
Appl. Math. Inf. Sci.9, No. 2L, 637-644 (2015) 637

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L39

Configurable RESTful Service Mashup: A Process-Data-
Widget Approach

Shang-Pin Ma1,∗, Chun-Ying Huang1, Yong-Yi Fanjiang2 and Jong-Yih Kuo3

1 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
2 Department of Computer Science and Information Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
3 Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan

Received: 7 Aug. 2014, Revised: 8 Nov. 2014, Accepted: 9 Nov.2014
Published online: 1 Apr. 2015

Abstract: Techniques for the mashup of services have been attracting considerable attention; however, reusable and reconfigurable
models for the construction of mashup applications are still lacking. The REST (Representational State Transfer) software architecture
has been widely accepted due to its usability and simplicity. This makes REST an appropriate foundation for the development of
components for mashup applications. This study proposes a software framework based on the REST architecture, called Process-
Data-Widget, to assist designers in building mashup applications. The proposed approach is meant to convert time-consuming, manual
mashup-construction tasks into systematic, semi-automatic and configurable tasks. Such an approach would enable designers to design
service processes, compose service data, and configure widget-based user interfaces by developing a mashup document. The document
could then be input into a mashup engine to produce a corresponding mashup application and a new composite RESTful service.

Keywords: REST, RESTful Service, Service Composition, Widget, Software Framework

1 Introduction

The term mashup [3] refers to a web page or website that
combines information and services from multiple sources
on the web. Although mashups often lead to innovative
composite applications with value added services for
users, the notion has yet to gain widespread acceptance
due to the difficulties involved in their creation [15],
which require familiarity with programming skills (such
as HTML, JavaScript, and XML) to link a variety of web
APIs and data. Several GUI tools and platforms have
recently emerged for the construction of mashups,
including Yahoo Pipes [16], IBM Mashup Center [7], and
Intel Mashmaker [5]. These tools are meant to simplify
programming through the incorporation of graphic
models and templates; however, programming tasks
cannot be avoided entirely [2].

The mainstream of Web 2.0 website services
conforms to REST [6] style (also referred to as RESTful
web services.) REST defines a set of architectural
principles [6,12] by which one can design web services
with a focus on system resources, including how resource
states are addressed and transferred using HTTP using a

wide range of clients written in different languages. From
the viewpoint of software architecture, the REST
paradigm represents a light-weight realization of a
service-oriented architecture. In contrast, the
SOAP/WSDL based Web service architecture is
considered a heavy-weight, due to its complex regulations
for ensuring security, reliability, and the success of
transactions. RESTful services have been widely accepted
by the public for the creation of user-centric, non-critical
applications due to the usability and simplicity they
provide. REST can also be used to provide standard
components for mashup construction.

Web service composition is considered an important
technology, capable of providing more benefits than any
single service [9]. Web Services Business Process
Execution Language (WS-BPEL) [15], which is used to
interconnect multiple partner services based on
process-based model and style, has been accepted as the
de factolanguage of service composition both in industry
and academia while there is no standards for mashups.
Hard-coding mashup applications are difficult to maintain
and reuse, even when using mashup tools. As a result,
numerous mashup models and methodologies have been

∗ Corresponding author e-mail:albert@ntou.edu.tw

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L39

638 S. P. Ma et. al. : Configurable RESTful Service Mashup:...

proposed [14,4,2,10], based on semantic web and
rule-based reasoning techniques. However, these efforts
have yet to provide a service composition model based
explicitly on REST. On the other hand, efforts [3,11] have
been made to either extend WS-BPEL to REST-based
service composition, or develop new markup languages;
however, these methods tend not to account for all of the
aspects necessary for a complete mashup application,
such as system processes, data manipulation, and user
interfaces. In response, this paper proposes a software
framework, called Process-Data-Widget, to assist
designers in the development of REST-based mashup
applications within a lifecycle of mashup development. A
mashup engine based on the Process-Data-Widget
framework is also devised to allow users to build and
configure mashup applications semi-automatically. The
proposed approach is meant to convert the construction of
mashups from an implementation-level endeavor into a
design-level task. Using this approach, designers could
design the service process, compose service data, and
configure widgets for UI presentation through the
development of a mashup document, which would then
be input into a mashup engine to produce the
corresponding mashup services. The
Process-Data-Widget framework involves two kinds of
reuse forms: (1) treating mashup RESTful services as a
basic service for the construction of larger-scale
composite applications; (2) slightly revising mashup
documents in accordance with similar requirements.

