
Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015) 535

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L28

Probabilistic Analysis on JPV Algorithm and Improving
It using GCD Function

Hosung Jo1 and Heejin Park2,∗

1 Department of Electronics and Computer Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
2 Department of Computer Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791,Korea

Received: 8 Jun. 2014, Revised: 6 Aug. 2014, Accepted: 8 Aug.2014
Published online: 1 Apr. 2015

Abstract: JPV algorithm, proposed by Joye et al. was predicted to be faster than the combined prime generation algorithm but it runs
slower in practice. This discrepancy is because only the number of Fermat test calls was compared in estimating its totalrunning time.
We present a probabilistic analysis on the total running time of JPV algorithm. This analysis is very accurate and corresponds to the
experiment with only 1-2% error. Furthermore, we propose animproved JPV algorithm that uses GCD function. It is faster than JPV
algorithm and similar to the combined algorithm with the same space requirement.

Keywords: Prime generation, Primality test, Public-key cryptosystem, GCD function

1 Introduction

Generating large primes is important to enhance the
security strength of public-key cryptosystem [1,2] such as
RSA [3], ElGamal [4], and DSS [5] because if a prime
used in cryptosystem is bigger, cryptosystem is more
secure. However, generating large primes takes long time,
so we need to generate large primes efficiently. Prime
generation [6] consists of random number generation and
primality test. Since the primality test is much-more
time-consuming than the random number generation,
reducing the running time of primality test is more
important in developing an efficient prime generation
algorithm.

Primality tests are divided into two categories;
deterministic primality tests and probabilistic primality
tests. Deterministic primality tests such as trial
division [7], Pocklington’s test [8], elliptic curve
analogue [9], Jacobi sum test [10], Maurer’s
algorithm [11] and Shawe-Taylor’s algorithm [12] certify
that a random number is a prime with probability 1.
Probabilistic primality tests such as Fermat Test [13],
Miller-Rabin test [14], Solovay-Strassen test [15],
Frobenius-Grantham primality test [16] and Lehmann
primality test [17] certify that a random number is a
prime with high probability that is very close to 1.

Practically, two or more primality tests are combined
to speed up prime generation. A combination of trial
division and Miller-Rabin test is widely used. Trial
division divides ann-bit random numberr to all primes at
most

√
r. Miller-Rabin test checks whether one of

following condition is satisfied whenr − 1 = 2jq
(0≤ j ≤ k); If j = 0, aq modr = 1 or a2jq modr = n−1.
Maurer [11] proposed a probabilistic analysis of an
expected running time for the combined algorithm. He
also showed how to compute the optimal value ofg (gopt
hereafter) which makes the combined algorithm fastest.

Joye et al. [18] introduced JPV algorithm which
removes trial division from the combined algorithm. JPV
algorithm has 2 characteristics: The first one is that it
generates an odd random number which is relatively
prime to every prime less than some boundk. The second
one is that it generates a new random number from the
previous one by simple computation, instead of
generating a random number again. JPV algorithm
claimed that it is faster than the combined algorithm by
30 to 40%. However, Joye et al. did not compare the total
running time of each algorithm but the number of Fermat
test calls because there was no probabilistic analysis on
the running time of JPV algorithm. Thus, developing the
probabilistic analysis for the running time of JPV
algorithm is required for more accurate comparison.

∗ Corresponding author e-mail:hjpark@hanyang.ac.kr

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L28

536 H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

Table 1: Denotations about the running time
Running Time for

Time 1 execute
Random Number Generation TRND Trnd
Trial Division TTD Ttd
Miller-Rabin Test TMR Tmr

In this paper, we first propose a probabilistic analysis
on the expected running time of JPV algorithm and
compare the expected running time of JPV algorithm with
that of the combined algorithm. According to our
analysis, JPV algorithm is slower than the combined
algorithm in generating a 512-bit prime and the
experimental results correspond to this analysis. In
addition, we propose an improved JPV algorithm and it
shows similar performance with the combined algorithm
when the same size of memory space is used.

