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Abstract: In this work, we design an algorithmic method to associatmhinatorial structures with finite-dimensional Malcev
algebras. In addition to its theoretical study, we havegreréd the implementation of procedures to construct theaglgassociated
with a given Malcev algebra (if its associated combinatatiaicture is a digraph) and, conversely, a second proedduest if a given
digraph is associated with some Malcev algebra.
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1 Introduction example, the classification of Malcev algebras) require
alternative techniques since the traditional ones are not
At the present time, finding and exploring new links and sufficient.

relqti_ons between .differ.ent fi_elds is one Qf the ‘most In turn, Graph Theory is nowadays a fundamental tool
exciting rgsearch lines in Sciences and, in particulargq, solving wide range of problems in most of research
Mathematics. Thanks to alternative techniques an")!Iields. In this way, graphs and simplicial complexes (its
methods, researchers can work out many open problemgenergjization to higher dimensions) may be used as a
achieving improvements for known theones and reveal.lnghe|pfu| tool in the study of non-associative algebras,
other new ones. In this paper, we deal with the relat'onproviding new ways to solve many open problems like the

between Graph Theory and Malcev algebras. Moreyp e mentioned classification problem of Malcev
concretely, our goal is to make progress on the researc Igebras.

line started in 1], where a mapping between Lie algebras . . .
and combinatorial structures was introduced in order to  Hence, our main goal is to study the link between
translate properties of Lie algebras into the language ofombinatorial structures and Malcev algebras, giving the

Graph Theory and vice versa. Now, we want to obtain andeneralization of the techniques introduced i} gnd
analogous mapping for Malcev algebras. Qeveloped in %3’4_] to.the case of Malcev algebras
Non-associative algebras have been profusely studiefi’stéad of considering Lie algebras.

due to both its own theoretical relevance and its multiple  This paper is structured as follows: after reviewing
applications to many different fields, like Engineering, some well-known results on Graph Theory and Malcev
Physics or Applied Mathematics. A particular type of algebras in Section 2, Section 3 is devoted to define the
these algebras consists of Malcev algebras, which are thmethod to associate combinatorial structures with Malcev
purpose of this paper. They were introduced by Malcevalgebras. Next, Section 4 proves the main theoretical
[6] as tangent algebras of analytic Moufang loops and areesults in this paper about the structure of Malcev
related to alternative algebras in the same way that Liealgebras starting from the association given in the
algebras are related to associative algebras; i&isfan  previous section. Finally, Section 5 shows an algorithm to
alternative algebra, then the algelfra with the operator evaluate Malcev identities and determine the restrictions
[a,b] = ab—bais a Malcev one. As happens with any over the structure constants, in order to return the list of
class of non-associative algebras, there exist manwllowed and forbidden configurations for combinatorial
general questions to be solved and these questions (as, fetructures associated with Malcev algebras. In addition,
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we also show an algorithm to draw these configurationdRemark. Every nilpotent algebra is trivially solvable,

when they are digraphs. All this goes with a brief
computational study, showing that the complexity order
of the procedures here presented is polynomial.

In our opinion, the tools and results shown in this

paper may be useful and helpful for understanding the

relation between Malcev algebras and simplicial
complexes. Moreover, the classification of combinatorial
structures may involve easier methods to classify Malce
algebras by means of the classification of their associate
combinatorial structures.

2 Preliminaries

because# C .4, foralli e N.

Definition 5. A Malcev algebra# is perfect if.# and
> are isomorphic.

Although the reader can consuff] jas an introductory
reference to Graph Theory, some notions are recalled next

Jn this section.

efinition 6. Agraphis an ordered pair G= (V,E), where

V is a non-empty set of vertices and E is a set of unordered
pairs (edges) of two vertices. If the edges are ordered pairs
of vertices, then the graph is naméigraph

Throughout the paper, we consider digraphs admitting

For a general overview on Malcev algebras and Graprdouble edges.

Theory, the reader can consuflt,5]. We only consider
finite-dimensional Malcev algebras over the complex
number fieldC.

