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Abstract: By using the M.I. Vishik’s method on the description of solvable extensions of a densely defined operator all solvable
extensions of the minimal operator generated by some complete delay differential-operator expression for first order in the Hilbert
space of vector-functions at finite interval are described.Later on, the structure of spectrum of these extensions is surveyed.
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1 Introduction

The first work in an area of extension of linear densely
defined operator in a Hilbert space belongs to J. von
Neumann. In his paper [1] all the selfadjoint extensions of
the linear densely defined having equal and nonzero
deficiency indexes symmetric operator in any Hilbert
space have been described. But in 1949 and 1952 M.I.
Vishik the boundedly (compact, regular and normal)
invertible extensions of any unbounded linear operator in
a Hilbert space have been established in works [2] and
[3]. These results by M.O.Otelbayev, B. Kokebaev and
A.N. Shynybekov have been generalized to the nonlinear
operators and complete additive Hausdorff topological
spaces in abstract terms in work [4,5,6,7]. A.A.Dezin [8]
give a general methods for the description of regular
extensions for some classes of linear differential operators
in the Hilbert space of vector-functions at finite interval.

In 1985 by N.I. Pivtorak [9] and Z.I.Ismailov [10] all
solvable extensions of a minimal operator generated by
linear parabolic and hyperbolic type differential
expressions for first order with selfadjoint operator
coefficient in the Hilbert space of vector-functions at
finite interval in terms of boundary values were given,
respectively.

In the studies discussed above the coefficients of
differential expressions have been taken for special
classes of operators in corresponding functional space.
Unfortunately, representation of delay type differential

expression is not possible with remarkable coefficient,
then mentioned above methods are not applicable to these
problems. On the other hand in noted above works
spectral investigations have not been done.

Note that the general theory of delay differential
equations is given in many books (for example, see [11]
and [12]). Applications of this theory can be found in
economy, biology, control theory, electrodynamics,
chemistry, ecology, epidemiology, tumor growth, neural
networks and etc. ( see [13,14,15]).

Let’s remember that an operatorS : D(S) ⊂ H → H
in Hilbert spaceH is called solvable, ifS is one-to-one,
SD(S)=H andS−1 ∈ L(H).

The main goal of this work is to describe all solvable
extensions of the minimal operator generated by some
delay differential expression for first order with operator
coefficients in the Hilbert space of vector-functions at
finite interval and investigate the structure of spectrum
these extensions. Lastly, some applications will be given.

2 Description of Solvable Extensions

In the Hilbert spaceL2(H,(0,1)) of vector-functions
consider the following linear delay differential-operator
expression for first order in the form

l(u) =
m

∑
k=1

αku′(βk(t))+
n

∑
j=1

A j(t)u(γ j(t)), (1)
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where:
(1) H is a separable Hilbert space with inner product
( . , . )H and norm‖ . ‖H ; αk ∈ C,k = 1,2, . . . ,m;
(2) operator-functionA j(

.) : [0,1]→ L(H), j = 1,2, . . . ,n
is continuous on the uniformly operator topology;
(3) For k = 1,2, . . . ,m, βk : [0,1] → [0,1] and
j = 1,2, . . . ,n, γ j : [0,1]→ [0,1] are invertible. Moreover,
let us

βk,(β−1
k )′,γ j,(γ−1

j )′ ∈C[0,1]

Firstly will be considered the following differential
expression

m(u) = u′(t) (2)

in L2(H,(0,1)).
It is clear that formally adjoint expression of (2) in
L2(H,(0,1)) is in form

m+(v) =−v′(t) (3)

On the dense inL2(H,(0,1)) linear manifold of vector-
functionsD′

0 :

D′
0 : =

{
u ∈ L2(H,(0,1)) : u(t) =

n

∑
k=1

ϕk(t) fk,

ϕk ∈C∞
0 (0,1), fk ∈ H,k = 1,2, . . . ,n,n ∈ N

}

define a operatorM′
0 as:

M′
0u = m(u), u ∈ D′

0

By standard method the minimalM0(M
+
0 ) and maximal

M(M+) operators corresponding to differential
expression (2) ((3)) in L2(H,(0,1)) can be defined. For
any skaler functionϕ : [0,1] → [0,1] now define an
operatorPϕ in L2(H,(0,1)) in form

Pϕu(t) = u(ϕ(t)), u ∈ L2(H,(0,1))

If a functionϕ ∈ C1[0,1] andϕ ′(t)> 0 for t ∈ [0,1], then
for anyu ∈ L2(H,(0,1)), it is obtained that

‖Pϕu‖2
L2(H,(0,1)) =

1∫

0

‖u(ϕ(t))‖2
Hdt

=

ϕ(1)∫

ϕ(0)

‖u(ϕ(x))‖2
H(ϕ

−1)′(x)dx

≤

∣∣∣∣∣∣∣

ϕ(1)∫

ϕ(0)

‖u(x)‖2
H|(ϕ

−1)′(x)|dx

∣∣∣∣∣∣∣

≤ ‖(ϕ−1)′‖∞

1∫

0

‖u(x)‖2
Hdx

= ‖(ϕ−1)′‖∞‖u‖2

Consequently, Pϕ ∈ L(L2(H,(0,1))) and
‖Pϕ‖ ≤

√
‖(ϕ−1)′‖∞. Note that in terms of the operator

Pϕ the differential expressionl( . ) can be written in form

l(u) =
m

∑
k=1

(αkPβk
)u′(t)+

n

∑
j=1

A j(t)Pγ j u(t)

On the other hand consider the following equation for any
f ∈ L2(H,(0,1))

Pϕu(t) = f (t),

i.e.
u(ϕ(t)) = f (t)

From this it is obtained that

u(x) =

{
f (ϕ−1(x)) , i f x ∈ ϕ([0,1]),

0 , i f x ∈ [0,1]\ϕ([0,1])

and

‖u‖2
L2(H,(0,1)) =

∫

ϕ([0,1])

‖ f (ϕ−1(x))‖2
Hdx

=

ϕ−1(1)∫

ϕ−1(0)

‖ f (t)‖2
Hϕ ′(t)dt

≤ ‖ϕ ′‖∞

∣∣∣∣∣∣∣

ϕ−1(1)∫

ϕ−1(0)

‖ f (t)‖2
Hdt

∣∣∣∣∣∣∣

≤ ‖ϕ‖∞‖ f‖2
L2(H,(0,1))

Hence

P−1
ϕ u(t) =

{
u(ϕ−1(t)) , i f t ∈ ϕ([0,1]),

0 , i f t ∈ [0,1]\ϕ([0,1]),

u ∈ L2(H,(0,1)), P−1
ϕ ∈ L(L2(H,(0,1))) and

‖P−1
ϕ ‖ ≤

√
‖(ϕ)′‖∞

The differential expressionl( . ) can be written in the form

l(u) = P(β )u′(t)+P(A;γ)u(t),

whereP(β ) =
m
∑

k=1
αkPβk

and

P(A;γ) =
n

∑
j=1

A j(t)Pγ j

Before of all prove the following assertion.
Lemma 2.1. If for someq = 1,2, . . . ,m, αq 6= 0 satisfied

the condition
m

∑
k=1
k 6=q

∣∣∣∣
αk

αq

∣∣∣∣
(
‖β ′

q‖∞‖(β−1
k )′‖∞

)
< 1,
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then the operatorP(β ) : L2(H,(0,1)) → L2(H,(0,1)) is
solvable.
Proof. Indeed, in this case forαq 6= 0

P(β ) = αqPβq


E +

m

∑
k=1
k 6=q

αk

αq
P−1

βq
Pβk




On the other hand, since
∥∥∥∥∥∥∥

m

∑
k=1
k 6=q

αk

αq
P−1

βq
Pβk

∥∥∥∥∥∥∥
≤

m

∑
k=1
k 6=q

∣∣∣∣
αk

αq

∣∣∣∣‖P−1
βq

‖‖Pβk
‖

≤
m

∑
k=1
k 6=q

∣∣∣∣
αk

αq

∣∣∣∣
√
‖β ′

q‖∞‖(β−1
k )′‖∞ < 1,

then by the important theorem on invertibility of operator
theory it is implied that the operatorP(β ) is boundedly
invertible.�.

