
Appl. Math. Inf. Sci.9, No. 2L, 451-460 (2015) 451

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/092L20

Streaming Task Distribution Method for Reliable
Distributed Streaming Service in Cloud Environment

Myoungjin Kim1, Seungho Han1, Yun Cui1 and Hanku Lee2,∗

1 Department of Internet and Multimedia Engineering, KonkukUniversity, Seoul, Korea
2 Center for Social Media Cloud Computing, Konkuk University, Seoul, Korea

Received: 20 May 2014, Revised: 21 Jul. 2014, Accepted: 22 Jul. 2014
Published online: 1 Apr. 2015

Abstract: We previously proposed a cloud-based distributed multimedia streaming service (CloudDMSS) that delivers rich multimedia
streaming services to heterogeneous devices in cloud environments with unstable and unpredictable traffic. The proposed system deals
primarily with task management, load balancing, and fault tolerance. In this paper, we focus on improving the streamingtask distribution
capacity of our proposed system by providing a streaming resource-based connection (SRC) algorithm for use by the cloudmanagement
module (CMM) of CloudDMSS. The main function of the SRC algorithm is to select a streaming server with optimal conditionsfor
streaming services among streaming servers deployed in oursystem by considering factors such as streaming network traffic and CPU
and RAM usage rates. This enables our system to reduce content delays and avoid traffic bottlenecks while providing streaming services.
The results of simulations conducted on both our local testbed and an actual cloud computing environment, Cloudit 2.0, with 600 virtual
user requests for streaming service, indicate that the SRC algorithm enables our system to more effectively distributestreaming tasks
than conventional Round Robin and Least Connection-based systems.

Keywords: Media service, distributed streaming, task distribution,cloud computing, Hadoop

1 Introduction

The recent advent of high-performance heterogeneous
smart devices, and the spread of social networking
services (SNS), such as Facebook and Twitter, has
resulted in large volumes of social media content being
produced in various forms and being shared in wired and
wireless environments [2]. Recently, the most noteworthy
and influential emerging technologies include
cloud-based media streaming, transcoding, and content
distribution to deliver rich multimedia services with
guaranteed quality of service (QoS).

Previously, traditional distributed and cluster-based
computing approaches were utilized for media
transcoding and streaming processing. However, it is
difficult to provide rich media services incorporating
multimedia traffic and mobile services using traditional
approaches [14]. In a previous paper [4], we presented a
distributed multimedia streaming service (CloudDMSS)
system designed to run on conventional cloud computing
infrastructure. CloudDMSS comprises three main
modules: a Hadoop-based distributed multimedia

transcoding module (HadoopDMT), a Hadoop-based
distributed multimedia streaming module (HadoopDMS),
and a cloud management module (CMM).

Because of the varied resolutions of video extensions,
codecs, and streaming protocols, content generated by
users has to be transcoded into a format suitable for
streaming to smart devices. Traditional multimedia
transcoding approaches focused on distributed and
cluster-based video media approaches, such as those
found in [3,5,15,18,20], which reduce processing time
and maintenance costs when building a computing
resource infrastructure. However, these approaches
procure computing resources for the video transcoding
process simply by increasing the number of cluster
machines in the distributed computing environment. In
addition, they do not consider load balancing, fault
tolerance, and data replication methods to ensure data
protection and to expedite recovery.

We overcome these limitations by executing
HadoopDMT in a cloud computing environment and
improve quality and speed by using the Hadoop
Distributed File System (HDFS) [12] to store the large

∗ Corresponding author e-mail:hlee@konkuk.ac.kr

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/092L20

452 M. Kim et. al. : Streaming Task Distribution Method...

volumes of video data created by users, MapReduce
cite12,13 for distributed processing of the video data, and
Xuggler [16] and Java Advanced Imaging (JAI) [17] for
media transcoding. In addition, our system achieves
improved distributed processing capabilities and
simplified system design and implementation by
incorporating the data replication, fault tolerance, load
balancing, and file splitting and merging policies
provided by Hadoop. After completing the transcoding
process in HadoopDMT and storing transcoded content in
HadoopDMS, the CMM in CloudDMSS manages and
distributes streaming tasks via distributed streaming
servers to provide a seamless streaming service to users
without content delay.