This paper is organized as follows. Section II
introduces the combined algorithm and JPV algorithm. In
Section III, we probabilistically analyze the expected
running time of JPV algorithm. We also compare the
combined algorithm and JPV algorithm. In addition, we
introduce an improved JPV algorithm. We conclude in
Section IV.

2 Previous Work

2.1 The Combined Algorithm

The combined algorithm consisting of random number
generation, trial division and probabilistic primality test is
as follows.

TD-MR combination (n,k)

1.Random Number Generation
-Generate ann-bit odd random numberr.

2.Trial division onr with k small primes
-Dividesr by k small primes.
-If r is divided by any prime, go to Step 1.

3.Miller-Rabin test onr
-Perform Miller-Rabin test onr.
-If r passes, returnr as a prime.
-Otherwise, go to Step 1.

Maurer [11] introduced a probabilistic analysis of the
expected running time of the combined test. LetNT be the
number of generated random numbers until a prime is
found. Let TRND, TT D, and TMR be the average running
times of random number generation, trial division, and
Miller-Rabin test, respectively.

Then, whenn-bit prime is generated withk primes, the
total run time,T (n,k), is as follows.

T (n,k) = NT · (TRND +TTD +TMR) (1)

If the bit-length ofr is n, NT = n ln2
2 ≈ 0.347n. Let Ttd

and Tmr be the running times of one division and one
Mill-Rabin test, respectively. Letk be the number of
small primes used in the trial division andpi be theith
odd prime number so thatp1 < p2 . . . < pk. Then,TRND,
TT D andTMR are as follows.

TRND = 1 ·Trnd (2)

TT D = Ttd(1+
k

∑
j=1

j

∏
i=1

(1− 1
pi
)) (3)

TMR = Tmr(
k

∏
i=1

(1− 1
pi
)) (4)

Therefore,T (n,k) is as follows.

T (n,k) =
n ln2

2
(Trnd +Ttd(1 +

k

∑
j=1

j

∏
i=1

(1− 1
pi
))

+ Tmr(
k

∏
i=1

(1− 1
pi
))

The optimal number of primes that makes the run time
fastest is as follows.

gopt =
Tmr

Tdiv
(5)

2.2 JPV algorithm

Joye et al. proposed JPV algorithm that does not use the
trial division. JPV algorithm consists of 5 steps;
precomputation, invertible number generation, candidate
generation, primality test, and invertible number
regeneration.

1.Precomputation
Compute integer valuesη ,Π ,ρ , andλ (Π). The range
of a n-bit random number is 2n−1 + 1 ≤ q ≤ 2n− 1.
We defineWmax as 2n− 1 andWmin as 2n−1+ 1. η is
the product ofk different small primes andΠ andρ
are multiples of η and also satisfy inequalities
Π ≤Wmax−Wmin andρ ≥Wmin. The functionλ is the
Carmichael function [19] that is computed in the
following way. If Π = p1p2 . . . pk, λ (Π) is the least
common multiple of eachλ (pδi

i). When pi is odd,

λ (pδi
i) = pi

δi−1(pi− 1). When pi is even andδi ≥ 3,
λ (2δi) = 2δi−2. Whenpi is even andδi > 3,λ (2) = 1
andλ (4) = 2.

2.Invertible number generation
Generate an integerc that is relatively prime toΠ .
First, generate a random numberc smaller thanΠ and
exam whetherc is relatively prime toΠ . If c andΠ
are relatively prime, returnc. Otherwise, add 1 toc

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015) /www.naturalspublishing.com/Journals.asp 537

Table 2: Precomputed values for the 512-bit prime generation
Precomputed values

η b16b d1e0 84af 628f e508 9e6d abd1 6b5b
80f6 0681 d6a0 92fc b1e8 6d82 876e d719
2100 0bcf dd06 3fb9 081d fd07 a021 af23
c735 d52e 63bd 1cb5 9c93 cbb3 98af d

Π 1,729·η
ρ 4,120·η

λ (Π) 1dc6 c203 d4cc 7800 33f9 c5d8 d97a a246
8a54 e370 0

and exam again. This step is repeated until findingc
which is relatively prime toΠ . In this algorithm, if
cλ (Π) modΠ =1, c is relatively prime toΠ .

