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Abstract: We provide an error analysis of the operator splitting metbicthe Lie-Trotter type applied to the Burgers-Huxley eipra

Ut + 0rulk — ek = B(1—u)(u— y)u. We show that the Lie-Trotter splitting method convergeththe expected rate iAS(R), where
HS(R) is the Sobolev space arsds an arbitrary nonnegative integer. We split the equatida finear and nonlinear parts and apply
numerical methods for these subproblems. We present emdrsonfirm the theoretical results with the numerical edamp

Keywords: Operator splitting method, Burgers-Huxley equation, fegty, local and global error.

1 Introduction well-posedness of the BHE ifS norm and boundedness
of the exact solution of BHE in Sobolev spaces.

Partial differential equations have great importance in  In [9], the KdV equation is studied and they apply
most fields of science. Real-world physical systems,Lie-Trotter and Strang splitting in order to have error
including gas dynamics, fluid mechanics, elasticity, estimates for convergence. They actively make use of the
relativity, ecology, neurology, thermodynamics, and manyfact that solutions of KdV equation remain bounded in a
more are modeled by nonlinear partial differential Sobolev space and this, together with an bootstrap
equations (NPDEs). Burgers-Huxley equation (BHE)argumentguarantees the existence of a uniform choice of
being a NPDE is a model that describes the interactionéime stepAt that prevents the solution from any Burgers
between reaction mechanisms, convection effects angtep from blowing up. On the other hand,0[ studies
diffusion transportsd], with some special cases BHE equation with a Burgers type nonlinearity including the
reduces to Huxley equatior8][ which describes nerve KdV equation. They make use of the fact that solutions of
pulse propagation in nerve fibers and wall motion in Burgers type equations remain bounded in a Sobolev
liquid crystals |,5]. The other case is Burgers’ equation space and perform an analysis which identifies error
which is a parabolic second order partial differential terms in the local error as quadrature errors which are
equation governs nonlinear process. This equation wagstimated via Lie commutator bounds. ] and [12],
firstly introduced by Batemars], then treated by Burgers Similar analyses are studied for linear evolution equation
[7] in a mathematical modelling of turbulence. These and for nonlinear Schrodinger equations, respectively. |
NPDEs are high importance in nonlinear physics. this paper, we follow a similar approach tf and [17].
There are many numerical methods which have been This paper is organized as follows. After this
studied to compute the approximate solutions to the BHEntroduction in Section 2, we give the idea of the operator
such as spectral method$9], Adomain decomposition splitting method and apply Lie-Trotter splitting to the
method RO} which have been studied to solve the BHE. In Section 3, we give two hypotheses which are
generalized Burgers-Huxley equation.I8],[they apply = connected with the local well-posedness and boundedness
the operator splitting method to the Burgers-Huxley of the solution of the BHE. Section 4 proves the regularity
equation by solving two nonlinear subequations. In thisresults for the BHE. Furthermore in Section 5 by using
paper, we divide the BHE into linear and nonlinear partsthe regularity results we prove the local and global error
and solve easily. To prove the convergence of theestimates in time. In identifying the local error terms we
Lie-Trotter splitting in H® norm we use the local use quadrature errors. Finally, in Section 6 numerical
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results are given and the correct convergence rates afé > Osuch that for allip in H¥(R) with [|ug|| < M, there

proved for Lie-Trotter splitting method. exists a unique strong solutierin C([0, T],H¥) of (2). In
addition, for the initial datauy there exists a constant
K(M,T) < o, such that

2 Application the Lie-Trotter Splitting to the

Burgers-Huxley Equation [[G(t) — ut) || < KM, T)][Go — Uo]| (6)

The idea of operator splitting;L§,15,16] is widely used  for two arbitrary solutionsl andu;, corresponding to two
for the approximation of partial differential equations. different initial dataug andug. This well-posedness result
The basic idea is based on splitting a complex problemholds, with sufficiently smalt < T = T(M) for any M.
into simpler sub-problems, each of which is solved by anHypothesis 3.2 The solutioru(t) and the initial dataig of
efficient method. One of the reasons for the popularity of .

operator splitting is the use of dedicated special numbrica(z) are both irH¥(R), and are bounded as
techniques for each of the equations.