The remainder of this paper is organized as follows:
The Process-Data-Widget framework is outlined in
Section 2. The system architecture and two examples are
illustrated in Section 3. Related work is presented in
Section 4, and conclusions are drawn in Section 5.

2 Proposed Approach: Process-Data-Widget
Framework

This section describes the framework of the
Process-Data-Widget (PAW). The design concepts of the
PAW framework and document specifications are
introduced in the following sub-sections.

2.1 Design Concepts

Through the observation of current mashup applications
and tools, we identified three fundamental themes crucial
to the lifecycle of mashup development, including (1)
service process design; (2) data composition; and (3)
widget presentation design. A conceptual diagram is
presented in Fig. 1.

Each of these components is outlined in the following:

1.Service Process Design: The mashup designer should
first design the sequence in which the multiple
RESTful services will be executed, and decide how to

Service
Process

Linking

RESTful

Design services

DataWidget
D li i

Data
Composition

Design

Widget
Presentation

Design

Generating

Integrated

Service Data

Delivering

User

Interfaces

Fig. 1: Conceptual diagram

interconnect input/output (I/O) data among these
services. This requires two kinds of documents: (a)
the RESTful Service Description Document (SDD),
to specify the service capability and I/O data for a
RESTful service; and (b) the Mashup Document
(MD), to specify the control flow and data assignment
among multiple services (in the Service Process
Mashup section of MD).

2.Data Composition: Determining how to manipulate
service data to produce data sets capable of meeting
the needs of users is also critical. During the
execution of the mashup service, service-related data
(sometimes called service results) are generated after
invoking each RESTful service. For example, in a
travel mashup application, flight data, hotel data, and
weather data are produced during service execution.
These raw data are unreadable to end users; therefore,
we devised a mechanism called Data Composition, to
address this issue. An additional component of the
MD is Data Mashup, which is meant to define all
required data composition rules. The core concept
behind data composition was borrowed from the join
operator in the domain of databases. Following data
composition, manipulated service data (also called
service data sets) can be sorted using Merge Scan and
Nested Loop, whereupon any number of
sorted/unsorted data sets can be prepared for display
in Widgets.

3.Widget Presentation Design: The previous two steps
focus mainly on service invocation and data
manipulation. However, the resulting data sets should
also be easy to read and accessible to the end user
(cannot be original XML or JSON data). Thus,
determining how to infuse user interaction or user
interface techniques into the mashup development
process must also be dealt with. In the proposed
approach, widgets are used to render data. Another
component of the MD, called Widget Mashup, selects

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 637-644 (2015) /www.naturalspublishing.com/Journals.asp 639

the data sets to be displayed and determines which
widgets are required to render the selected data sets.

2.2 Document Specification Design

Based on the afore-mentioned concepts, we devised the
two following specifications: the RESTful Service
Description Document (SDD) and the Mashup document
(MD). The rationale was to maintain readability for both
humans and machine; therefore, Microformat was
employed [8] as the foundation with which to design
these specifications. Because it is based on HTML,
Microformat documents can be processed by programs
and viewed by human users.

2.2.1 RESTful Service Description Document (SDD)

Service Description Documents (SDD) describe the
information required to invoke a RESTful service,
including service URIs, applied HTTP methods, and
input parameters. SDD includes three levels: services,
service, and resources. The services level includes a range
of service information described in the service block. The
service level deals with a RESTful service and includes
two properties: ID and multiple resources. The resources
level specifies the properties of a resource, including
resource URI, HTTP methods (GET, POST, PUT and
DELETE), input parameters, and output specifications. In
general, RESTful services use XML or JSON as the
formats for service output. For example, the output data
of a flight inquiry service might contain a list of flight
information, including flight name, departure location,
destination, departure time, and arrival time. The
information would be transcribed in XML or JSON. Here
we make two assumptions: (1) The input data is
parameter-style because most RESTful services take
name-value pairs as inputs; (2) The data elements must
conform to the domain ontology because only in this way
can we solve the issue of data interoperability. If the
input/output elements and operations of a service are not
named according to the domain ontology, a wrapping
process is required to transform original names into
ontology-compliant names.