3.Candidate generation
Generate a candidater for Fermat test. The candidate
r is the sum ofc andρ . If both c andρ are odd, addη
to r to maker even.

4.Primality test
Perform Fermat test onr. If r is a prime, returnr and
terminate. Otherwise, go to step 5.

5.Invertible number regeneration
Generate a new invertible numberc′ = 2c modΠ .
After generatingc′, return to step 3 andc′ replacesc
to generater.

JPV algorithm was compared with combined
algorithm about the number of Fermat test calls [18].
According to the comparison result, JPV algorithm is 30
to 40% faster than combined algorithm when 10 small
primes are used. In addition, as the size of a generated
prime is getting larger, the gap between JPV algorithm
and the combined algorithm is wider.

However, this comparison is not appropriate in two
ways. One is that combined algorithm uses only 10 small
primes. Usually, as the number of small primes used in
trial division increases, the number of Miller-Rabin calls
decreases. Therefore, using only 10 primes for trial
division is not relevant. The other is that comparing only
the number of Fermat test calls is not a good metric for
the real running time. Because as the number of primes in
the trial division increases, the running time of the trial
division is increasing and thus the total running time
would be increased.

3 Contribution

We first probabilistically analyze JPV algorithm in Section
3.1. Then we compare the running time of JPV algorithm
with that of the combined algorithm in Section 3.2. Finally,
we introduce our improved JPV algorithm and its running

time in Section 3.3. Note that we will use Miller-Rabin test
as the probabilistic primality test instead of Fermat test.

3.1 Probabilistic Analysis of JPV Algorithm

The total running time of JPV algorithm can be estimated
by the sum of the running times of 2-5 steps because step
1 is precomputed. LetTi denote the running time of stepi
andNi the number of iterations of stepi. We first consider
the number of iterations of each step. Since step 2 is
performed only one time,N2=1. The iteration number of
step 3 and 4 are same, thusN3 = N4. Step 5 is performed
when Miller-Rabin test is failed, soN5 = N4− 1. Then
TJPV is represented as follows.

TJPV = T2+(T3+T4)N4+T5(N4−1) (6)

We consider the running time of each step.T2 is the
sum of the running time to test thatc is relatively prime to
Π and the running time to regeneratec. Let Trnd denote
the running time to generatec, Tlam the running time of
computing (cλ (Π) modΠ), Tadd the running time of
adding 2 integers, andNlam the number of (cλ (Π) modΠ)
computations. Then, the total running time of step 2 is as
follows.

T2 = Trnd +(Tlam +Tadd)Nlam−Tadd (7)

T3 is the time to generate ann-bit odd candidater
from c. In step 3, ifr is odd, one addition is necessary.
Otherwise, two addition are necessary. Since the
probability thatr is odd is 1/2, 1.5 addition is executed on
average.

T3 = 1.5 ·Tadd (8)

T4 is the running time of Miller-Rabin test on the
candidates those are not divided byk small primes,

T4 = Tmr (9)

T5 is the time to regenerate an invertible numberc
whenr is not a prime. In step 5,(c← 2c modΠ) can be
computed by 1.5 addition on average as follows. First,
(c+ c) is computed and if 2c≥ Π , it computes(2c−Π).
Because the probability that 2c is bigger thanΠ is 1/2
and normally the running time of an addition and a
subtraction are similar, 1.5 addition is required on average
in step 5.