In a previous paper [8], we proposed two streaming
task distribution methods based on two algorithms:
Round Robin (RR) and Least Connection (LC). Recently,
researchers have proposed various approaches [6,7,8,9]
for effectively distributing streaming tasks in a distributed
system environment when numerous requests for
streaming services are generated by users. However,
systems that apply RR and LC do not consider physical
resource usage (CPU and RAM) and streaming network
traffic; consequently, they are limited and impose a heavy
burden on current Internet infrastructure and streaming
servers. In this paper, we propose a streaming
resource-based connection (SRC) scheduling algorithm
that considers the CPU, RAM, and streaming
transmission rate usage of each streaming server; thereby
addressing the limitations of the RR and LC distribution
methods. In addition, our system introduces a redirection
mechanism [10] for HTTP requests.

Distributed servers that include content in their system
lack countermeasures against data losses and system
failures. Consequently, the number of distributed servers
has to be increased in order to create replicas of the data
to compensate for failures. However, the reliability and
scalability of these systems are not guaranteed because of
the absence of automatic recovery policies. Our system
obviates data losses and system failures by adapting and
incorporating the structure and policies of Hadoop.

In this paper, we compare the streaming task
distribution capacity of RR-, LC-, and SRC-based
systems in terms of the network transmission distribution
throughput based on the streaming servers in a local
testbed. In addition, to verify the performance in
commercial cloud computing environments, including
unpredictable and unstable network traffic over WAN, we
test the streaming task distribution capacity in Cloudit 2.0
[19], which is operated by Innogrid.

The remainder of this paper is organized as follows.
In section 2, we discuss load distribution methods and
Hadoop. Section 3 provides a detailed explanation of
CloudDMSS. The proposed algorithm and its core
concepts are described in section 4. In section 5, we
present our proposed prototype of a distribution streaming
system on CloudDMSS and its system architecture. In
section 6, we compare our distribution streaming system

with the RR and LC algorithms in terms of transmission
rate. Finally, section 7 presents our conclusions and
outlines the scope for further research.

2 Related Work

2.1 Load and Task Distribution Methods

Load and task distribution methods that reduce the idle
time and that minimize redundant or wasted effort in
distributed environment are used in many domains such
as web servers, file servers, and video streaming servers.
The RR and LC algorithms are used to distribute loads
and tasks among distributed servers. Indeed, most current
distributed server platforms typically use some form of
RR or weighted RR, followed by LC. First, the RR-based
method distributes tasks in a fixed order according to the
user requests. Second, the LC-based method distributes
tasks to the server with the lowest number of users
according to the task request. In addition, many
researchers have studied other distribution algorithms,
such as weighted RR (WRR) and dynamic weighted RR
(DWRR) [6]. However, because most of the methods for
task distribution target web servers and they are generic,
they are very inefficient and inappropriate when applied
to a distributed server platform for media streaming,
which requires intensive server resources. Therefore, we
propose a task distribution method that uses the SRC
algorithm. The SRC algorithm considers the usage rate of
servers and the streaming transmission throughput when
distributing a streaming task, thereby allowing it to
overcome the limitations of existing task distribution
methods.

2.2 HDFS and MapReduce

Hadoop, inspired by Googles MapReduce and Google
File System [6], is a software framework that supports
data-intensive distributed applications, which are capable
of handling thousands of nodes and petabytes of data.
Hadoop facilitates the scalable and timely analytical
processing of large datasets to extract useful information.
Hadoop comprises two important frameworks: 1) HDFS
[11], which is a distributed, scalable, and portable file
system written in Java, like the Google file system (GFS);
and 2) MapReduce cite12, which was the first framework
developed by Google for processing large datasets.

The MapReduce framework provides a specific
programming model and a runtime system for processing
and creating large datasets that are amenable to various
real-world tasks. This framework also handles automatic
scheduling, communication, and synchronization when
processing huge datasets and it is fault tolerant. The
MapReduce programming model is executed in two main
steps: mapping and reducing. Mapping and reducing are

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 451-460 (2015) /www.naturalspublishing.com/Journals.asp 453

defined by mapper and reducer functions. Each phase
uses a list of key and value pairs as inputs and outputs. In
the mapping step, MapReduce receives the input datasets
and feeds each data element to the mapper in the form of
key and value pairs. In the reducing step, all of the
outputs from the mapper are processed and the final result
is generated by the reducer using the merging process.