In addition, determining how to search for component
services is crucial to the development of a mashup
application/service. Achieving search functionality
requires the application of information retrieval
mechanisms, such as indexing, removing stop words, and
TF-IDF (term frequency and inverse document
frequency), to retrieve service description documents that
are strongly related to the mashup developers request.
The developer can select services from a list of retrieved
services and design the mashup document with which to
build a mashup application/service.

2.2.2 Mashup Document (MD)

As mentioned in Section 2.1, the content of the MD can
be divided into three parts: (1) Service Process, (2) Data
Composition, and (3) Widget Presentation, corresponding
respectively to the ServiceProcessMashup, DataMashup
and WidgetMashup sections of the MD.

The service process section includes the service
execution sequence and data assignment rules for using or
adapting the output of a service in order to invoke another
service. We define three common patterns for the service
execution sequence: the sequence pattern, parallel pattern
and selection pattern, as shown in Fig. 2.

Flight Hotel WeatherMRT

(A) Sequence Pattern

Hotel

Flight Weather

Taiwan Weather

if location Taiwan
g

MRT

Foreign Weather
else

(B) Parallel Pattern (C) Selection Pattern

Fig. 2: Service process patterns

To illustrate these three patterns of service process,
we consider a travel service, in which four RESTful
services are integrated: MRT (Mass Transit Railway),
Flight, Hotel, and Weather (Fig. 2). The sequence pattern
can combine any number of services executed
sequentially. As shown in Fig. 2(A), the four services are
invoked one by one. The parallel pattern allows multiple
services to be executed simultaneously. As shown in Fig.
2 (B), Hotel, Weather, and MRT services run in parallel.
The selection pattern can be used to select one branch
from a set of choices. As shown in Fig. 2 (C), whether
Taiwan Weather or Foreign Weather is invoked depends
on location information.

The ServiceProcessMashup section in MD contains a
Process section and multiple ServiceBinding sections
including information for binding real RESTful services
and for the storage of service data. The Process section
defines which services are to be combined as well as
which process patterns to be applied. Each
ServiceBinding section describes the reference to the
RESTful service description, the input parameters, and
the name of the service data set produced through the
invocation of each participating service. Notably, multiple
data sets can be produced because multiple RESTful

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

640 S. P. Ma et. al. : Configurable RESTful Service Mashup:...

services can be invoked during the execution of a Mashup
service. In addition, the name of the data set may be
referenced in the input element for leveraging a generated
data set from one service to invoke another service. An
example of the ServiceProcessMashup section in MD is
presented in Fig. 3.

Fig. 3: Example of ServiceProcessMashup document

In addition to services execution, the service mashup
document is also responsible for the integration of service
output data. We rely on two observations to design the
data composition mechanism. First, the output data of a
RESTful service is usually an XML document or a JSON
array that contains a number of data items. (The presence
of data items is the reason service output data are also
called service data sets). Each data item contains a
number of data fields (Figure 4 is an example of a service
data set). Second, a SQL join clause can combine records
from two or more tables in a database. Based on the two
observations, we borrow the “join” concept to combine
multiple service data sets that are produced by different
RESTful services since a service data set is similar to a
database table. A variety types of join, including inner
join, left join, right join, and cross join, can be chosen.

Determining the ranking of data items in the joined
data set is also required to enhance usability, as users
hope to obtain the most useful data in the preceding data
items. Here we apply two joining strategies: Nested-Loop
(NL) and Merge Scan (MS) (also utilized in [4]). In the
proposed approach, NL and MS strategies (Fig. 5) are
used as ranking mechanisms and do not affect the
invocation sequence of services. If the mashup developer
chooses the NL style, a PAW Mashup Engine will begin

Fig. 4: Service data set example

by sorting the data items in the joined data set according
to the horizontal data field and re-sort data items
according to the vertical data field. If the mashup specifies
the MS style, the PAW Mashup Engine will traverse the
data items diagonally to ensure that the Top-N data items
are not over-emphasized in the vertical data. For example,
if we want to manipulate the data set for “hotel”, we can
set “hotel name” as the vertical data field and set “date” as
the horizontal data field. When applying the NL style, the
sorted data items may be (ignoring other data fields for
simplicity): {Hotel1, Day1}, {Hotel1, Day2}, {Hotel1,
Day3}, {Hotel2, Day1}, {Hotel2, Day2}, {Hotel2,
Day3}, {Hotel3, Day1}, {Hotel3, Day2}, and so forth.
When applying the MS style, the sorted data items may
be {Hotel1, Day1}, {Hotel1, Day2}, {Hotel2, Day1},
{Hotel3, Day1}, {Hotel2, Day2}, {Hotel1, Day3},
{Hotel1, Day4}, {Hotel2, Day3}, and so forth. Using the
MS style, the user can obtain information related to more
hotels from the preceding data items. Sorting strategies
may be selected according to the situation.