We focus our attention on the case of linear and|[u(t)|lyx <M < pand||uol|k < C < oo, @)
nonlinear operators such as,
U = Au(t) + B(u(t)), with t € [0,T], uli—t, = Uo  forO=t<T.

) . Let s be a positive integer, we define following set of
We employ Lie-Trotter splitting method to the integers such that,

one-dimensional Burgers-Huxley equation,

U + aUL — Uy = B(1—u)(u—y)u, (2 S$21, m=s+3 n=stl=m-2 (8)
with the initial condition We specify for which integers the hypothesis should hold
Uy, = U 3) in the lemmas and theorems for the Lie-Trotter splitting

t=to = 70 method.

wheret > 0,a,8>0,0<e<1and0< y< 1 When
a =0 ande = 1, equation 2) reduces to Huxley equation
and whenB = 0, reduces to Burgers’ equation.

With the help of the operator splitting, we break the 4 paqyj|arity results for Burgers-Huxley
(2) into linear diffusion equation and nonlinear reaction .
equation. In this latter type of the operator splitting, the EQUation
simpler equations are solved and then recoupled over the
initial conditions in delicate ways to preserve a certain
accuracy. We denote hy(t) = @} (Up) is the solution  We will present and prove several results to estimate the
at the timet of (1) with given initial condition and the local error for the Lie-Trotter splitting for the
approximate split solution is denoted by, at  Burgers-Huxley equation. We need to show that there
t =nAt < T, asAt — 0, whereun,; = @5(P4(un)),  exists a small time stefit for the solutions®}(vo) and

n=0,1,2,.... ®L(wp) in a Sobolev spaces. The following results have
In our case we split the equatior2)(into two an importance of proving the convergence rate of

subequations, Lie-Trotter splitting.

Vi = AV = EVyy 4)

and

W = B(W) = B(1—W)(W— y)W— aww (5) 4.1 Results for the Nonlinear Part

acting on appropriate Sobolev spaces.

L?mma 1For m and n in B) assume the solution
. " ®g(Wo) = w(t) of (5) with initial data wy in HM™(R),
3 Error Bounds for Lie-Trotter Splitting Sﬁisﬁeﬂ%(%mw < a for0 <t < At. Thend(wo) is
o ) in HM(R) and in particular
In the begining of the analysis, we assume that the
solutions to the BHE are locally well-posed and bounded.
Thus, the following hypotheses are about the local
well-posedness of the solutions ) @nd boundedness of
the solution and the initial condition in Sobolev spaces.wherea; = (C+ 2Ca +Ca?),C is a general constant and
Hypothesis 3.1. For a fixed time T, there exists cisindependent of yv

105 (Wo)lm < €72 [wio[1m, 9)
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Proof. From the definition of nornH™(R), we find that
w(t) satisfies

5 qt || Pe(Wo) [Fm
2dt
_id e 1A
= éaHWHHm_éaj: /Rdxwdxwtdx

= (WWe)Hm = (W W(L— W) (W) — Wit )pym

m i oy . .
= B(1+y) ZJ > <IJ<> /Rdgwdfwd{kwdx
j=oK=0

m j k i /K el ik
B Z) 3 Z;<k) (l) /Raxlwaxwaxf wal wdx

j=0k=0I=]

m S m i . K
- By zo/Rax’wax’wdx_a Zo > <k> /Rax’wdxk+1wax” W

= Ed=d

(10)

We investigate the each parts for different cases.
Case 1:For j < mandk < j, we obtain for the first
term of (L0)

/ Alwokwa)~ de){
R

< / |)wakwa) ~*wdx
R

i max{k, j —k min{k,j—k
< | adwije | a2 ) o | oMM
< C|| Wi[m|| Wilm|| Wijign

< Ca|| w|[fm (11)

where we have used Sobolev inequality and the fact that

max{k,j—k} <j+1<m
m:—S_1+2§s+1:m—2:n

. . i
— < =<
min{k, j k}*Z* > >

sincem > 4.
For the second term ofL(),

‘ / 0)2'W0)'<Wd>'f'wﬁ)§kwdx4
R
< / |8} walwal wa) kw|dx
R
< 0wl f " wile | |abwalwidx
R