2.3 Redirection Mechanism for HTTP Requests

Mourad et al. [10] proposed a redirection-based
hierarchical web server architecture where a redirection
mechanism facilitates the load distribution for HTTP
requests. Figure 1 shows the redirection-based
hierarchical web server architecture.

The categorized content is stored in distributed
servers. The architecture comprises two component
levels: redirection servers and normal HTTP servers.
Each HTTP server is categorized and it stores a portion of
the data that is available on the site. The RR DNS selects
a redirection server in order to provide a requested service
using the RR algorithm when users request specific
content for their system. Subsequently, the selected
redirection server distributes a task that connects the user
request with the HTTP server that includes the required
content.

Each file has a unique base URL (e.g.,
www.lucent.com/news/today.html), such as a domain
name. A user employs the base URL to connect to the
redirection server that maps the base URL to the target
URL, which is returned to the user in a redirection
message. Next, the user employs the new URL to connect
to the HTTP server to obtain the specific content. Figure 2
shows the redirection mechanism when an HTTP request
is sent to the redirection server.

3 Brief Overview of CloudDMSS

In this section, we provide a brief review of CloudDMSS
[4], where we describe the fundamental concept of our
service model. Figure 3 shows the concept of our service
model.

Personal media data such as movies, music videos,
and animations are distributed and stored by a
transcoding Hadoop cluster. Users and administrators
upload media data for transcoding to share the data with
other users. After uploading, the media data are
transcoded into a standard format (MPEG4), which is
suitable for streaming to heterogeneous devices. To
reduce the transcoding time, our model applies a
transcoding function that utilizes the MapReduce
framework. The transcoded contents are then migrated
automatically and stored on the content servers of a
streaming Hadoop cluster. The migrated contents are
streamed to the end users with a guaranteed QoS by

Fig. 1: Hierarchical redirection-based web server architecture.

Fig. 2: Redirection mechanism for HTTP requests.

controlling the streaming servers that run on the
streaming Hadoop cluster. To reduce content delays and
avoid traffic bottlenecks, our service model utilizes a
streaming job distribution algorithm, which balances and
distributes the load of the streaming servers.

Our proposed CloudDMSS is designed to run on a
Hadoop cluster that streams media content to
heterogeneous devices in a distributed manner. The
overall system architecture is shown in Fig. 4.
CloudDMSS has three main components: HadoopDMT,
HadoopDMS, and CMM. The main characteristics of our
system are as follows. (1) Our system transcodes large
volumes of media content into the MPEG-4 video format
for delivery to a variety of devices, including PCs, smart

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

454 M. Kim et. al. : Streaming Task Distribution Method...

Fig. 3: Fundamental concept of the cloud-based distributed multimedia streaming service model.

Fig. 4: Overall system architecture of CloudDMSS.

pads, and smartphones. (2) It reduces the transcoding
time by using HDFS for multimedia data storage and
MapReduce for distributed parallel processing. (3)
CloudDMSS controls streaming servers to reduce content
delays and avoid traffic bottlenecks by using a streaming
job distribution algorithm. (4) Dual-Hadoop clustering on
each physical cluster is used to improve the overall
performance and to distribute job tasks between
transcoding and streaming. (5) CloudDMSS provides
efficient content distribution and improved scalability by

adhering to Hadoop policies. (6) It automatically
conducts the workflow of sequential tasks for a streaming
service deployment process.

4 Streaming Task Distribution Method with
SRC

In this section, we present a streaming task distribution
method where the SRC algorithm is used by the CMM

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 451-460 (2015) /www.naturalspublishing.com/Journals.asp 455

component. The most important benefits of CloudDMSS
are reduced content delays and the avoidance of traffic
bottlenecks in cloud computing environments with
unstable and unpredictable traffic by using RR-based and
LC-based methods. However, these two algorithms are
not suitable for processing streaming services in
distributed computing environment because they do not
consider the elements related to intensive and massive
physical resource usage, i.e., the CPU, memory, network
bandwidth, and storage required for streaming processes.
In addition, the quality of a streaming service is
determined by fluctuating network conditions, thus task
distribution methods that only consider invariable
elements are unsuitable. Therefore, these algorithms are
only suitable for static distributed computing
environments, where they can process tasks based on
simple text data and web pages that do not require
intensive resources. Therefore, we propose a streaming
task distribution algorithm that uses the SRC algorithm to
consider variable elements.