ld

Horizontal Data Field Horizontal Data Field

ld

l
D

at
a

F
ie

l

D
at

a
F

ie
l

V
er

ti
ca

l

V
er

ti
ca

l

Nested Loop Merge Scan

Fig. 5: Nested loop and merge scan styles

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 637-644 (2015) /www.naturalspublishing.com/Journals.asp 641

Figure 6 is an example of a partial MD illustrating a
data mashup. The settings related to involved data sets,
join keys, ranking style, and name of the output data set
are designed in the MD.

Fig. 6: Example of DataMashup document

The final step in designing a mashup application
involves designing the widgets. Each widget can be
treated as a container to be filled with sorted data. An
example of a widget is presented in Fig. 7. Thus, two
settings must be assigned: the data set to display and the
style of the widget. In the proposed method, the data
meant for display can be reduced by selecting appropriate
data fields (and ignoring the others) or selecting only the
preceding N data items. The proposed approach supports
a number of widget styles, including Simple Panel,
Simple Table, Menu Bar, Collapsible Panels, and Tabbed
Panels. The PAW mashup engine can also provide two
external interfaces: one for end users via widgets and the
other for client programs via a RESTful service interface.
Thus, we devised a “ServiceURL” property to allow
designers to assign the preferred URL pattern for further
access. Figure 8 presents an example of a partial MD used
to generate the widget-based user interface for browsing
sorted data sets.

3 Implementation

The system architecture is presented in Fig. 9. As
mentioned previously, the PAW mashup engine is
responsible for parsing the MD and generating a
corresponding mashup application (and mashup RESTful
service). Thus, the PAW mashup engine plays the role of
a central bus capable of linking all participating RESTful

Ai li & H t l

Cloudy

Weather

No. Airline flight
number

Departure Arrival Hotel

Airline & Hotel

23~26 1 CA CI0301 07:25 08:20 Hotel 1

2 CA CI0301 07:25 08:20 Hotel 2

MRT

MRT to

Songshan Airport

3 CA CI0309 21:50 22:45 Hotel 1

4 EA BR0509 17:30 18:20 Hotel 1

5 CA CI0309 21:50 22:45 Hotel 2Songshan Airport

Arrived in 5 min

5 CA CI0309 21:50 22:45 Hotel 2

6 CA CI0301 07:25 08:20 Hotel 3

7 CA CI0301 07:25 08:20 Hotel 4

…

8 CA CI0309 21:50 22:45 Hotel 3

9 EA BR0509 17:30 18:20 Hotel 2

10 EA BR0909 22:30 23:20 Hotel 1

Fig. 7: Example of Widget view

Fig. 8: Example of WidgetMashup document

services according to the MD and providing two external
interfaces: widgets for embedding HTML and RESTful
services to supply service data in XML, for end users and
client programs, respectively.

To demonstrate the feasibility of the proposed
approach, we developed two mashup applications. The
first application was a travel service combining flight,
hotel, and weather services, the user interface of which is
presented in Fig. 10. The second application was a news
retrieval service connecting the keyword extraction
service to the news search service to allow users to
browse a news webpage and then click on one of
extracted keywords to browse other related pages. The
final user interface for the news service is presented in
Fig. 11. Both of these applications were generated by the
PAW mashup engine, such that the mashup designer
merely developed SDDs and MDs without the need to
write any programs. The control of service processes, the
combination of data, and generation of the GUI were
performed automatically by the PAW mashup engine.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

642 S. P. Ma et. al. : Configurable RESTful Service Mashup:...

Fig. 10: User interface for travel service

User
Mashup

Documents

Use

XML

HTML

PAW Mashup

Engine
Widgets

Mashup

RESTful

Services

XML/JSON XML/JSON XML/JSON

Services

RESTful

Service

RESTful

Service

RESTful

Service

Service Description

documents

Service Description

documents

Service Description

documentsdocuments documents documents

Fig. 9: Overall architecture

Fig. 11: User interface for news retrieval service

4 Related Work

In the following, we introduce a number of important
studies related to RESTful service delivery and the
construction of Mashup applications.