I k—I
< Wl w4 G 2| 0 Wi 2
2
< ClwlEm|[wWlHm|[ Wil -m

< Ca?||w||Zm (12)
If we takel < k< nandk—I <n.
For the third term of10),
‘/o"}w&}wdx{ < / |0jwajw|dx
R R
< [ aiw] 2|0 w]| 2
< Cl[wfgm (13)

The last term of thel(0) we have the bound
[ adwol ol e < ojwlelwlan e

R
< Ca|wl|Em (14)

see [L7].

Case 2:For j = m, we obtain for the first term ofl(Q)

| adwotwa)uc < akwil- |z o il

< CJ W[ ][ W[y m
< C|| Wl ki W Em (15)

To get a bound we investigate this inequality in two cases;
whenk+ 1 <nand wherk =n. For the first case we obtain

/Rﬁ)gwﬁ)‘fwd)g‘kwdx < Cal|w||Zm (16)
For the second case, we get
. Swalwa] K < [ [ W[ W

< Ca|[wi[fm (17)
here we have used that-1 <n+2<m,andm—n=2<

s+1=n.
We are left with 2 case&; < mandk = m= j. For the
first case we get,

| adwatwol-twa < 97wz ofwl 2| o

< Cl[W[Hm ||| Wi ym-i2

< Ca|w|[gm (18)

becausen—k+ 1 < m—n < 2 < n. For the second case,
we have

[ arwapummcy < i [0\l 2| ol

2
< Cl[w] ol

< Ca|[w[fm. (19)
For the second term of.Q),
‘ / a;“wax'wag'waykwd{
R
< (| Gpw] L[| W L[| 0w 2 | w2
< CIWl e [[Wll et [ Wi [ W] i (20)

The above inequality is divided in two cases; whenl <
n, k—1+1<n and | +1<n, k=n. For the first case
we have

/ dFWﬁiW@i"wﬁf‘kwd{
R
< C|w[pn [ Wi n [[ Wl W] [p4m

< Ca?®|w|[gm (21)
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For the second case we have which simplifies to
Lk —k d
| arwalwal way? Wd{ Gt WO e < SWO) e (30)
< Cl|W||n ||| ]| W[ Hm || W[ n The result follows by comparing with the solution of the
< Ca?||WiZm (22) differential equatiory’ = cy®.
Sincen—1+1<m, and m—n<2<s+1=n. Lemma 3If ||wo||ysi2 < C for s> 1, then there exists
We are left with three caselsy 1=k=n, | +1<m, dgpengm% on C, such that the solutiofityof the ©) is
with m=n and k=m= j = |. For the first case, we C~([0;t],H®).
obtain

Proof. Lett be in[0,t], with t from Lemma2, and define

| k—I m—k
/RaXdeXMX Wy de‘ W(t) = Wo + tB(Wo) + /0 't — 9)dBW(S))[BW(S))|ds (31)

m—Kk, | m, k—I
< (|0 WL (| W[ || O Wi L2 | 9% w2 wheredB(.)[.] is the Fechet derivative which is given as

< ClWilym-scea [[Wil o [[ W[ m Wi follows,
= Cllam i e 23 " aBw(s) [Bw(s)] = ~3BwPB(wW) + 2B(1+y)wB(w)
Since,n—1 <n, m—k+1<m. Forthe second case we get — ByB(W) — awB(w)y
the same result, but now we use that k+1<m-—n< B 5
ZS n —a (W)WX (3 )
For the third case, Calculating the second derivativewf gives

\ / ax'“wa;"wwd{ < [ 1(@rwnidx < wif oz, = ABMUSIBIVE)]
R i = ~3BWPB(W) + 261+ y)WB(W) ~ BYB(W) — aWB(w)y