HadoopDMT transcodes collected social media
content into a target format that is suitable for
heterogeneous devices. Next, the transcoded contents in
HadoopDMT are migrated and stored by the content
storage servers of HadoopDMS. As a core component of
CloudDMSS, CMM comprises a web-based dashboard
module, management server module, and database server
module. The web-based dashboard module provides an
interface that allows users to select the options required
for transcoding tasks, such as the resolution, bit rate, and
frame rate, as well as monitoring the usage rate of the
dual Hadoop cluster and streaming servers in
HadoopDMS (CPU, RAM, and streaming transmission
rate). The management server controls and conducts the
scheduling of the overall process such as transcoding,
migration, extracting thumbnail images, registering the
images and information related to the transcoded content
to the database server module of CMM, and job
distribution. The content on content storage servers is
streamed by distributed streaming servers in
HadoopDMS. The core function of the management
server is to effectively balance and distribute any rapidly
increasing streaming tasks, while maintaining the
simultaneous connections of multiple users.

We describe the SRC algorithm in detail because RR
and LC have been described in many previous studies.
The RR streams media content by selecting streaming
servers in a prescribed order after video streaming
requests are received from users. In LC, the media
content is streamed by selecting the streaming server with
the lowest number of streaming tasks. However, systems
that apply RR and LC do not consider the CPU and RAM
utilization rate and network transmission throughput;
thus, they are limited because they impose a heavy burden
on the current Internet infrastructure and streaming
servers. Thus, we introduce an SRC scheduling algorithm
that considers the CPU, RAM, and streaming
transmission rate usage of servers, which resolves the

Table 1: Streaming Resource-based Connection
Algorithm

Algorithm1

Data:ssn ID: id for streaming server 1, server 2, ... ,
servern

Data:ssun: system usage rate ofssn
Data:scun: CPU usage rate ofssn
Data:srun: RAM usage rate ofssn
Data:sttn: streaming transmission throughput ofssn
Data:requestID: id for requesting a streaming service

1: while system available
2: if request for streaming servicethen
3: for (eachssm ID)
4: calculatesystem usage (ssn ID){
5: calculatessun ;
6: calculatesttn ;
7: }
8: end for
9:
10: select streaming server (requestID){
11: if the number of the smallestssun == 1 then
12: set server(requestID, the smallestssun);
13: startservice (requestID,content);
14: else
15: set server(requestID, the smalleststtn);
16: startservice (requestID,content);
17: end if
18: }
19: end if
20:end while

limitations of the RR and LC distribution methods. The
algorithm considers the CPU, RAM, and streaming
transmission throughput for each streaming server. The
Linux command mpstat is used to generate statistics for
the CPU usage servers. The free command is used to
determine the RAM usage and /proc/net/dev is used to
obtain the streaming transmission rate. The streaming
server completes a streaming task request from a user
according to the SRC algorithm shown in Table 1.

The parameters of the SRC algorithm are as follows.
ssn ID is the id for streaming server in HadoopDMS. Let
ssn ID = (ss1,ss2,,ssn) be the collection of all
streaming servers.ssun is the system usage rate forssn,
which is calculated by adding the CPU and RAM usage
rates. The CPU usage rate ofssn calculated by the Linux
commandmpstatis defined asscun. The RAM usage rate
of ssn calculated by the commandf ree is represented as
srun. sttn is the current transmission throughput for 1
second generated inssn. requestID represents the id of a
user requesting for streaming service.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

456 M. Kim et. al. : Streaming Task Distribution Method...

To connect optimalssn and the users streaming
request, the algorithm calculates two values for each
streaming server:ssun and sttn, respectively.ssun is
calculated by Eq. (1).

ssun =
scun+ srun

2
(1)

In addition,sttn is calculated by Eq. (2).current sttn is
the total throughput ofssnsince the start of the streaming
service.past sttn represents the total throughput inssn
before 1 second of the current measurement point.

sttn = current sttn− past sttn (2)

The streaming task distribution sequence used to
select the idlest streaming server is as follows. First, the
management server in CMM distributes the current
streaming task to the streaming server with the lowest
value forssun. If there are two or more servers with the
lowest value forssun, the server distributes the task to the
streaming server with the lowest value forsttn. Thus, it is
possible to provide a seamless and rich media streaming
service via a streaming server with the optimal conditions
in a cloud computing environment with unpredictable
network traffic.