Sheth et al. [14] proposed a method of connecting
services by SA-REST to enable services to obtain
necessary data from other services. This approach makes
use of semantic annotation and XSLT data adaptation to
achieve service mashup. Kopecky et al. [8] defined a
model of RESTful Web services to create the hRESTS
microformat, a machine-readable document format for
existing Web APIs. The proposed hRESTS microformat
describes the main aspects of services, such as operations,
inputs, and outputs. Battle and Benson [1] proposed a
framework to align the publication of semantic data with
existing web architectures, based on their distributed
query architecture called Semantic Query Decomposer
(SQD) and a java tool called Semantic Bridge for web
services. This framework combines REST-based design
and RDF data access, and supports the search of internal
services through SPARQL (SPARQL Protocol and RDF
Query Language) and external services for external users.
Braga et al. [4] proposed a service mashup language for
the graphical composition and automatic execution of
queries over online data-sharing services. This approach
includes a variety of techniques, such as parallelism and
pipelining methods to control the execution sequence as
well as merge-scan and nested-loop methods to join
different service data, and a chunking mechanism to
return the results in chunks. Zhang et al. [17] proposed a
two-layer mashup service model for a university website
integrating weather forecast sites, news sites, and
course-related information. To improve efficiency and
usability, this method can query and update data based on
the caching mechanism and deliver information through
the social network. Peng et al. [13] presented a framework
called REST2SOAP to wrap SOAP services into RESTful
services semi-automatically. REST2SOAP allows
developers to create a mashup service by developing a
BPEL document. REST2SOAP is also a heavy-weight
solution utilizing many WS-* specifications.

Most of above studies utilized REST as a foundation
from which to establish methodologies for the construction
of mashups and service delivery. However, these methods
do not provide a compositional model based explicitly on

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 637-644 (2015) /www.naturalspublishing.com/Journals.asp 643

REST to connect services, manipulate service data, and
supply a user-oriented view, as we have done in this paper.

5 Conclusions and Future Work

This paper proposes a software framework called
Process-Data-Widget (PAW), to function as a composition
model for the construction of mashup applications. This
framework enables developers to design the service
process, compose service data, and configure widgets for
presentation on a UI simply by constructing a mashup
document (MD). The PAW mashup engine also parses the
MD and generates a corresponding mashup application
and associated mashup RESTful services.

In the future, we will continue the development of a
GUI-based designer tool working atop the PAW
framework to further ease the development of mashup
services. Our second goal is the integration of data
mining technology with the power of social networks to
recommend appropriate services for the design of mashup
applications.

Acknowledgement

This research was sponsored by National Science Council
in Taiwan under the grant 100-2221-E-019-037.

References

[1] Robert Battle and Edward Benson. Bridging the semantic
web and Web 2.0 with representational state transfer
(REST).Web Semantics, 6(1):61–69, February 2008.

[2] Athman Bouguettaya, Surya Nepal, Wanita Sherchan, Xuan
Zhou, Jemma Wu, Shiping Chen, Dongxi Liu, Lily Li,
Hongbing Wang, and Xumin Liu. End-to-end service
support for mashups. IEEE Transactions on Services
Computing, 3(3):250–263, July 2010.

[3] Alessandro Bozzon, Marco Brambilla, Federico Michele
Facca, and Giovanni Toffetti Carughu. A conceptual
modeling approach to business service mashup
development. In Proceedings of the 2009 IEEE
International Conference on Web Services, ICWS ’09,
pages 751–758, Washington, DC, USA, 2009. IEEE
Computer Society.

[4] Daniele Braga, Stefano Ceri, Florian Daniel, and Davide
Martinenghi. Mashing up search services.IEEE Internet
Computing, 12(5):16–23, September 2008.

[5] Robert Ennals. Intel mash maker: Mashups for the masses,
March 2012. Available at http://software.intel.com/en-
us/articles/intel-mash-maker-mashups-for-the-masses.

[6] Roy T. Fielding and Richard N. Taylor. Principled designof
the modern web architecture.ACM Transactions on Internet
Technology (TOIT), 2(2):115–150, May 2002.

[7] IBM. Ibm mashup center. Availbale at
http://www.ibm.com/developerworks/lotus/products/mashups/.

