
Appl. Math. Inf. Sci.9, No. 2L, 563-570 (2015) 563

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L31

A Load Balancing Scheme by Chord Algorithm for DDSB
Service
Gunjae Yoon1, Hoon Choi1,∗, Soohyung Lee2 and Wontae Kim2

1 Department of Computer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon, 305-764,
Republic of Korea

2 CPS Research Team, Embedded S/W Research Department, Electronics and Telecommunications Research Institute, 218 Gajung-ro,
Yuseong-Gu, Daejeon, 305-700, Republic of Korea

Received: 12 Jun. 2014, Revised: 14 Aug. 2014, Accepted: 17 Aug. 2014
Published online: 1 Apr. 2015

Abstract: A DDS Bridge (DDSB) allows embedded devices with limited computing resources to participate in DDS communication
using a non-DDS protocol. The DDSB incurs heavy overhead, because it connects between DDSB nodes and non-DDS nodes in
the full-mesh topology. In this paper, we propose to apply the addressing algorithm of Chord for reducing connection overhead of
DDSB. The proposed C-DDSB improves the performance of the DDSB, because it avoids the full-mesh topology through distributed
assignment of non-DDS nodes.

Keywords: Cyber Physical System, Data Distribution Service, Data Distribution Service Bridge, Chord

1 Introduction

Cyber-Physical System (CPS) is a system of collaborating
computational elements controlling physical entities.
Computational elements collect data from physical
entities by a communication protocol and then process the
data to control the physical entities[1]. Traditional
examples of CPS include factory automation and
networked combat systems. Automated agriculture,
Intelligent Transportation System (ITS), and many IT
convergent industries have recently attained major
advances by adopting the CPS concept.

A CPS requires communication middleware to
support frequent, real-time transmission of data/control
information between physical entities and cyber entities.
The Data Distribution Service (DDS) middleware of
Object Management Group (OMG) is suitable for this
requirement [2].

DDS is the Application Programming Interface (API)
of communication middleware that creates network
domains dynamically and serves a 1:1, 1:N or N:N
real-time data distribution. DDS provides
publish/subscribe communication capability with various
Quality of Service (QoS) levels [3]. DDS nodes may
freely join or leave the network domain. Thus, if DDS is

Fig. 1: DDS communication concept

used for the CPS, physical devices in a CPS system form
a network domain to exchange collected data and control
command even if they change their location dynamically.
DDS is composed of two layers of protocols, Data
Centric Publish Subscribe (DCPS) and Real-Time Publish
Subscribe (RTPS). DCPS provides a communication
interface to DDS applications and performs QoS control
[4]. RTPS dynamically discovers the information of
DomainParticipants, DomainEntities, and Topics in
addition to performing reliable or best effort
communication [5].

Although the DDS has many advantages, it consumes
a large amount of memory and processor load because of

∗ Corresponding author e-mail:hc@cnu.ac.kr

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L31


564 G. J. Yoon et. al. : A Load Balancing Scheme by Chord Algorithm...

DCPS and RTPS protocols as well as all the information
for constructing a domain network and for supporting
diverse levels of QoS. As such, it is difficult to port the
DDS on a small device that has limited resources.
Physical entities of CPS are composed of desktop-level
computing devices as well as small sensor nodes [6]. Not
all of the devices have enough computing resources to run
DDS. Therefore, in order to connect physical devices
without a DDS to devices with a DDS, a gateway system
between them acting as a DDS proxy is required.

A DDS Bridge (DDSB) [7] is a gateway mechanism
for connecting small devices with limited resources to the
DDS domain. In [7], the authors suggested a protocol and
management technique for connecting small devices to a
DDSB node. However, the management of possible,
replicated connections was not defined. Consequently, if
there are multiple DDSB nodes around a non-DDS
device, all the DDSB nodes may try to connect with the
same non-DDS device, resulting in replicated DDS proxy
nodes. It is a waste of computing resources of DDSB
nodes, and the replicated connections also cause an
excessive amount of network traffic in the domain. This
problem should be resolved.