< Cf|wZnlWi[Am — aB(w)w (33)
< Ca®||wiEm (24)  from which we have thaw is in C%([0,1],HS). To prove
For the third term of10), thatw = w, we must show that the two functions satisfies
the same differential equation and the same initial
’/ 0Q‘Wo7)?‘wdx< < 10w 2]| 0w 2 conditions. By differentiatingg) with respect td, we get
R

Wi = B(W)t = (—BW> + B(1+ y)W* — Byw — aww);

2
< Clw][gm (25) = —3BWAW + 2B(1+ Y)W\t — By — 0NV Wy — O\

Finally, the last term of thel(0) we have the bound

= W,
/ d)?“wa)‘f’lwd){“‘kwd{ < Ca||w||Zm (26)  From definition ofw'we see thaw(0) = up andwi (0) =
R B(up) = wt. Thus we have shown thet= .
see [L7].
All in all we get, by summing up the estimates, the
following inequality 5 Local and Global errors in HS space

d d
&Hw(t)ﬂﬁ,m = HW(t)HHma [w(t)[am < cB|lw(t)||Zm (27)  Lemma 4Lets> 1be an integer and?) holds for k= s+
2 for the solution t) = @4! 5 (uo) of (2). If the initial data

which leads to Up is in HS*2(R), then the local error of the Lie-Trotter

aHW(»[)HHm < ca||wi(t)||m (28) splitting is bounded in K(R) by

At [ At i, . 2
wherea; = (C+ 2Ca +Ca?). This result concludes the 1P (P (Uo)) — Pasp(Lo)me = CAL, (34)
proof.[10] where C only depends djug|| ys+2.

Lemma 2Assume ||wo||yx < K for some k>1.Then  proof. we writedv = @} (v) to denote the linearity of the

there exist$(K) > 0 such that| @5 (wo)||x < 2K for 0< operatorA. We start with

t<t(K). s
Proof. By doing the same calculations as in the proof of B(#(s) B9 (0) :/o dB(¢ (p)) (6 (p)Idp- (35)

the Lerpmal with k instead ofm and using the bound for where
Ug in HX(R), we arrive with the following inequalit _
oin Hi(R) g inequalty 8(p) = B (u(p)). (36)

HW(t)HHk%HW(t)HHk < cllw(t)[ e, (29) d(p) = &) (B(u(p))). (37)
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Hence we get, where Kr is bounded kernel. Here
At— . .
B(u(s)) = B(®(Uo)) W = —o JAB|(P(U)) with double Lie
commutator

)@ (B(u(p)))]dA38)
®3(u(0)) = @5 (o).

S
+ /0 dB(o ) (u(p

where we have used thgt(0) =

[A,B] = dA(V)[B(V)] — dB(V)[A(V)] (50)

We know thatCDA‘(uo) do not increase the Sobolev norm,

From the variation of constants formula we have the exachng therefore it is sufficient to consider the commutator for

solution of @) such that,

@.oft0) = Ph(to) + | o F(Blu(s))ds

To find the exact solution after one step, we insgg (nto
(39) and evaluate = At,

(39)

() = o' (uo) + [ @ (B(0(uo)))ds+ Ex

(40)
where
E At At s s—p)
1= [ [0k U(p))[$ (p)))dpds
(41)
One step with Lie-Trotter splitting is
uy = @R'(@g" (Uo))- (42)
Using the Taylor series expansion we get,
uz = @R" (Uo) +At®R" (B(up)) + E (43)
with
E, = At? /0 (1— 6) D2 dB( DA (L)) [B(DE® (ug))]d6.
(44)

The error between the exact and the split solution, after <

one step becomes,

U1 — U(At) = At / o9 (B(@3(u(9))))ds
+ (BE2— E1)~ (45)

by defining,

h(s) = @™ (B(®3(w0))), (46)

we can rewrite equatior#tp) as follows,

At
Ui — u(At) = /O Kr(OH (t)dt + (Ep — Ey) (47)

By using the substitutionf = t/At,
transformed to

At 1
/ Kr(t) (t)dt = (At)Z/ (6 — 1)H(6At)d6
0 0

= (At)%Kgr(0)N (8At)d6. (48)