5 Implementation of a Distributed Streaming
System Using SRC

In this section, we describe the implementation details for
a distributed streaming system, including a streaming task
distribution method based on the SRC algorithm. The
distributed streaming system was implemented on our
local testbed, while considering the design issues of
CloudDMSS.

5.1 Implementation Environment

The distributed streaming system comprises three
modules: a streaming server module (SSM) that acts as a
distributed streaming server in HadoopDMS, a
HDFS-based content storage server module (HSCSM)
that acts as a content storage server in HadoopDMS, and
a streaming task management module (STMM) that acts
as a management server in CMM. In this implementation,
we exclude the implementation of HadoopDMT to
transcode the original content into target format because
we focus on demonstrating the feasibility of the streaming
system with the SRC algorithm under the assumption that
HadoopDMT completes the transcoding process.

For the first prototype of the distributed streaming
system, we deployed 14 nodes that ran on our own private

Table 2: Hardware specifications

Classification content

CPU Intel Xeon 4 Core 2.13 GHz
Memory 16 GB

HDD 1TB SATA-2
Network 100 Mbps Ethernet adapter

OS Ubuntu 10.04 LTS

cloud computing cluster. Each node had the hardware
specifications shown in Table 2. To implement SSM,
three nodes were designated as the streaming server
running on NginX [21] to stream content that was
transcoded into the MPEG4 video format on HSCSM. To
implement the HSCSM, 10 nodes were designated on
HDFS. To implement the STMM, one node was
designated as our management server for streaming task
distribution using SRC. STMM uses JSP to implement a
web-based dashboard, swfupload 2.2.0.1 libraries [23] for
the content upload function, a Java library and bash shell
script to run the SRC algorithm, and Google chart APIs to
generate the graph showing the monitoring system status.
In addition, the software specifications used to implement
our system included an H.264 streaming module 2.2.7 for
the streaming function, NginX 1.2.7 for the streaming
servers, and fusedfs 0.1.0 to allow HDFS to be mounted
on the UNIX system as a standard file system.

5.2 Configuration of the Distributed Streaming
System for SRC-based Streaming Task
Distribution

In this section, we present details of the system
configuration and we briefly describe the three modules.
Figure 5 shows the configuration of the distributed
streaming system for SRC-based streaming task
distribution.

5.2.1 Streaming Task Management Module (STMM)

STMM is the core component of the distributed streaming
system, which plays an important role in efficient load
balancing. Robust load balancing is achieved by
scheduling the streaming task distribution using the SRC
algorithm. First, users can select the list of contents by
accessing a web dashboard in STMM using their devices.
Second, when a user chooses their specific content,
STMM determines the optimal streaming server in SSM
by calculating the usage rate of each streaming server and
the current streaming transmission throughput. Finally,
users connect to the selected server via the redirection

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 451-460 (2015) /www.naturalspublishing.com/Journals.asp 457

Fig. 5: Configuration of the distributed streaming system for SRC-based streaming task distribution.

mechanism for HTTP requests and they then receive their
requested streaming service.

5.2.2 Streaming Server Module (SSM)

SSM includes streaming servers that are scheduled by the
SRC algorithm in STMM. Whenever the number of the
servers in the SMM increases, it is possible to provide rich
multimedia streaming service to users because the number
of streaming tasks processed per server is reduced.

However, the number of servers should be determined
by considering the total network throughput in the system
and the physical configuration of the content storage
servers in HSCSM, rather than simply increasing the
physical resources without a specific reason. Each
streaming server utilizes NginX with an H.264 streaming
module installed. NginX with an H.264 module, a typical
web server, is used so an HTTP-based streaming service
can be provided, instead of a streaming server with an
exclusive streaming protocol, i.e., RTP, RTSP, or RTMP.
In general, a specific streaming protocol is selected
according to the type of target devices when a streaming
system is constructed. However, an HTTP-based
streaming protocol is the best and easiest because it
allows streaming services to be provided to most devices.

5.2.3 HDFS-based Content Storage Server Module
(HSCSM)

The main role of HSCSM is to store transcoded content
on data nodes in a distributed manner and to provide the
capacity for content replication and recovery if data node
failures or content loss occurs. The most important factor
when providing a streaming service is the maintenance of
a seamless streaming service, which requires that users
cannot recognize data node failures and the loss of
content. A streaming service system that uses the
traditional approach does not include content replication
management and automated recovery policies, thus the
system reliability and seamless streaming service cannot
be guaranteed. HSCSM overcomes these limitations by
including the core function and policy of Hadoop. In
addition, mountable HDFS [24] is applied to our system
to allow HDFS to be mounted on a local file system.
Thus, users can access a distributed file system with the
complexity of the use as a local file system by using
general commands.