The Chord [8] defines how to maintain/manage
address space by allocating data into a specific node by
using the node name and the data name in the network.
The Chord evenly allocates/distributes data to nodes. This
study has applied the Chord algorithm to allocate a
non-DDS device to a single DDSB node. The connections
between non-DDSB devices and DDSBs are efficiently
managed, and replicated network traffic is avoided. To the
knowledge of these authors, a similar approach has not
been reported.

2 Related work

2.1 DDSB

A DDSB connects non-DDS nodes with DDS nodes and
creates DDS communication entities. In order to perform
these functions, a DDSB is composed of an Abstract
Layer, Entity Manager, and Protocol Manager. The
Abstract Layer communicates with nodes that do not use
the DDS and consists of the Sender and Receiver. The
Sender is used to transmit data to non-DDS nodes, and
the Receiver receives data on a non-DDS protocol, such
as the TCP/IP. The Protocol Manager relays the received
data between DDS and non-DDS nodes. The manager
creates DDS entities that will be connected with
non-DDS nodes, and it maintains connection information
between DDS entities and non-DDS nodes.

2.2 Chord

The Chord was proposed for peer-to-peer applications in
a decentralized and unstructured network. It specifies how

Fig. 2: DDSB communication concept

new nodes join the system and how to recover from a
failure of existing nodes. It also defines how to associate
the key, i.e., data with a node responsible for them. The
Chord assigns each node and key an m-bit identifier
obtained using the consistent hashing [9] function. It
structures a circle address space [10]. The key k is
assigned to the first node whose identifier is equal to or
follows (the identifier of) k in the identifier space. This
node is called the successor node of key k. Each node
maintains additional routing information in a finger table.
This additional routing information is concerning the
minimum locations to look up correct successors, not all
nodes. Each node maintains a routing table with at most
m entries at the m-bits address space.

Table 1: Attributes in the finger table at the Chord
Notation Definition
finger[k] (n+2k−1)mod2m

,1<= k <= m
Successor finger[1] node
Predecessor the previous node on the identifier circle

The finger[k] in the finger table is the information
used to look up the key k. Each node maintains successor
information and predecessor information for structuring
the address space. The successor and predecessor are
modified when the node joins or leaves the address space.

Figure 3 shows an address space composed of 6 bits.
The address space has 10 nodes and stores 5 keys of data.
The successor of identifier 10 is node 14. Hence, key 10
would be located at node 14. Similarly, keys 24 and 30
would be located at node 32, key 38 at node 38, and key
54 at node 56.

Figure 4 shows the finger table entries for node 1. The
first finger of node 1 points to node 8, as node 8 is the first
node that succeeds(1+20)mod26 = 2. Similarly, the last
finger of node 1 points to node 38, as node 38 is the first
node that succeeds(1+25)mod26 = 38. These fingers are
used to find the location of data. As an example, consider
the address space in Figure 3, and suppose node 1 wants
to find the successor of key 54. Since the largest finger of
node 1 that precedes 54 is node 38, node 1 will ask node
38 to resolve the query. In turn, node 38 will determine the
largest finger in its finger table that precedes 54, i.e., node

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2L, 563-570 (2015) /www.naturalspublishing.com/Journals.asp 565

Fig. 3: An address space

Fig. 4: The finger table entries for node 1

56. Finally, node 56 will find that its own successor, node
56, succeeds key 54, and thus will return node 56 to node
1.

3 DDSB assignment by the Chord algorithm

3.1 Data Assignment

The Chord creates a key using the hash from the data
name and the node name. The Chord assigns data to the
successor node that has the smallest key in the node key
for values greater than or equal to the data key value.