T5 = 1.5 ·Tadd (10)

Now, we knowT2, T3, T4, andT5, thenTjpv is like as
follows.

TJPV = Trnd +(Nlam +3N4−2.5)Tadd +NlamTlam +N4Tmr
(11)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

538 H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

In the equation (11), Trnd ,Tlam,Tadd, and Tmr are
different by the experimental machine and environment.
Therefore, those can be measured by experiments.Nlam
andN4 can be computed by probabilistic analysis.Nlam is
the number of computations of (cλ (Π) modΠ) until we
find c relatively prime toΠ . Sincec andΠ are relatively
prime andΠ = p1p2 . . . pk, the probability thatc andΠ
are relatively prime is∏k

i=1(1− 1
pi
). Since the expected

number of evaluating (cλ (Π) modΠ) is the inverse of the
probability of it,Nlam is as follows.

Nlam = ∏
1≤i≤k

(
1

1− 1
pi

) = ∏
1≤i≤k

(
pi

pi−1
) (12)

N4 is the number of generated candidater thus it is the
inverse of the probability ofr being a prime. The
probability of r being a prime can be obtained using the
conditional probability as follows. LetA be the event that
r andΠ are relatively prime andB the event thatr passes
Miller-Rabin test. Then, the probability thatr is a prime is
the conditional probability P(B|A). Since
P(B|A) = P(B ∩ A)/P(A) and P(B ∩ A) = P(B),
P(B|A) = P(B)/P(A) where Π = p1p2 . . . pk and

P(A) = ∏k
i=1

(

1− 1
pi

)

. BecauseP(B) is an inverse of

average numbers of trials until finding a prime,
P(B) = 1

0.347n . Therefore,P(B|A) = 1

0.347n∏k
i=1

(

1− 1
pi

) and

N4 is an inverse ofP(B|A). So N4 is represented as
follows.

N4 = 0.347n ∏
1≤i≤k

(1− 1
pi
) (13)

Finally, we can get Theorem 1 by gathering all the
information of equation (11).

Theorem 1 The running time of JPV algorithm for
generating ann-bit prime is as follows.

TJPV (n,k) = Trnd + ∏
1≤i≤k

(
pi

pi−1
)Tlam

+ (1.041n ∏
1≤i≤k

(1− 1
pi
)

+ ∏
1≤i≤k

(
pi

pi−1
)−2.5))Tadd

+ 0.347n ∏
1≤i≤k

(1− 1
pi
)Tmr

where p1, p2, ..., pk are factors ofΠ , Trnd is the time
required to generate a random number ,Tadd is the time
required for an addition,Tlam is the running time of
(cλ (Π) modΠ), and Tmr is the running time of
Miller-Rabin test.

Table 3: Measured values
Measured time(ns)

Tadd 430
Trnd 15,544
Tmr 4,734,181
Tlam 1,500,133

Table 4: Comparison of the expected and measured time of JPV
algorithm

Expected(ns) Measured(ns) Error (%)
TJPV 166,239,125 168,336,171 1.2

3.2 Comparing theoretical results to
experimental results

In order to find out how accurate our probabilistic
analysis is, we compute the expected running time and
compare the result with the measured running time when
a 512-bit prime is generated on a Pentium 4 3.0Ghz with
1GB main memory. The programming environment for
implementation is JAVA JDK 5.0 in OpenSSL [20] and
GNUCrypto [21].

In order to compute the expected running time of JPV
algorithm by Theorem 1,Trnd , Tlam, Tmr, andTadd should
be measured. When a 512-bit prime is generated, we used
the valuesη ,Π ,ρ , andλ (Π) as shown in Table2, which
are provided by Joye et al. [18]. Table 3 shows the
measured valuesTadd ,Trnd ,Tmr, andTlam. We performed
each operation 1 million times for 512-bit random
numbers and measured the total running time. Finally we
compute the average of the total running time.