6 Performance Evaluation

The proposed streaming task distribution method with the
SRC algorithm was implemented in the distributed
streaming system. In this section, we present our

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

458 M. Kim et. al. : Streaming Task Distribution Method...

verification of the systems capacity for streaming task
distribution when users generated numerous requests for
streaming services.

6.1 Methodology and Results with a Local
Testbed Environment

We tested the streaming task distribution function using
the first prototype of our distributed streaming system.
We simulated the systems performance in two different
environments: our local testbed and a public cloud
computing environment.

Table 3: Average transmission throughput per streaming
server using each algorithm-based system

Streaming
Server

RR-based
System

LC-based
System

SRC-based
System

Server 1 2.80 MB/s 2.76 MB/s 3.25 MB/s
Server 2 2.84 MB/s 2.66 MB/s 3.37 MB/s
Server 3 2.80 MB/s 2.64 MB/s 3.32 MB/s
Average 2.81 MB/s 2.69 MB/s 3.31 MB/s

First, the system configuration described in Section 5
was used as the local testbed. To validate the performance
of the SRC algorithm, we compared our system with RR-
and LC-based systems in terms of the network
transmission throughput generated by three streaming
servers in the SSM. Each streaming server had a
bandwidth of 100 Mbps. The performance testing tool
used to calculate the average transmission throughput per
streaming server per second was developed in Java. A
dataset that included 4 MB MP4 files transcoded by our
HadoopDMT was used. We created 600 virtual users and
simulated the users as they accessed three streaming
system based on three algorithms, RR, LC, and SRC. In
the next step, we calculated the overall transmission
throughput for each streaming server per second.

Table 3 shows the average transmission throughput
for each streaming server per second. The experimental
results verified that the system with the SRC algorithm
delivered the best performance in terms of the average
transmission throughput compared with both the RR- and
LC-based systems. The high streaming throughput per
second demonstrated that the streaming task distribution
method with the SRC algorithm was faster than the other
algorithms because it rapidly processed the 600 requests
by distributing the requests to each streaming server in an
efficient manner.

Table 4: Average transmission throughput per streaming
server using each algorithm-based system

Streaming
Server

RR-based
System

LC-based
System

SRC-based
System

Server 1 1.18 MB/s 1.68 MB/s 1.95 MB/s
Server 2 1.31 MB/s 1.89 MB/s 1.92 MB/s
Server 3 1.23 MB/s 1.68 MB/s 1.93 MB/s
Server 4 1.24 MB/s 1.62 MB/s 2.14 MB/s
Server 5 1.22 MB/s 1.54 MB/s 2.24 MB/s
Server 6 1.27 MB/s 1.77 MB/s 1.99 MB/s
Server 7 1.31 MB/s 1.54 MB/s 2.10 MB/s
Server 8 1.37 MB/s 1.55 MB/s 1.95 MB/s
Server 9 1.22 MB/s 1.67 MB/s 2.12 MB/s
Server 10 1.18 MB/s 1.60 MB/s 1.98 MB/s
Average 1.25 MB/s 1.65 MB/s 2.03 MB/s

6.2 Methodology and Results with a
Commercial Cloud Computing Environment

The main objective of our system is to provide an
architecture that is designed for streaming services, which
can be deployed in an actual cloud computing
environment. However, the local cloud computing
environment in our LAN environment did not replicate
the unpredictable and unstable network traffic generated
by public cloud computing environments such as Amazon
EC2 and Rackspace. Therefore, to demonstrate the
validity of our system for streaming task distribution in a
commercial environment over WAN, we conducted a
performance test using an actual cloud computing
environment, Cloudit 2.0 [19], which is operated by
Innogrid. In this performance test, we used the same
software configuration, dataset, and simulation
methodology described in Section 6.1. However, the
system and hardware specifications differed from those
described in Sections 5 and 6.1. We used 21 virtual
machines (21 VMs), which were deployed from Cloudit
2.0 for one management server, 10 streaming servers, and
10 content storage servers. Each VM comprised Linux
OS (Ubuntu 12.04 LTS) running on four virtual cores
with the equivalent of an Intel Xeon quad-core 2.13 GHz
processor, 8 GB of memory, and 100 GB of disk space on
a shared hard drive. Cloudit 2.0 utilizes Xen [1,25]
virtualization software.