We propose using a method of mapping the node of
the Chord to a DDSB node, the data of the Chord to a
non-DDS node, and the node/data name of the Chord to a
Global Unique Identifier (GUID) of the DDS. The GUID
can be applied to the data/node name of the Chord,
because GUID is used for identifying objects that are
participating in a domain in the DDS. Following the
approach of assigning an address space at the Chord, the
C-DDSB distributes locations of DDSB nodes and

non-DDS nodes, and the C-DDSB creates agency objects
in the DDSB nodes. The previous DDSB creates agency
objects of non-DDS nodes for all DDSB nodes. However,
C-DDSB distributes and assigns DDSB nodes and
non-DDS nodes. This approach can reduce resources and
distribute the load, because it creates 1:1 connections.

Fig. 5: The Connections of a successor

Figure 5 shows the connection between DDSB nodes
and non-DDS nodes of the C-DDSB. In the network, there
are DDSB nodes (N) for which the key is 1, 8, 21, 38, and
51 and non-DDS nodes (D) for which the key is 3, 16, 28,
and 32. Following the assignment of data at the Chord, the
successor of identifier 3 is N8. Thus, non-DDS node D3 is
connected with N8 and creates a DDS agency object, and
D3 is not related with N1, N21, N38, and N51. Similarly,
non-DDS nodes D28 and D32 would be located at DDSB
node N38, D16 at N28, and D59 at N1.

3.2 Stabilization

The Chord manages the key of data/nodes using a
successor and a predecessor in the finger table, known as
stabilization. The successor and the predecessor are used
similarly with the front/rear pointer at a doubly linked
list. When a new node joins an address space, the data
which has the new node as the successor is transferred to
the new node. The successor of the predecessor at the new
node and the predecessor of the existed successor node
are then changed to the new node. This is similar to the
insertion process of a doubly linked list. Meanwhile, the
leaving process is similar to the deletion of a doubly
linked list. The joining of new nodes and the leaving of
existing nodes are announced to existing nodes in the
address space. Disconnection due to failures of existing
nodes is recovered by the periodic execution of the
stabilization process.

Figure 6 shows the process of changing an address
space due to joining a new node. In process(1), following

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


566 G. J. Yoon et. al. : A Load Balancing Scheme by Chord Algorithm...

Fig. 6: Joining a node

the method of the address space definition at the Chord,
the non-DDS nodes D15 and D30 are connected with
DDSB node N38. The predecessor of N38 is set up as N3,
and the successor of N3 is set up as N38.

Process(2) shows the changing of the non-DDS
nodes when DDSB node N22 joins the address space.
Because the successor of D15 is N22, the connection of
D15 is changed from N38 to N22, which is newly joined.
Process(3) shows the changing of the predecessor and
the successor in the finger table when DDSB node N22
joins the address space. The predecessor of N22 is set up
as N3, which is the successor of N38, and the predecessor
of N38 is changed to N22 from N3. The successor of N3
is then changed to N22.

3.3 Finger Table

The Chord maintains a finger to find nodes that contain
data when accessing data corresponding to a particular
key, and it retains the predecessor and successor to
maintain the address space. However, the DDS does not
have to perform additional data position detection
processing of data access because it maintains separate
location information and the topic of nodes. The proposed
strategy uses a DDS to access data after defining an
address space. Because of this, it is possible to reduce the
required resources to save the finger by maintaining
successor and predecessor information for stabilization
and definition of the address space.

Table 2: Attributes in the finger table at C-DDSB
Notation Definition
Successor finger[1] node
Predecessor the previous node on the identifier circle

4 Communication protocol

4.1 pre-processing

A C-DDSB node basically works as a DDS node.
Therefore, a C-DDSB node needs to join a DDS domain
before making a connection with non-DDS nodes.

Fig. 7: Pre-processing sequence diagram

Figure 7 shows pre-processing sequences at a
C-DDSB. At first, Simple Participant Discovery Protocol
(SPDP) messages are exchanged through a multicast
transmission. The SPDP specifies how the
DomainParticipants discover each other in the DDS
domain network. Once two DomainParticipants have
discovered each other, they exchange information about
the Endpoints they contain using a Simple Endpoint
Discovery Protocol (SEDP) message. The endpoints
represent the objects executing data writing/reading in the
DDS.

