X + b andX’ = X +b. Thus, the distributiofr (x— b), —c0 < x < o, of X/ = X; 4 b is strictly

stable accordlng to Definition 1. This proves 3(a).

To prove Proposition 3(b) for the case when= 1, note that equatiopmn = yhm iS Now an identity and is, therefore
vacuous. However, we can still solve for the constarih equation (25) by solving the equatigfi, = My, + Ny, from
(29) whena = 1: Now note that by successively settmlg: n.k=1,2,...,(v —1) in the preceding equation, we obtain
thaty,z = 2Ny, Ve = N2 + MPYh = 202 + NPyh = 3nPyh, ..., v = vnV~ Ly, for any integev > 0. These considerations
show that( ‘f'r'fv) remains constant, equal to the sappe—c < p, < o (say), for all valuey = 1,2, ---. The only solution
for this constant igon, = yInn for some fixedy, —o < y < o, which also satisfies the equatighnn, = My + Nym, or
equivalently, () = [(¥) 4 ()] it follows that yw = yvn'Inn = yn"Inn" for all v, so thaty, = yninn. This last

m
equation transforms equation (25) in Definition 1 to

S 2 n(X+ yinn). (30)

The extension of the strict stability type equation (30)qaation (28) in Proposition 3(b) - the analogue of equation
(26) in Proposition 2(c) for strictly stable distributionsan be achieved by its application as follows. For giveadets
m,n > 0, we have in view of equation (30) that

Smen = (M+N)X+ yin(m-+n)], (31)
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as well as
Sm+n:Sm+Sngm(X1+yInm)+n(X2+yInn); (32)
from (31) and (32), we obtain

m(Xy + yinm) -+ n(Xz + yinn) £ (m+n)[X + yin(m+n)), (33)

where the independent r.v¥§, X,, X and all those independeXts constitutingSy.., are distributed according . The
same reasoning now as employed for Proposition 2(c) - natielycontinuity of stable distributions and that, in view of
the preceding equation (33), the equation (28) of Promus&{b) holds whenevdE) is rational - ensures that (28) holds
for all reals;t that are positive. This completes the proof of Propositi(ia).3 O

We now state the "equivalent” Definition 2 for stable distiions (cf. Feller (1971), Problem 1, p. 219))[Its
equivalence to Definition 1 can be established using thdtresBroposition 2(c) above.

Definition 2. A non-degenerate distributidnis said to be stable if given two arbitrary positive constaqtandc,, there
exist constants > 0 andy such that for any r.v.X, Xy, X, - with X; andX; independent - fronf,

CiXa+CoXo 2 eX 1. (34)

Proof of Equivalence of Definitions 1 and 2 of Stability.Suppose a non-degenerate distribuffois stable according
to Definition 1 of stability with c.ea,0 < a < 2. To prove that it is also stable according to Definition Zyase first
thata # 1. By Proposition 3(a) then, there is a constarstuch that the distributiof (X — b), —c0 < X < o, is strictly
stable, so that given independent r.\Xg X,, X from F and real numbers;t > 0, we have by Proposition 2(c) that

ST (X1 +b) +17 (Xo+b) 2 (s+1)7 (X +b), or equivalently, that

STX 17X L (S+1)TX +b[(s+1)7 —s7 —ta]. (35)
To show that equation (35) implies that equation (34) of D&din 2 is also satisfied for given constamtsc, > 0
and some constants> 0 andy, —o < y < o, just setc; = s andc; = ta in equation (35). It follows then forthwith

that equation (35) transforms into equation (34) for giegre, with ¢ = (cf + Cg)% andy = b[(c{ + cg)% —C1—Cy].
Similarly whena = 1, it follows directly from Proposition 3(b), equation (28pt, for givency, c, > 0 some reay/,

C1X1 + C2Xo 4 (c1+C2)X + Y[(c1+c2)In(cy + ¢2) — c1lney — colney) 4 X + y(say). (36)

From equations (35) and (36), it follows thHasatisfies equation (34) of Definition 2 of stability. To prake converse,
suppose that Definition 2 of stability holds for the disttibn F. Then, given an i.i.d. random samgl$;, X5, ..., X, } from
F, we have from equation (34) that

X1+ng C2)X2) + V2 and further that

X1+ X2+ X3 = [c2)X(2) + X3)] + V2) = C3X3) + (V2) + W3)); (37)

for some constantsy,), y2),C(3), ¥3) and r.v.sX ), X3), mdependent of the random samgb&;, X, ..., Xy }. To establish
the required equation (25), we use the induction argumesgufe that, for some the equatiors,—1 = ¢(n_1)X(n-1) +
n—-1

> ¥ holds for some constantg,_;) andy;’s, as in equation (37) fon = 3,4 above. Then, using equation (34) of
j=2

Definition 2 again, we obtain

n—-1 n
d .
S = Si-1+ X0 = [Cn_1)X(n—1) + X0 +ZV =S Xm + > Vi) = CmXn) + Yin): (38)
=1
for some constants), ¥ Z ¥(j)» and r.v.Xy, distributed according t&. The equations (37), (38) and the induction

argument establish the reqwrement (25) of Definition 1FoiThus Definition 2 implies Definition 1 of stability. The
proof of equivalence of Definitions 1 and 2 of stability is quiete. O