[8] Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar.
hRESTS: An HTML microformat for describing RESTful
web services. InProceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and
Intelligent Agent Technology - Volume 01, WI-IAT
’08, pages 619–625, Washington, DC, USA, 2008. IEEE
Computer Society.

[9] Jonathan Lee, Shang-Pin Ma, Ying-Yan Lin, Shin-Jie Lee,
and Yao-Chiang Wang. Dynamic service composition:
a discovery-based approach. International Journal
of Software Engineering and Knowledge Engineering,
18(2):199–222, 2008.

[10] Anne H. H. Ngu, Michael P. Carlson, Quan Z. Sheng, and
Hye-young Paik. Semantic-based mashup of composite
applications. IEEE Transactions on Services Computing,
3(1):2–15, January 2010.

[11] Cesare Pautasso. RESTful web service composition with
BPEL for REST. Data and Knowledge Engineering,
68(9):851–866, September 2009.

[12] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann.
RESTful web services vs. ”big”’ web services: making the
right architectural decision. InProceedings of the 17th
international conference on World Wide Web, WWW ’08,
pages 805–814, New York, NY, USA, 2008. ACM.

[13] Yu-Yen Peng, Shang-Pin Ma, and J. Lee. REST2SOAP:
A framework to integrate SOAP services and RESTful
services. InService-Oriented Computing and Applications
(SOCA), 2009 IEEE International Conference on, pages 1–
4, 2009.

[14] Amit P. Sheth, Karthik Gomadam, and Jon Lathem.
SA-REST: Semantically interoperable and easier-to-use
services and mashups.IEEE Internet Computing, 11(6):91–
94, November 2007.

[15] OASIS Web Services Business Process Execution Language
(WS-BPEL) TC. Web services business process execution
language (WS-BPEL) version 2.0, 11 April 2007 2007.

[16] Yahoo. Yahoo pipes. Available at
http://pipes.yahoo.com/pipes/.

[17] Jia Zhang, Momtazul Karim, Karthik Akula, and Raghu
Kumar Reddy Ariga. Design and development of a
university-oriented personalizable web 2.0 mashup portal.
In Proceedings of the 2008 IEEE International Conference
on Web Services, ICWS ’08, pages 417–424, Washington,
DC, USA, 2008. IEEE Computer Society.

Shang-Pin Ma received
his Ph.D. and B.S. degrees
in Computer Science
and Information Engineering
from National Central
University in 2007 and
1999, respectively. Now
he is an associate professor
of Computer Science and
Engineering Department at

National Taiwan Ocean University in Taiwan. His
current research interests include web-based software
engineering, service-oriented computing, and semantic
web.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

644 S. P. Ma et. al. : Configurable RESTful Service Mashup:...

Chun-Ying Huang
received the B.S. degree
in Computer Science
from National Taiwan
Ocean University in 2000 and
the M.S. degree in Computer
Information Science
from National Chiao-Tung
University in 2002. He
received the Ph.D. degree in

Electrical Engineering from National Taiwan University
in 2007. He is now an associate professor in Computer
Science and Engineering Department at National Taiwan
Ocean University. His current research interests focus on
various aspects of computer networks and network
security, including key management, attack mitigation,
intrusion detection, and traffic analysis. Dr. Huang is a
member of IEEE and ACM.

Yong-Yi FanJiang

received the BS degree
in Computer Science
and Information Engineering
from Tamkang University,
Taiwan, in 1994. He
received his MS and PhD
degree in Computer Science
and Information Engineering
from National Chiao Tung
University, Taiwan, in 1998

and from National Central University, Taiwan, in 2004,
respectively. Currently, he is an assistant professor in the
Department of Computer Science and Information
Engineering, Fu Jen Catholic University, Taiwan, from
2007. His research interests include mobile and pervasive
computing, software engineering, semantic web, and
human computer interaction.

Jong Yih Kuo received
his BS degree from National
Tsing Hua University,
Taiwan, Republic of
China, in 1991, and his
PhD degree from the National
Central University, Taiwan, in
1998. He is now an associate
professor in the Intelligent
System Laboratory of the

Department of Computer Science and Information
Engineering at the National Taipei University of
Technology in Taiwan. His research interests include
agent-based software engineering and fuzzy logic.

c© 2015 NSP
Natural Sciences Publishing Cor.

	Introduction
	Proposed Approach: Process-Data-Widget Framework
	Implementation
	Related Work
	Conclusions and Future Work