For achieving the addressing rule of the Chord, the
addressing process (step 3 in Figure 7) is inserted
between the SPDP and the SEDP. In this process, the
C-DDSB node configures the address space and the finger
table using the information of discovered remote
C-DDSB DomainParticipants. When new C-DDSB
DomainParticipants join the DDS domain network, they
send SPDP messages and the existing C-DDSB nodes
reconfigure the address space and the finger table.
Through these configuration and reconfiguration
processes, DDSB nodes maintain the necessary routing
information.

4.2 C-DDSB connection

A previous study on DDSB specified protocol sequences
and message frames [7]. We specify additional sequences

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2L, 563-570 (2015) /www.naturalspublishing.com/Journals.asp 567

Fig. 8: DDSB connection sequence diagram

in order to connect C-DDSB nodes with non-DDS nodes.
When a non-DDS node joins network, it sends a
connection message through a multicast transmission.
The receiving node checks the ownership of the non-DDS
node using the successor and predecessor information.
Just one C-DDSB node sends an ACK message to this
non-DDS node through a unicast transmission. After this
connecting sequence, the non-DDS node requests creation
of a DDS entity to the C-DDSB node. For the setting of
the created DDS entity, the non-DDS node sends its Topic
information. In the DDS, the Topic is composed of a topic
name and a data structure type. Therefore, the non-DDS
node sends the information type and the topic name. All
these connections and creating and setting sequences are
executed through reliable communication.

4.3 Data communication

After the C-DDSB connection stage, the C-DDSB node
creates an agent DDS entity and announces the creation of
this DDS entity to the DDS domain using the SEDP. When
this SEDP process is finished, the corresponding non-DDS
node works as one of two types of the DDS entity, either a
publisher or a subscriber.

The non-DDS node sends or receives data to or from a
C-DDSB node using only the best-effort approach. Then,
the related C-DDSB node relays the topic data between
the DDS domain and the non-DDS node. When it
communicates with the DDS domain, the topic data are
sent either in a reliable or best-effort approach.

Fig. 9: Data communication sequence diagram

5 Test results

To measure the performance of C-DDSB, we compared
the DDSB applications with the C-DDSB applications
with respect to memory usage and the amount of
messages for the connection setup. Additionally, we
checked the amount of generated messages during the
run-time.

Table 3: Memory usage with 1 DDSB node
Number of
Non-DDS nodes 100 200 300 400 500
DDSB 2,166 3,676 5,186 6,696 8,206
C-DDSB 2,279 3,789 5,299 6,809 8,319

Table 4: traffic with 1 DDSB node
Number of
Non-DDS nodes 100 200 300 400 500
DDSB 607 1,207 1,807 2,407 3,007
C-DDSB 607 1,207 1,807 2,407 3,007
Non-DDS(DDSB) 4 4 4 4 4
Non-DDS(C-DDSB) 4 4 4 4 4

Table 3 and Table 4 show the memory usage and the
amount of message traffic with respect to the number of

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


568 G. J. Yoon et. al. : A Load Balancing Scheme by Chord Algorithm...

non-DDS nodes when the network has one DDSB node.
With results in Table 3, we checked that the memory
usage of the C-DDSB application increases similarly with
the DDSB application when the number of non-DDS
nodes is increased. With results in Table 4, we confirmed
that the amount of message traffic of the C-DDSB
application is also similar to that of the DDSB application
when the number of non-DDS nodes is increased.
Through the results in Table 3 and Table 4, we verified
that the performance of the C-DDSB application is
similar with that of the DDSB application when the
network has one DDSB node.

Fig. 10: Memory usage with 500 non-DDS nodes

Fig. 11: Traffic with 500 non-DDS nodes

Figure 10, Figure 11 and Figure 12 show the memory
usage and the amount of traffic due to the change of
DDSB nodes when the network has 500 non-DDS nodes.
Shown in Figure 10, we found that the memory usage of
the C-DDSB application is much less than that of the
DDSB application as the number of DDSB nodes is
increased.