Then, applying theHS norm and using the triangle
inequality,

Jus = u(at) s
1
< (807 [ [Ka(O)N(841) s+ | (B2~ E) s

the integral is

1
< (At)z/o IKR(8)N (BAL)[1s + [[E2]|ns + [|Ealls. (49)

a general vector. Using @) and 6), we write
[AB](V) = =62 — 38VPVx + 2(1+ Y)V2+ 2(1 4 y) Vi
— Wix — 2VxVx — VyVxx — VVxxx(—3V2Vxx
+ 2L+ Y)VWhox— Wi — Voo — Vi)
Hence we get,
1N (8)[le = || — VG + 2(1+ Y)VZ — 2Wilhee [
< 6[Vi[ns | xVlIfrs + 2(1+ )| 9evIfss + 21| vl [Frs | FVIErs
< 8| VlHs VI Esea + (44 2Y) IVI[Zen + [Vl sea [V s

(51)

< B[VI[Fsi2 + (4+ 20 IVIIEsi2 < NIVI[Fsi (52)
Thus, by usingy = ®@3(up) , we get
IN(8)[1s < nl|@R(U0) [ 352 < N[ UollFysi- (53)

Next, we will find the error bound fdg; in (41),
[[Eal|ns

< [ [io o s ) we)) Bue)dods
< [* [ 1em@f?)u(p)@f ) Bu(p))] lusdods

< [* [B1-300 " w(e))?(@f P Bu(p)) Iusdods
+2B<1+v>|\<a>:‘ ( (p)))(cbif“”<B(u<p>>>>|\Hsdpds
At
1B [ [0 P @u(p)) [nedpds

[ L@k (o) o Bu(p) ledpds
We can rewrite the above inequality for simplicity,
[Exllns < li+la+13+14 (55)

We obtain the following bounds by using the Banach
algebra property ofHS(R) and non-increasing of the
solution of(4),

|1</ /H
[ [

4 [ 1wl + luo) el u(e)lie)dods

< [lu(p) IR + (L+ y)llu(p) s+ VIu(p) 1 Es
+ [[u(o) [Esllu(o) ls+1

At s At
_ _ 2
gc/o /ORSdpds_CRG/O sds— CRé(At)2, (56)

CDAS_

(54)

)2 IB(u(p)) |=dipds

)[Es(lute) [Fs + (1+ y)llu(o)llfs
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At s
I < / / lu(p)|Hs|B(u(p))||Hsdpds n=1,2,... By using the same approach ibtJ] we get the
0 Jo following estimate,
< CRY(At)?, (57)
[[un —u(-st) s
At ke
o< [ [ IBuip) luedpds < 3 19N (t)) — @ (u(t))lne
0 0 k=
< CR}(At)?, (58) n-1

< Y KRT)W4 (u(t)) — @ (u(te))|s
For the last integral, we can write the bound as, (468 [ k=0
< NK(R T)c1(Co) (At)?

lg < CRY(A1)% 9 _TkRT)a(C)Al) (65)
Finally, we get by using the previous results andt < T. This completes
|Edllns < C(R® + R + 2R%)(At)2 < M(At)2. (60)  theproof.

The third and the last term is estimated similarly as the

second term. 6 Numerical results

[E2llns < (At)z/ol||dB(‘DBAte(U0))[B(‘DEAate(UO))]HHsde In order to illustrate the efficiency and accuracy of the

1 operator splitting method, we work on the
< (At)z/ 13(®5 (Uo))?(B(®4 (Up)))||1,d6 Burgers-Huxley equation in the forn2)(for a = B = 1,
0 y = 0.5, with initial and boundary conditions as follows

(61) [ag,
By doing the similar approach fdg; we find following u(x,0) =sin(mx), 0<x<1
bound for E;. The only difference is the use of the _ _ <t<
regularity result for the nonlinear part. The bound Epr u@)=uL,t =0 0<t<T. (66)
is given as follows, When we apply the operator splitting method @, (