Along of this paper it has been assumed that
m
∑

k=1
|αk|

2 > 0.

Hence now differential expressionl( . ) can be written in
form again

l( . ) = P(β )k( . ),

where, k(.) =
d
dt

+ P(A;β ,γ) and

P(A;β ,γ) = P−1(β )P(A;γ).
In this situation the operator
P(A;β ,γ) : L2(H,(0,1)) → L2(H,(0,1)) is a linear
bounded operator. Throughout this work the following
operators

K0 := M0+P(A;β ,γ),L0 := P(β )K0,

K0(L0) :
o

W
1
2 (H,(0,1))⊂ L2(H,(0,1))→ L2(H,(0,1))

and
K := M+P(A;β ,γ),L := P(β )K,

K(L) : W 1
2 (H,(0,1))⊂ L2(H,(0,1))→ L2(H,(0,1))

will be called the minimal and maximal operators
corresponding to differential expressionk( . )(l( . )) in
L2(H,(0,1)), respectively.
Now let U(t,s), t,s ∈ [0,1], be a family of evolution
operators corresponding to homogeneous differential
equation

{
Ut(t,s) f +P(A;β ,γ)U(t,s) f = 0, t,s ∈ [0,1]

U(s,s) f = f , f ∈ H

The following assertion is true (see [16]).
Lemma 2.2. If M̃, K̃ and L̃ are some extensions of

minimal operatorsM0, K0 and L0 in L2(H,(0,1))
respectively, then

U−1K0U = M0, M0 ⊂U−1 K̃U = M̃ ⊂ M, U−1KU = M,

L0 = P(β )K0, L̃ = P(β )K̃, L = P(β )K

In addition, if M̃ is solvable extension ofM0 in
L2(H,(0,1)), then an extensioñL of minimal operatorL0
is solvable extension inL2(H,(0,1)) and vice versa.
From this claim it is obtained that if̃M any solvable
extension of the minimal operatorM0 in L2(H,(0,1)),
then an operator

L̃ = P(β )(UM̃U−1)

is the solvable extension ofL0 and contrary. In this case

M̃ =U−1(P−1(β )L̃)U

The validity of following claim is clear.
Lemma 2.3. KerL0 = {0} andR(L0) 6= L2(H,(0,1)).

Using the M.I.Vishik’s result in the theory of extension
[3] and similarly to the works [10], [17] the following
assertion can be easy to proved.

Theorem 2.4. Each solvable extensioñL of the minimal
operator L0 in L2(H,(0,1)) is generated by the
differential-operator expression (1) and boundary
condition

(K +E)u(0) = KU(0,1)u(1), (4)

whereK ∈ L(H) andE : H → H is identity operator. The
operatorK is determined by the extensioñL uniquely, i.e.
L̃ = LK .
On the contrary, the restriction of the maximal operatorL
to the linear manifold of vector-functions satisfy the
condition (4) for some bounded operatorK ∈ L(H) is a
solvable extension of the minimal operatorL0 in
L2(H,(0,1)).
Corollary 2.5. If L̃ = LK is a solvable extension ofL0,

then

L−1
K f (t) = exp(−P(A;β ,γ))KU(0,1)

× (

∫ 1

0
exp(−

∫ 1

s
P(A;β ,γ)dx)P−1(β ) f (s)ds)