We calculated the overall transmission throughput for
each streaming server per second with a bandwidth of 100
Mbps. The performance test results are shown in Table 4.
Our SRC algorithm delivered better performance in terms
of the average transmission throughput when compared
with the RR-based and LC-based algorithms. The total
transmission throughput per second with the three
streaming servers on the local testbed was about 10 MB,

c© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 2L, 451-460 (2015) /www.naturalspublishing.com/Journals.asp 459

whereas the total throughput per second using the 10
servers on Cloudit 2.0 was about 20 MB. Thus, our
system with the SRC algorithm effectively distributed the
streaming jobs requested by numerous users in an actual
cloud computing environment with a similar performance
level to that on the local testbed.

7 Conclusion and Future Research

In this study, we proposed a streaming task distribution
method based on the SRC algorithm in a cloud computing
environment, and we demonstrated the feasibility of this
distributed streaming system by implementing a
prototype in local and private cloud computing
environments. The main benefit of our method is that it
improves the capacity for streaming task distribution in
CloudDMSS by reducing content delays and network
traffic. Previous methods that employ conventional
algorithms, such as RR and LC, are not suitable for
distributing requested tasks to distributed servers in
general streaming systems. Thus, we enhanced the
efficiency of streaming task distribution by introducing
the SRC algorithm, which considers the key elements that
affect the processing of streaming services, i.e., the
physical resource usage (CPU and RAM) and streaming
network traffic.

To demonstrate the feasibility of a distributed
streaming system with the SRC algorithm in
CloudDMSS, we implemented the prototype in private
and public computing environments. In addition, to verify
the improved task distribution performance, we compared
our system with RR- and LC-based systems in terms of
the network transmission throughput generated by each
streaming server in both cloud computing environments.
The performance tests showed that the system with the
SRC algorithm delivered the best performance in each
environment in terms of effectively distributing the
streaming tasks for numerous requests when compared
with conventional approaches.

In future research, we plan to improve the method
based on the SRC algorithm by considering additional
elements, such as the disk I/O generated for HDFS. In
addition, we plan to implement a fully functional
CloudDMSS with a distributed transcoding process in a
commercial cloud computing environment, such as
Amazon EC2 or Rackspace.

Acknowledgement

This research was supported by the MSIP(Ministry of
Science, ICT & Future Planning), Korea, under the
ITRC(Information Technology Research Center) support
program (NIPA-2014-H0301-14-1001) supervised by the
NIPA(National IT Industry Promotion Agency).

References

[1] N. Fallenbeck, H.J Picht, M. Smith, B. Freisleben, Xen
and the art of cluster scheduling, VTDC 2006, article
no.4299349 (2006).

[2] A. McAfee, E. Brynjolfsson, Big data: the
management revolution, Harvard Business Review,90,
60-66 (2012).

[3] Z. Tian, J. Xue, W. Hu, T. Xu, N. Zheng, High
performance cluster-based transcoder, In: Proceedings
of ICCASM 2010,2, 248-252 (2010).

[4] M. Kim, S.H Han, J.J Jung, H, O. Choi, A robust cloud-
based service architecture for multimedia streaming
using Hadoop,274, 365-370 (2014).

[5] H. Nansook, L. Dongsun, S. Dongmahn, J. Inbum, K.
Yoon, Load distribution method and admission control
for streaming media QoS in distributed transcoding
servers, In: Proceeding of ICCSA 2007, article
no.4301122, 39-45 (2007)

[6] K.J Ma, R. Bartos, S. Bhatia, A survey of schemes for
Internet-based video delivery, Journal of Network and
Computer Applications,34, 1572-1586 (2011).

[7] C. Li, G. Peng, K. Gopalan, T.C Chiueh, Performance
guarantees for cluster-based Internet services, 3rd
IEEE/ACM International Symposium on Cluster
Computing and the Grid, 276-283 (2003).

[8] Y. M Teo, R. Ayani, Comparison of load balancing
strategies on cluster-based web servers, Simulation,77,
185-195 (2001).