In Figure 11 and Figure 12, we see that the amount of
change in traffic of the C-DDSB application is smaller
than that for the DDSB application when the number of
DDSB nodes is increased. Through the results shown in
Figure 10, Figure 11 and Figure 12, we confirmed that the

Fig. 12: Traffic changes of Non-DDS nodes

memory usage and the amount of message traffic of the
C-DDSB application are superior to the case of the DDSB
application when the network has numerous non-DDS
nodes, and this gap becomes greater when the number of
DDSB nodes increases.

In the previous DDSB study, the non-DDS nodes
announce participation to the DDSB nodes in the
network. All the DDSB nodes that receive these
participating messages create DDS translation objects and
connect with these non-DDS nodes. When the network
has M DDSB nodes and N non-DDS nodes, each DDSB
node makes connections to all N non-DDS nodes, and
each non-DDS node is connected to all M DDSB nodes.
Therefore, the network has M*N connections. At the
C-DDSB, the DDSB nodes select a responsible DDSB
node through the addressing algorithm of the Chord after
the DDSB nodes recognize the non-DDS nodes. Then,
only the responsible DDSB node makes a connection to a
specific non-DDS node. As a result, the network has the
same number of connections as non-DDS nodes even if
the network has numerous DDSB nodes and non-DDS
nodes. This leads to the results seen in Figure 11 and
Figure 12.

Fig. 13: Amount of generated messages during run-time

Figure 13 shows the number of generated messages
when the network has 20 DDSB or C-DDSB nodes and
500 non-DDS nodes. In this experiment, every non-DDS

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2L, 563-570 (2015) /www.naturalspublishing.com/Journals.asp 569

node works as a Publisher and generates messages at
regular intervals. Shown in Figure 13, we found that the
number of run-time generated messages of the C-DDSB
application was smaller than the DDSB application
during the entire test time, and this difference is even
bigger at regular intervals, showing peak patterns. This
feature is due to the heartbeating of DDS entities, rather
than data publishing. When a network has N non-DDS
nodes and M DDSB or C-DDSB nodes, each DDSB node
has N agent DDS entities. However, if they are C-DDSB
nodes, each node has N/M agent DDS entities, because
they make 1-to-1 connections and distribute assignments
of the agent DDS entity. Therefore, when all non-DDS
nodes publish a message, DDSB generates N*M DDS
topic data, whereas the C-DDSB generates only N DDS
topic data into the domain network. The number of
generated messages increases linearly. Each DDS entities
must send the heartbeat message to all DDS nodes at
regular intervals for announcing their liveliness. The
domain network, created by the DDSB, generates
N*M*(M-1) heartbeating messages, but the C-DDSB
domain network generates (N/M)*M*(M-1) heartbeating
messages. From the calculated results, the heartbeating
messages of the DDSB are exponentially increased by the
number of DDSB nodes. The C-DDSB solves this
exponential traffic increase problem of heartbeating.

6 Conclusion

In this paper, we applied a strategy of generating an
address space at the Chord to the DDSB. We resolved the
problems of simultaneously connecting a small embedded
device in a CPS System to more than one DDSB. As a
result, network traffic is reduced, and the load balancing
of the DDSB is possible. The C-DDSB achieved load
balancing via the distribution of embedded devices and
DDSB nodes, and the C-DDSB performs error recovery
and a dynamic join/leave process through a stabilization
strategy. With application of the Chord, we reduced the
amount of information for maintaining an address space
through reduction of a finger table. The application occurs
to solve the exponential traffic problem in heartbeating.

The size of GUID is fixed at 96 bits, because the
address space of the DDS is not flexible. With
consideration of the characteristics of GUID, it is
necessary to research prevention/avoidance strategies for
collisions generated by the hash at the Chord. Hand-off
problems also occur when the DDS entities are moved
due to the join/leave process of connected embedded
devices. We plan to study ways of reducing the hand-off
problem.

Acknowledgement

This research was financially supported by the Ministry
of Education (MOE) and National Research Foundation

of Korea (NRF) through the Human Resource Training
Project for Regional Innovation (No.
2013H1B8A2032180).