+

∫ t

0
exp(−

∫ t

s
P(A;β ,γ)dx)P−1(β ) f (s)ds

Corollary 2.6. If m = 1, β1 = β , 0< β < 1, n = 1,γ1 =

γ, 0 < γ < 1, β/γ < 1, A1(t) = A and for any
u ∈W 1

2 (H,(0,1))

(Au)(γt) = Au(γt),

then all solvable extension of the minimal operatorL0 are
generated by following differential expression

l(u) = u′(β t)+A(t)u(γt)

and condition

(K +E)u(0) = Kexp(AP(γ/β ))u(1),
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i.e.

(K +E)u(0) = K

(
∞

∑
n=0

An

n!
u

(
(

γ
β
)n
))

Corollary 2.7. All solvable extensions of the minimal

operator L0 generated by following pantograph type
differential expression for first order

l(u) = u′(β t)+ u(γ1t)+ u(γ2t)

0< β < 1, 0< γ1, γ2 < 1,
γ1

β
< 1,

γ2

β
< 1 in L2(H,(0,1))

are described by condition

(K +E)u(0) = K
∞

∑
n=0

(
P(

γ1

β
)+P(

γ2

β
)

)n

n!
u(1),

whereK ∈ L(H).

3 Spectrum of Solvable Extensions

In this section the structure of spectrum of solvable
extensions of the minimal operatorL0 in L2(H,(0,1))
will be investigated. Here for the simplicity of the
explanation it will be considered the following
differential-operator expression in form

l(u) = u′(β (t))+A(t)u(γ(t)) (5)

with conditions in sec.2 (see p.2).
Firstly, prove the following assertion.

Lemma 3.1. For f ∈ H andλ ∈ C it is true

exp(λ Pβ ) f = exp(λ ) f

Proof. Indeed, in this case

exp(λ Pβ ) f =
∞

∑
n=0

(λ Pβ )
n

n!
f , f ∈ H.

On the other hand, since for anyn = 1,2, . . .

(Pβ )
n f = f ,

then

exp(λ Pβ ) f =
∞

∑
n=0

λ n

n!
f = exp(λ ) f

�.
Now can be proved the proposition on the spectrum of
solvable extension ofL0.
Theorem 3.2. If LK is a solvable extension of the minimal

operatorL0 in the spaceL2(H,(0,1)), then spectrum of
LK is in form

σ(LK) = {λ ∈ C : λ = ln |
µ +1

µ
|+ iarg(

µ +1
µ

)+2nπ i,

µ ∈ σ(K)\ {0,−1},n∈ Z}

Proof. Consider a problem to the spectrum for a solvable

extensionLK of the minimal operatorL0 generated by
pantograph type delay differential-operator expression
(5), that is,

LKu = Pβ u′(t)+A(t)Pγu(t) = λ u(t)+ f (t),

(K +E)u(0) = KU(0,1)u(1), λ ∈ C, f ∈ L2(H,(0,1))

This problem is equivalent to following problem

{
u′(t) = (λ P−1

β −P−1
β A(t)Pγ)u(t)+P−1

β f (t),
(K +E)u(0) = KU(0,1)u(1)

It is evident that

u(t,λ ) = exp(λ P−1
β )U(t,0) f0

+

t∫

0

exp(λ P−1
β (t − s))U(t,s)P−1

β f (s)ds, f0 ∈ H

On the other hand from boundary condition we have

(K +E) f0 = KU(0,1){exp(λ P−1
β )U(1,0) f0

+

1∫

0

exp(λ P−1
β (1− s))U(1,s)P−1

β f (s)ds}

From this

(K(E − exp(λ P−1
β ))+E) f0

=
1∫

0
exp(λ P−1

β (1− s))U(1,s)P−1
β f (s)ds

By Lemma 3.1 it is clear that

exp(λ P−1
β ) f0 =

∞

∑
n=0

(λ P−1
β )n

n!
f0

=
∞

∑
n=0

λ n

n!
(P−1

β )n f0

=
∞

∑
n=0

λ n

n!
f0

= exp(λ ) f0.