Definition 1. A Malcev algebraz is a vector space with
a second bilinear inner composition law,(]) called the
bracket producbr commutatoywhich satisfies

1.1X,Y]=—[Y,X],¥X € #; and
2

X, Y[
[[[Y; 2], X], X

[[1z,X],X], Y],

X,Z]]
[[[X,Y],2],X] ] +
VXY, Z € ..

The second constraint is named talcev identity From
now on, we use the notation(™,Y,Z) = [[X,Y],[X,Z]] —
[[[X,Y],Z],X] - [[W,Z],X],X] - [[[Z,X],X],Y]

Given a basise }|! ; of .Z, its structure (or Maurer-
Cartan) constantsre defined bys, ej] = zc{jjen, forl<
i<j<n.

+

RemarkSince we are considering a field of characteristic
different from 2, the first constraint in Definitiof is
equivalent tgX,X] = 0,VX € ..

Definition 2. Given a Malcev algebraz, its centeris
Z(H)={Xed|[XY|=0,VYe.H}

Definition 3. Given a finite-dimensional Malcev algebra
A , its derived seriess

M= Moo= M M), ..., M= M, M), ...

Thus,.# is calledsolvableif there exists & N such that
AMm = {0}. In addition, if #Zyn_1 # {0} also holds, then
A is (m— 1)-step solvable.

Definition 4. Given a finite-dimensional Lie algebra,
its central seriess

M=, M= MM, ..., M=, .
Thus,.# is callednilpotentif there exists ne N such that

4™ = {0}. In addition, if.#™ 1 -£ {0} also holds, then
A is (m— 1)-step nilpotent.

Definition 7. Given a digraph G, then a subdigraph H is
said to beinducedby a vertex-subset ) in G if the
edge-set of H consists of all the edges of G between two
vertices in (H).

3 Associating combinatorial structures with
Malcev algebras

Let .# be an-dimensional Malcev algebra with basis
% = {e}] ;. The structure constants are given by
le,g] = zQZlc}fjeK. Due to the skew-symmetry of the
bracket product and the remark to Definitiknthe pair
(A, %) can be associated with a combinatorial structure
obtained according to the following steps, which are
similar to those introduced iri]

a) Draw vertex for eachg € 4.
b) Given three vertices< j < k, draw the full triangle
ijk if and only if (cf;,c,.cl\) # (0,0,0). Then, the
edgesij, jk andik have weightsc;,
respectively. '
b1) Use a discontinuous line (namgdost edggfor
edges with weight zero.

b2) If two triangles ijk and ijl with
1<i<j<k<l|<nsatisfyct; = ;, draw only
one edge between verticeand j shared by both
triangles; see Figure

c) Given two verticesandj with 1 <i < j <nand such
thatc} ; # 0 (respg/; # 0), draw a directed edge from
j toi (resp. fromi to j), as can be seen in Figuze

i j
Cjx and ¢y,

Consequently, every Malcev algebra with a given basis
is associated with a combinatorial structure of this type,
which turns out to be a simplicial complex of dimension
less than 3.

Example 1.The 3-dimensional Malcev algebra with law

e1,62] = e1+63, [er, €3] = —€y, [, 5] =1 + €21 €3, S
associated with the combinatorial structure in Figsire
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‘ 4.1 Malcev algebras and digraphs
A @ - <I> I In this section, we study which weighted digraphs are
’ associated with Malcev algebras; i.e. we only consider the
Fig. 1: Full triangle and two Fig. 2: Directed edges. case of non-existence of full triangles in the
triangles sharing an edge. combinatorial structure. This assertion is equivalent to

take into consideration a Malcev algebr with basis
% ={e}]; and law

le.ej]=d a+c e, 1<i<j<n (1)

Proposition 3.If G is a connected digraph witB vertices
associated with a Malcev algebra, then G must be
isomorphic to some of the configurations shown in
Figure4.

. . . . . . . 2)
Fig. 3: Combinatorial structure associated with a 3-dimensional £

Malcev algebra.