Then, we compute the expected running time and
compare the expected running time and measured running
time of JPV algorithm. We generated 512-bit prime for
1,000,000 times. Table4 shows the comparison results
that the expected running time and the measured running
time of the JPV algorithm are very similar, which implies
that our probabilistic analysis is quite accurate.

3.3 JPV algorithm vs. Combined algorithm

In this subsection, we compare the running time of JPV
algorithm with that of the combined algorithm. First, we
compare JPV algorithm with the optimized combined
algorithm that usesgopt. Then, we compare JPV
algorithm with the combined algorithm when the
combined algorithm uses the memory size as same as JPV
algorithm requires (This will be called a space-limited
combined algorithm hereafter).

The expected running time of the optimized combined
algorithm is computed by the probabilistic analysis
proposed by Maurer. In order to compute the expected

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015) /www.naturalspublishing.com/Journals.asp 539

Table 5: Comparison result of algorithms

Expected(ns) Measured(ns) Space(bit)
TJPV 166,239,125 168,336,171 1,687
Toptimized 145,121,995 144,968,267 5,856
Tspace−limited 158,798,392 158,450,260 1,687

running time, we measureTexp andTdiv and computegopt.
SinceTmr = 4,734,181(ns) andTd = 1,894 (ns), gopt is
approximately 2,499. The number of primes less than
2,499 is 366 from 3 to 2,477. LetPmr(g) denote the
probability that the combined algorithm that uses primes
less thatg performs Miller-Rabin test. LetNd(g) denote
the number of divisions performed in trial division that
uses primes less thatg. Then,Pmr(2,499) = 0.14318 and
Nd(2,499) = 65.18. With these values, we compute the
expected running time of the optimized combined
algorithm as follows.

Toptimized(512,2499) = 145,121,995(ns)

The expected running time of JPV algorithm is slower
than that of the optimized combined algorithm and the
measured running times of both algorithms show similar
gap. Even though the optimized combined algorithm is
faster than JPV algorithm, the optimized combined
algorithm requires 4 times more space than JPV
algorithm requires. Therefore, we compare JPV algorithm
and the combined algorithm that uses the same space as
JPV algorithm requires. The space to saveη ,Π ,ρ , and
λ (Π) required by the JPV algorithm is 1,687 bit.

In order to compare the two algorithms when both
algorithms use the same space, we restrict the combined
algorithm such that it uses as many small primes for the
trial division as can be stored in 1,687 bits. If a prime is
stored in a 16-bit word, 105 small primes from 3 to 577
can be stored in 1,687 bits. When the combined algorithm
uses 105 small primes,Pmr(g) = 0.175619 andNdiv(g) =
24.74. With these, the expected running time of the
combined algorithm using the same space is as follows.

Tspace−limited(512,105) = 158,798,392(ns)

Table 5 shows that JPV algorithm still runs slower than
the combined algorithm even though the combined
algorithm uses less primes than the optimized combined
algorithm. However, the gap between the running time of
JPV algorithm and the combined algorithm is not wide.

3.4 Performance Improvement on JPV
algorithm

We introduce a new method to improve the performance
on JPV algorithm. JPV algorithm perform (cλ (Π) modΠ)
computation to test ifc is relatively prime toΠ . However,

this computation includes a modular exponentiation that
takes a long time. Instead of this, we can use GCD function
[7] to test if c is relatively prime toΠ . GCD function is a
function to compute the greatest common divisor of two
integers. If the greatest common divisor of two integers is
equal to 1, two integers are relatively prime.

We propose a probabilistic analysis for the expected
running time of JPV algorithm with GCD operation
whereTgcd(a,b) is the running time of the GCD operation
on a and b. Hereafter, let JPV algorithm with GCD
operation be the improved JPV for convenience. Because
the improved JPV algorithm is the same as JPV algorithm
except for GCD function, the expected running time of
the improved JPV algorithm can be computed by
substituting the running time of GCD function,Tgcd for
Tlam. We first introduce two famous gcd algorithms:
Euclid’s gcd algorithm,EGCD(a,b) and Binary gcd
algorithm,BGCD(a,b).