Consequently,

(K(1− exp(λ ))+E) f0

=
1∫

0

[
exp(

1∫
s
(λ P−1

β −P−1
β A(x)Pα)dx)

]
P−1

β f (s)ds,

f0 ∈ H, f ∈ L2(H,(0,1))

If λm = 2mπ , m ∈ Z, then from last equation the
unknown elementf0 can be found uniquely and the
resolvent operatorLK for such λm, m ∈ Z is bounded
L2(H,(0,1)). Now assume that,λm 6= 2mπ , m ∈ Z. Then
from last equation
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(K −
1

exp(λ )−1
) f0

=
1

1− exp(λ )

1∫

0

exp(λ P−1
β (1− s))U(1,s)P−1

β f (s)ds,

f0 ∈ H, f ∈ L2(H,(0,1))

Therefore, in order toλ ∈ σ(LK) if and only if

µ =
1

exp(λ )−1
∈ σ(K). In this case sinceµ /∈ {0,−1},

then exp(λ ) =
µ +1

µ
, µ ∈ σ(K).

Hence

λn = ln |
µ +1

µ
|+ iarg(

µ +1
µ

)+2nπ i, n ∈ Z.

�.

4 Applications

Example 4.1. Consider the following boundary value
problems for the pantograph type delay differential
equation

{
u′(x) = a(x)u(qx), 0< x ≤ T,

u(0) = u0, 0< q < 1, a ∈C1[0,T ]

In order to solve this problem change the unknown
functionu(t) by

y(x) = u(x)− u0, 0< t ≤ T

Hence the considered problem is transforms the following
problem

{
y′(x) = a(x)y(αx)+ u0a(x), 0< x ≤ T,

y(0) = 0

that is
{

y′(x)− a(x)y(x) = a(x)u0, 0< x ≤ T,
y(0) = 0

The last problem can be written in a form
{

l(y) = y′(x)− a(x)y(x)− a(x)u0,
y(0) = 0

Then solution of the above Cauchy problem by Corollary
2.5 can be analytically expressed in the following form

y(t) = L−1
c (a(x)u0) =

t∫

0

U(t,s)a(s)dsu0

Note that another approach to solve this problem has been
applied in [18].

Example 4.2. Now consider to solvability of problem in a

form
{

y′(t) = ay(t)+ by(qt)+ f (t), 0< t ≤ 1,
y(0) = y0, 0< q < 1

Changing the unknown functiony(t) by

u(t) = y(t)− y0, 0< t < 1

the last boundary value problem can be written in a form
{

u′(t) = (aE + bPq)u(t)+ (ay0+ by0+ f (t)),
u(0) = 0

The solution of last Cauchy problem can be analytically
written in form

u(t) =

t∫

0

U(t,s)( f (s)+ ay0+ by0)ds,

that is,

y(t) = y0+

t∫

0

U(t,s)( f (s)+ ay0+ by0)ds

Another approach to solve this problem has been applied
in [19] and [20].
Example 4.3. Now consider boundary value problem in a

form
{

u′(1− t) = a(t)u(αt)+ b(t), 0< t ≤ 1,
u(0) = u0, a ∈C[0,1], 0< α < 1

It is clear that this problem is equivalent to next Cauchy
problem

{
y′(1− t)− a(t)y(αt) = b(t)+ a(t)u0,

y(0) = 0, wherey(t) = u(t)− u0,

that is,
{

y′(t)+ (−P−1
1 a(t)P2)y(t) = P−1

1 (b(t)+ a(t)u0),
y(0) = 0, whereP1y(t) = y(1− t), P2y(t) = y(αt)

From this it is obtained that

u(t) =

t∫

0

U(t,s)(b(1− s)+ a(1− s)u0)ds+ u0
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