Remark 2. Under the seemingly stronger Definition 2 of stability (altigh equivalent to Definition 1 above), the stability
of F 1 follows even more readily from the "convolution” propertf/heorem 1. To see this, set= ,/c; andA = ,/Cz, SO
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that the densitie§;) andf,) on (0,) are (see the notations of Theorem 1 and Theorem 2) those'®ky = (2—2) =
1

(12X1) = 1% andX ) = (%2;) = (A%X3) = cpXo, whereXy = (21%) andX, = (2122) with Z; andZ; independeni(0,1)
rv.’s. By Theorem 1, sinc€ * fy) = fr1y), it follows that

2 2 2
01X+ CoXe = (%) + (%) d (“;3) ) — X, (39)
1

wherec = (\/c_1+ \/5)2 andx £ (Z—lz) with Z aN(0,1) r.v.. Since the constantof equation (34) is zero in (39), the

distributionFy) is strictly stable. O

Stability and Infinite Divisibility As mentioned above, a thorough discussion of stabilityistfibutions requires other
probabilistic concepts and tools, such as domain of attradnfinite divisibility, slow and regular variation of fictions,
Fourier transforms, convolution semi-groups, and so fdxvertheless, we state below (without proof) a propasitio
involving the first two, that throws further light on the camt of stable distributions.

Definition 1*. A distribution G belongs to thédomain of Attractionof a (non-degenerate) distributiénif and only if

there exist constants, > 0 andby, such that, based on an i.i.d. sample frGre; (S, — bn) 9 F, asn — o.

Definition 2*. A (non-degenerate) distributidn is said to be Infinitely Divisible if and only if for each posi¢ integer
n, there exists a distributiof, such that, based on an i.i.d. sample of sifeom F,, we always havé&, 4 Fn=123...

Proposition 4. (a) A distributionG belongs to the "domain of attraction” of some (non-degete@distributionF if and
only if, for some indexx,0 < a < 2, andp,q > 0 with p+-q =1,

X2[1— G(x)] 2—a X2G(—X) 2—a
p(x) %p( a )and (%) %q< a ) (40

asx — oo, wherep(x) = ffxtsz(t),x > 0, is the truncated moment function & (b) A (non-degenerate) distribution
F possesses a 'domain of attraction’ if and only if it is stallestableF belongs to its own domain of attraction; (c)
The class of stable distributiods = F, : 0 < a < 2} coincides with the class of all infinitely divisible distutions that

are limits of normed sum%@} (defined in Deffiniton 1*), asn — o, and for which the limiting membdf = Fy

corresponding to (40), besides (40), also satisfies thedailitions

2—aq)

x"[l—F(x)]—wp{@] and>é’F(—x)—>cq[( , (41)

asx— o. The conditions (40) and (41) determine the stable didfiobur, uniquely, but only up to arbitrary centering and
scale parameters; (d) For any distributi®rbelonging to a 'Domain of Attraction’ with inde&,0 < a < 2, all absolute
momentsng of orderp < a exist, whereas itr < 2, no moment of ordg > o exists. O

Proof. For proofs, the reader is referred to Feller (1931 }fo Section IX 8, Theorem 1 on pp 312-315 for Proposition 1*
(a) and Section XVII 5, Theorem 1 on pp 576-577 for Proposifid (b) and (c), and the Lemma on p. 578 for 1*(d) . For
Proposition 1* (a) and (c) note that if distributioRg or G in there have a finite variance, then by the CLT Ehenust be
normal witha = 2, so that in this case the limits on the RHS of (40) and (41ycedo zero. O

5 Concluding Remarks

In Section 3 above, we have presented a direct proof of thevidation” property for the family{ f ;) : T > 0} of heavy-
tailed stable densities defined by equation (4). The famdiytains the density(;) given by equation (1), especially
important in applications. The mean and variance for membgthis family, which differ from each other only in scale,
do not exist; so the conditions required for Central Limitedhem are not satisfied for the members of this family.
Theorem 2 above points out that the sample méginom distributionf s, or for that matter from any distributiofy) in
the family, has the same distribution as thahdimes a single observation from it (Feller 1971, p.52; Romand Siegel
1986, pp59-60%, 6].

Clearly, X, is more variable than a single observatiénand increases by an order f instead of converging in
distribution to a limiting random variable, that is, ceniginot to a normal distribution, as— co. It should be noted that
the density (1) corresponds to an important class of dessitiapplications. It is the density of first passage timesdine-

dimensional Brownian motion. It is also the limiting degsif normalized averag%%} of waiting timesXy, X, ..., Xn
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of successive returns to the origin in a symmetric randonkwighe densities (4) differing from each other only in scale
are typical of limiting densities, without expectation,sfch time averages of recurrence of events in many physidal a
economic processes (Feller 1968, p. 90, 246)[

Besides Levy'’s distributiofy), the distribution of first passage times in one-dimensi@nainian Motion with c.e.

o= % there are many other important stable distributions whitse naturally in applications, like Cauchy (ce= 1),

Normal (c.ea = 2), and Holtsmark’s (c.ex = %) etc, the last distribution being that ¥f , the random X - component of
the gravitational force of a stellar system with dengity For a thorough study of stable distributions - beyond thsit
results presented in section 4 above - the reader is refari@ections VI 1-4, VIl 1-4, IX 1-6, 8, XIIl 4-7 and XVII 1-6
of Feller (1971)5] among others. O
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