EGCD(a,b)

1.If b is 0, returna
2.Otherwise, returnEGCD(b,a modb)

BGCD(a,b)

1.If a > b, and both are odd,gcd(a,b) = gcd((a−b)
2 ,b)

2.If a is odd andb is even,cd(a,b) = gcd(a, b
2)

3.If a is even andb is odd,gcd(a,b) = gcd(a
2,b)

4.If both a and b are even,gcd(a,b) = 2gcd(a
2,

b
2)

5.If a < b, swap(a,b)
6.returnBGCD(a,b)

In practice, two algorithms are combined to use and
that is called hybrid gcd algorithm,HGCD(a,b). Euclid’s
gcd algorithm is used until two integers have similar bit-
lengths and then binary gcd algorithm is used as follows.

HGCD(a,b)

1.If b = 0, returna.
2.If the difference of bit length of (a and b) > 2,

HGCD(b,a modb).
3.If the difference of bit length of (a and b) ≤ 2,

BGCD(a,b).

The running time ofHGCD(a,b) is a sum of the
running times for EGCD(a,b) in step 2 and for
BGCD(a,b) in step 3. LetTE andTB be the running times
for EGCD(a,b) andBGCD(a,b), respectively. Then, the
running time of gcd is as follows.

Tgcd = TE +TB

In HGCD(a,b), EGCD(a,b) performs 2 divisions on
average, so the running time isO((1+ logq) logb), which
is the running time for dividinga by b whereq is the

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

540 H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

Table 6: Comparison of gcd algorithms’ running time
a = 1,024 Euclid’s gcd Binary gcd Hybrid gcd

(bit) (ns) (ns) (ns)
32 3,641 110,064 2,189

128 26,249 117,397 13,459
512 166,020 147,588 70,199

2048 538,364 501,249 220,119
4096 617,104 1,572,442 265,022

a = 2,048 Euclid’s gcd Binary gcd Hybrid gcd
(bit) (ns) (ns) (ns)

32 5,414 371,443 3,886
128 31,414 381,834 18,297
512 189,717 424,830 82,290

2048 1,664,242 670,746 672,259
4096 1,822,092 1,847,548 757,367

quotient ⌊a/b⌋. The running time ofBGCD(a,b) is
proportional to the bit length of the bigger ofa andb, i.e.,
O(log2 a).

As we already mentioned, there are three kinds of gcd
algorithms: Euclid’ gcd algorithm, binary gcd algorithm,
and hybrid gcd algorithm. Therefore, we compare the
running times of three gcd algorithms in order to choose
the fastest gcd operation for the later comparison between
trial division and gcd operation. We measure the running
times of three gcd operations:EGCD(a,b), BGCD(a,b),
and HGCD(a,b). The bit-lengths of parametera are
1,024 and 2,048 bits. The bit-lengths of parameterb are
32, 128, 512, 1024, 2048 and 4096 bits. We randomly
generated botha and b at each time and averaged total
running time of 1000000 tests. The comparison shows
that hybrid gcd algorithm is always fastest in every case
in Table6.

In this situation, we compute the gcd ofr andΠk by
using hybrid gcd algorithm whereΠk is the product ofk
small primes andp1 < p2 < ... < pk. While the bit-length
of r is fixed ton, the size ofΠk is varying ask increases.
We divide the analysis ofTgcd into two cases whenr > Πk
and whenr < Πk.
Whenr > Πk, Tgcd is:

Tgcd = TE(r,Πk)+TB(r modΠk,Πk) (14)

Since the run time forEGCD(a,b) is O((1+ logq) logb),
TE(r,Πk) is asymptotically as follows.