This work was partially supported by the Dual Use
Technology Program through Civil Military Technology
Cooperation Center funded by The Ministry of Trade,
Industry & Energy and Defense Acquisition Program
Administration.

References

[1] Edward A. Lee. ”Cyber physical systems: Design
challenges.” Object Oriented Real-Time Distributed
Computing (ISORC), 2008 11th IEEE International
Symposium on. IEEE, 2008.

[2] Gerardo Pardo-Castellote, Bert Farabaugh, and Rick Warren.
”An introduction to dds and data-centric communications.”
Real-Time Innovations. OpenURL, 2005.

[3] Angelo Corsaro, and Douglas C. Schmidt. ”The Data
Distribution ServiceThe Communication Middleware Fabric
for Scalable and Extensible Systems-of-Systems.” System of
Systems, InTech.(March 2, 2012). DOI 10 (2012): 30322.

[4] Jung-Dal Jeon, Hoon Choi, Chum-Su Kim, Design and
implementation of DCPS protocol, The Korea Institute of
Military Science and Technology, pp.758-761, June 2011.

[5] Gun-Jae Yoon, Hoon Choi, Chum-Su Kim, Design and
implementation of the RTPS protocol, The Korea Institute of
Military Science and Technology, pp.762-765, June 2011.

[6] Fang-Jing Wu, Yu-Fen Kao, and Yu-Chee Tseng. ”From
wireless sensor networks towards cyber physical systems.”
Pervasive and Mobile Computing 7.4, 2011, 397-413.

[7] Jung-Dal Jeon, et al. DDS Bridge for Embedded System.
WORLDCOMP 12, July, 2012.

[8] Ion Stoica, et al. Chord: A scalable peer-to-peer lookup
service for internet applications. ACM SIGCOMM Computer
Communication Review.31, 2001.

[9] David Karger and et al., Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web, The 29th Annual ACM Symposium on the
Theory of Computing, pp. 654-663. 1997.

[10] Yuta Shimano, and Fumiaki Sato. Dynamic Reconfiguration
of Chord Ring Based on Physical Network and Finger Table
Information. Network-Based Information Systems (NBiS),
2012 15th International Conference on IEEE, 2012.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


570 G. J. Yoon et. al. : A Load Balancing Scheme by Chord Algorithm...

Gunjae Yoon received
his B.S. degree in Computer
Engineering from Chungnam
National University, Korea,
in 2011. He joined the Mobile
Distributed Computing
Laboratory in Chungnam
National University. He
is currently working toward
a Ph. D. degree in Computer

Engineering at Chungnam National University. His
research area includes the network protocol, distributed
computing and the communication middleware.

Hoon Choi He is
a professor of the Department
of Computer Science and
Engineering, the Chungnam
National University (CNU),
Korea. He received a MS and
a PhD in computer science
from Duke University in
1990 and 1993, respectively.
His research area includes the

system software for mobile, distributed computing and
the communication middleware.

Soohyung Lee received
BS, MS degrees from
Hanyang University,
Korea in 1991 and 1993
respectively, and PhD degree
from Chungnam National
University in 2012. In August
1993, he joined the network
design laboratory of DACOM
corporation. Since Oct. 2000,

he has been a Principal Member of Engineering Staff in
Cyber-Physical Systems (CPS) research team, Electronics
and Telecommunications Research Institute (ETRI),
Korea. His research interests include IT converging
system,distributed communication, network security.

Wontae Kim received
BS, MS and Ph.D from
Hanyang University, Korea
in 1994, 1996 and 2000
respectively. He established
a ventrue company, Rostic
Technologies, Inc. in
2001. He joined ETRI
in 2005 and now he is
the team manager of
CPS(Cyber-Physical

Systems) research team. He is a president of CPS
project group of TTA(Telecommunication Technology
Association) from 2011.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	Related work
	DDSB assignment by the Chord algorithm
	Communication protocol
	Test results
	Conclusion