) we obtain the two subequations,
[[Ez[ln, < C(At)*(M1+ M2+ Ms), (62)
RS+ R4 2R3 R+ 2R 4 R ALY = e
whereM; = (R°+R*+2R°) , My = (R*+ 2R° + R“) and — B(W) = B(1—W)(W—V\W—a
e (R T oA ) W= B(W) = B(L—w)(w—y)w— aww,
Hence, by combining the estimates, we obtain thewhich are solved subsequently for small time st&ps

following bound for the local error, For the space discretization, we consider the
Chebyshev differentiation matrices for the derivativgs
lup — u(At) ||ns < c(At)2, (63)  anduy. Third order Semi-implicit Runge-Kutta method

L . , is used for the time integration, which is well-known for
wherec depends only on the initial condition amit is  the numerical stability and less computational cost. Since
sufficiently small. there is no exact solution t@) we compare the results to

the higher order exponential method to prove convergence
Theorem 1Suppose that the exact solution(-) of  of the Lie-Trotter splitting and show the correct
Equation @) is in H"2 for 0 <t < T. Then Lie-Trotter convergence rates.

splitting solution @ has first order global error for The time step lengtht = 0.001 is used for the
At<Atandh =nAt <T, numerical experiment. The Figurda) and Figurel(b)

show the layer behaviour of the problem at different
[[un — (-, tn) [|ns < GAt, (64)  values of time ande.

where G only depends djug||,;s:2 and T.
Table 1: Estimated errors and convergence rates for
e = 2% at fixed time T. (SR=Spliting Runtime,

Proof. The "Lady Windermere’s Fan” is used in the proof NR=Nonsplitting Runtime)

see [L3]. Regularity result and local error are given in
Lemmal and Lemma2. By using these results we prove

. e . time step L1 Lo Lo SR NR
the global convergence of the Lie-Trotter spllttlng with 0.02 0.0566 0.0113 0.0035 05858 | 2.0430
the help of an induction argument. Let us take the exacf 001 | 00284| 0.0057 00018 | 0.7763 | 4.0540
. n—k)At . 0.002 | 00057 | 00011 | 3523%k—04 | 11576 | 53499
solution u(t,) = ‘I’/&+B (u(t)) of (2) and Lie-Trotter 0001 | 0.0028 | 5734% 04 | 1.761%— 04 | 21738 | 155342
solution be uy = WA(u, 1) = (Dﬁt o @8 (Un_1) 0.0005 | 0.0014 | 2.857%—04 | 8.810le—05 | 4.0955 | 161621
- - )
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Lie-Trotter Splitting
T T T

O eps=2" *;ﬁ******* 22 [ !
0.9 eps=273 o* ;‘** s —e- L, |
osll ~eps=2"° ** * ’ —— L2
Tl ox eps=2” .* * -2.6 —a—L, |
0.7 *
é 06 * -2.8
H * -
3 b
g 05 . §
g 04 % & -32
©osf * 1 8 -4
*
0.2+ ¥ -3.6
0.1 &
-3.8
0 0.2 0.‘4 0.6 0.8 1 4}
X-axis
. ) a2 i i i i i i i i
(a) Computed solutions of BHE for different values 26 27 28 29 3 31 32 33 34 35
Log(N.EVAL)
of eat T=10.2.
— Fig. 2: Order ofLy,L, andL., errors.

Table 2: Estimated errors and convergence ratesefer
2-3ande =2"".

=4
o

2 05 e=2"% e=2"
H oal o T | At=0001 | At=0002 | Order | At=0.001| At=0.002 | Order
5" ° 0.2 | 8.099G— 04 0.0016 | 0.9823| 0.0016 0.0031 | 0.9542
03r o 0.4 | 8299%-04 0.0017 1.0345 | 0.0109 0.0212 | 0.9597
o2f . 0.6 | 5.393%—04 0.0011 1.0281| 00137 0.0263 | 0.9409
01 0.8 | 3.127%—04 | 6.2554—04 1 0.0096 0.0186 | 0.9542
‘ 1 | 1.761%—04 | 3.523%-04 | 0.9997 | 0.0065 0.0126 | 0.9549
0 0.2 0.4 0.6 0.8 1
x-axis
(b) Computed solutions of BHE for different values
of time ate =279,
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