O((1+ log(
r

Πk
)) logΠk)

= O(logΠk + logΠk logr− (logΠk)
2)

Therefore, the running time ofTE(r,Πk) can be
represented as a quadratic function of logΠk as follows.

TE(r,Πk) = x(logΠk)
2+ y(logΠk)+ z,x < 0 (15)

The running timeTB(r modΠk,Πk) is O(log2 Πk) because
r modΠk < Πk. Therefore, it is also a quadratic function

Fig. 1: Comparison of the running time of gcd algorithms

of logΠk.

TB(r modΠk,Πk) = x′(logΠk)
2+ y′(logΠk)+ z′,x′ > 0

(16)
Whenr < Πk, Tgcd is:

Tgcd(k) = TE(Πk,r)+TB(r,Πk modr) (17)

Sincer < Πk, the time complexity ofEGCD(Πk,r) is like
this.

O((1+ log(
Πk

r
)) logr)

= O(logr + logr logΠk− (logr)2)

Because logr is a constant,EGCD(Πk,r) is a linear
function of logΠk.

TE = s(logΠk)+ t (18)

Sincer > Πk modr, TB(r,Πk modr) = O(r2), which is a
constant. Overall, we get the following lemma.

Theorem 2 The running time ofHGCD(r,Πk) is as
follows.

Tgcd(k) =

{

u(logΠk)
2+ v(logΠk)+w (r > Πk)

u′(logΠk)+ v′ (r < Πk)

whereΠk is p1p2...pk andpi is a prime.

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 535-542 (2015) /www.naturalspublishing.com/Journals.asp 541

Table 7: comparison ofTE andTB

256(bit) 512(bit) 1,024(bit)
TE(ns) 961 - 1,462 1,146 - 4,284 1,581 - 10,804
TB(ns) 36,773 102,568 314,373

To compute the expected running time, we
implemented the gcd combined test and measured the
running time for generating 1,024-bit primes 1,000,000
times.

When r > Πk, Tgcd(k) is computed by Theorem 2.
Table 7 shows that the running time ofTE(r,Πk) and
TB(r modΠk,Πk) whenr is 256, 512 or 1,024 bits.

However,TE(r,Πk) is very small enough to neglect
and TB(Πk,r) is very similar to a linear function. Thus,
whenr > Πk, TB(r modΠk,Πk) approximates to a linear
function of logΠk. Finally, we can expect the run time of
HGCD(a,b) by computing coefficients(u,v) and(u′,v′).
We compute the regression using 4 sample points for each
case. The regression analysis shows a similar result with
experimental results.

Tgcd(k) =

{

201.3(log∏k
i=1 pi)−3,993(r > Πk)

17.1(log∏k
i=1 pi)−96,861(r < Πk)

(19)

Because the improved JPV algorithm is the same as
JPV algorithm except for GCD function, the expected
running time of the improved JPV algorithm can be
computed by substituting the running time of GCD
function,TEUC for Tlam in TJPV (512,72).

Tgcd is much faster than Tlam because
Tgcd = 101,198 (ns) and Tlam = 1,500,133 (ns). The
expected running time of the improved JPV algorithm
usingTgcd is as follows.

TImprovedJPV (512) = 158,801,610(ns)

Figure2 shows that the improved JPV algorithm using
GCD function is better than the original JPV algorithm and
the performance of the improved JPV algorithm is similar
to the space-limited combined algorithm.

4 Conclusion

In this paper, we proposed a probabilistic analysis on JPV
algorithm and compared the total running time of JPV
algorithm with the combined algorithm. When a 512-bit
prime is generated, the combined algorithm is better than
JPV algorithm. Furthermore, we proposed a method to
improve JPV algorithm. The improved JPV algorithm
shows similar performance of the combined algorithm
that uses the same size of space that JPV algorithm
requires.