[9] A. Piorkowski, A. Kempny, A. Hajduk, J. Strzelczyk,
Load balancing for heterogeneous web servers,
Communications in Computer and Information
Science,79, 189-198 (2010).

[10] A. Mourad, H. Liu, Scalable web server architectures,
In: Proceedings of IEEE Symposium on Computers and
Communications, 12-16 (1997).

[11] K. Shvachoko, H. Kuang, S. Radia, R. Chansier, The
Hadoop file system, In: Proceedings of MSST 2010,
article no.5496972 (2010).

[12] A. Karun, K. Chitharanjan, A review on hadoop-
HDFS infrastructure extensions, In: Proceedings of
ICT 2013, 132-137 (2013).

[13] J. Dean, S. Ghemawat, MapReduce: Simplified data
processing on large clusters, Communication of the
ACM, 51, 107-113 (2008).

[14] D. Werth, A. Emrich, A. Chapko, An ecosystem for
user-generated mobile services,3, 43-48 (2012).

[15] G. Barlas, Cluster-based optimized parallel video
transcoding, Parallel Computing,48, 226-44 (2012).

[16] S.H Kim, K. Kim, W. Ro, Offloading of media
transcoding for high-quality multimedia services, IEEE
Transactions on Con. Elec.,58, 691-699 (2012).

[17] M.A Weifeng, M. Keji, Research on java imaging
technology and its programming framework, Lecture
Notes in Electrical Engineering,72, 61-68 (2010).

[18] J. Guo, F. Chen, L. Bhuyan, R. Kumar, A cluster-
based active router architecture supporting video/audio
stream transcoding service, In: Proceedings of Parallel
and Distributed Processing Symposium, 44-51 (2003).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

460 M. Kim et. al. : Streaming Task Distribution Method...

[19] Cloudit 2.0,http://www.cloudit.co.kr
[20] D. Seo, J. Lee, Y. Kim, C. Choi, H. Choi, I.

Jung, Load distribution strategies in cluster-based
transcoding servers for mobile clients, Lecture Notes
in Computer Science,3983, 1156-1165 (2006).

[21] Q. Shao, T. Yang, W. Hou, The design of high
available single sign-on server of Nginx-based, Applied
Mechanics Materials,241, 2411-2416 (2012).

[22] S. Ghemawat, H. Gobioff, S. T Leung, The google file
system, Operating Systems Review,37, 29-43 (2003).

[23] M. Fan, H. Fan, H. Feng, S. Li, The development of
OGC WCS server to support MODIS data format, In:
Proceedings of SPIE,7498, article no.74980M (2009).

[24] B. Bockelman, Using Hadoop as a grid storage
element, Journal of Physics,180, article no.012047
(2009).

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen and
the art of virtualization, Operating Systems Review,37,
164-177 (2003).

Myoungjin Kim
received an M.S. degree from
Konkuk University, Seoul,
Korea, in 2009. Currently,
he is a Ph.D. student
in the department of Internet
and Multimedia Engineering
at the same university, and he
is also an assistant researcher
at the Social Media Cloud

Computing Research Center. His research interests
include distributed computing, distributed real-time
programming, MapReduce, media transcoding and cloud
computing.

Seungho Han is
an M.S. course student
at the department of Internet
and Multimedia Engineering,
Konkuk University. He
is also an assistant researcher
at the Social Media Cloud
Computing Research Center.
His current research interests
include universal plug and

play, cloud computing, Hadoop, and ubiquitous cities.

Cui Yun received an M.S
degree from the department
of Internet and Multimedia
Engineering at Konkuk
University, Korea,. At
present, he is a Ph.D. student
and an assistant researcher
at the Social Media Cloud
Computing Research Center.
His current research interests

include cloud computing, social network services, home
network services, and distributed computing.

Hanku Lee is the
director of the Social Media
Cloud Computing Research
Center and a professor
at the division of Internet
and Multimedia Engineering,
Konkuk University, Seoul,
Korea. He received a Ph.D.
degree in Computer Science
from Florida State University,
USA. His recent research

interests include cloud computing, distributed real-time
systems, distributed computing, and compilers.

c© 2015 NSP
Natural Sciences Publishing Cor.

http://www.cloudit.co.kr

	Introduction
	Related Work
	Brief Overview of CloudDMSS
	Streaming Task Distribution Method with SRC
	Implementation of a Distributed Streaming System Using SRC
	Performance Evaluation
	Conclusion and Future Research