Fig. 2: Comparison of the running time of each algorithm

Acknowledgement

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 2012-0006999) and by Seoul
Creative Human Development Program (HM120006).

References

[1] W. Diffe and M. E. Hellman, New directions in
cryptography, IEEE transactions on Information Theory22,
644-643 (1976).

[2] Public-Key Cryptography Standards, PKCS #1 RSA
Cryptography Standard.

[3] R. L.Rivest, A. Shamir, and L. Adleman, A method for
obtaining digital signatures an public-key cryptosystem,
Communications of the ACM21, 120-126 (1978).

[4] T. ElGmal, A public key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Transactions on
Information Theory31, 469-472 (1985).

[5] National Institute for Standards and Technology, Digital
Signature Standard(DSS), Fedral Register56, 169 (1991).

[6] International Organizatoin ofr Standard, ISO/IEC 18032:
Prime Number Generation (2005).

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,
Introduction to Algorithms, 3nd ed, MIT press (2009).

[8] H. C. Pocklington, The determination of the prime or
composite nature of large numbers by Fermat’s theorem,
Proc. of the Cambridge Philosophical Society18, 29-30
(1914).

[9] A. O. L. Atkin and F. Morain, Elliptic curves and primality
proving, Mathematics of Computation61, 29-63 (1993).

[10] W. Bosma and M. P. van der Hulst, Faster primality testing,
CRYPTO’89, LNCS435, 652-656 (1990).

[11] U. M. Maurer,Fast Generation of Prime Numbers and
Secure Public-Key Cryptographic Parameters, Journal of
Cryptology8, 123-155 (1995).

[12] J. Shawe-Taylor, , Generating strong primes, Electronics
Letters22, 875-877 (1986).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

542 H. Jo, H. Park: Probabilistic Analysis on JPV Algorithm...

[13] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, (1997).

[14] M. O. Rabin, Probabilistic Algorithm for Primality Testing,
Journal of Number Theory12, 128-138 (1980).

[15] R. Solovay and V. Strassen, A fast Monte-Carlo test for
primality, SIAM Journal on Computing6, 84-85 (1977).

[16] J. Grantham, A probable prime test with high confidence,
Journal of Number Theory72, 32-47 (1998).

[17] D. J. Lehmann, On Primality tests, SIAM Journal of
Computing11, 374-375 (1982).

[18] M. Joye, P. Paillier and S. Vaudenay, Efficient Generation of
Prime Numbers, CHES 2000, LNCS1965, 340-354 (2000).

[19] R. D. Carmichael, On composite number P which satisfy
the Fermat congruenceaP−1 = 1(modP), Amer, Math,
Monthly 19, 22-27 (1912).

[20] J. Viega, M. Messier, and P. Chandra, Network Security with
OpenSSL, O’reilly Media (2002)

[21] The GNU Crypto Project,
http://www.gnu.org/software/\discretionary{-}{}{}gnu-crypto

Hosung Jo received the
M.S. degree in Information
and Communication Engineer
ing at Hanyang University,
Seoul, Korea in 2007. He is
currently a Ph.D. candidate
under supervision of Prof.
Heejin Park. His research
interests are in the areas
of cryptography, information

security, and computer algorithm.

Heejin Park received
the M.S. and Ph.D. degrees in
Computer Engineering from
Seoul National University in
1996, and 2001, respectively.
From 2001 to 2002, he
worked as a post-doctoral
researcher for the Department
of Computer Engineering
at Seoul National University.

From 2003 to 2003, he was a research professor at Ewha
Womens University. He is currently an associate
professor in the Department of Computer Science and
Engineering at Hanyang University, Seoul, Korea. His
research interests are in the areas of cryptography,
information security, and computer algorithm.

c© 2015 NSP
Natural Sciences Publishing Cor.

http://www.gnu.org/software/ \discretionary {-}{}{}gnu-crypto

	Introduction
	Previous Work
	Contribution
	Conclusion