- — - & B ] * - - — &
i i k i i K
k k
4 Theoretical results ! /\ 9
. - \
Next, we state and prove some general properties arising 7 E
from the association between Malcev algebras and ‘I—"-\k: s

combinatorial structures and corresponding to topoldgica

properties of the combinatorial structure. Fig. 4: Connected digraphs with 3 vertices associated with

Proposition 1. Let G be the combinatorial structure Malcev algebras.
associated with a Malcev algebr# with basis#. If v is
an isolated vertex of G, then the basis vectoree#

associated with v belongs to the centérZ). Moreover, Configurations a) and b) are always

o _ associated with Malcev algebras, independently on the
Proof. If vertex v is isolated inG, then there are no edges values of edge weights. In turn, the rest of configurations
incident withe, and, hencele,e| = 0, for every basis are associated with Malcev algebras if and only if the

vertexe € 4, which concludes the proof.O following sets of restrictions hold

Proposition 2. Let G be the combinatorial structure configuration c): {ngjchk + Cij,jclj(,k = 0} or
associated with a Malcev algebraz. Each connected : Ko K

component of G is associated with a Malcev subalgebra  {Ci.j = €k Gj = —Ci}-

of .#. Moreover, if G is non-connected, the# is the  Configuration d):{c ; = :Fc'j‘ WG = icikk,c} = £d g
direct sum of the Malcev subalgebras associated with the ' T T ’
connected components of G. Proof. Let G be a connected digraph with 3 vertices with
vertex-seV (G) = {i, j,k}. We define the vectos, e; and

& corresponding to the verticeg andk, respectively. The
vector spac¥ = sparie;, j, &) endowed with brackets

Proof. Let C be a connected component @fand % be
the basis of# corresponding to the configuratiah We
consider the vector space?’ = spai%’), where %’
consists of the basis vector i corresponding to the

1l I a _ k
vertices ofC. Since there are no edges frow(C) to (&, 6] =cij& +Cij€), [8,8] = Gya + G,
V(G)\V(C), then we can conclude two facts: .
) : lej,&] =c! &+ e
i) The brackets between two basis vectorsAifdo not I JkET TR K

contain coordinates corresponding to basis vectors ing a Malcev algebra if and only if the Malcev identities
B\A; e B P CH and 4" is a Malcev  po|d. After imposing these identities, we obtain the

_ subalgebraof7. _ _ following possible solutions for the coefficients (up to

%' andvice versai.e..# = .#' ®spaiB\ #').
According to Propositio2, we only need to study the

connected configurations associated with Malcev algebras. 2) {C%,j = c‘jﬂk, Ci{j = —ci‘fk};

D {df ek + 4ok =0k
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3){d; =0l =l =~} the system of non-linear equations arising from the
4 Ci . :_Cl.( CJ :C.k CJ: :Ci . Malcev IdentltleSM(eﬂaejva) = 01 M(aaeﬂaej) : 0:
)4, j0 G = Gk G = G M(e,ej,&) = 0 andM(ej, &, &) = 0. Every solution of
Let us note that solutions 1) and 2) correspond tothis system contains some coefficient being null although
Configuration c) in Figure when all the coefficients are all of them must be non-zero.O
non-null from these conditions. If some of these » o o
coefficients are null in these solutions, we obtain Proposition 4. Under the restrictions of Propositio8, it
configurations a) or b). is verified that

When considering solutions 3) and 4) with all the  _ cqnfigurations a) to c) in Figuré are associated with
coefficients being non-null, we obtain Configuration d). 2-step solvable, non-nilpotent Malcev algebras.
For these two solutions, we obtain solution 2) if there are _ Configuration ’d) in Figure4 is associated with a
only two null coefficients and they both are in the same 2-step solvable, non-nilpotent Malcev algebra if

restriction. 'Obwously, if some of the remaining (0 = —ck . o — C'kkv d = cl .} holds; otherwise,
coefficients is zero, then we obtain Configurations a) or L] s N S
b). O the configuration is associated with a perfect Malcev

algebra.
Corollary 1. The connected digraphs witB vertices ] S
shown in Figure5 cannot be contained as induced Proof. For every configuration in Figuré, we can prove

subdigraphs in digraphs associated with Malcev algebrasthat .#° = .#/, where.# denotes the Malcev algebra
of arbitrary dimension (i.e. they are forbidden associated with some of these configurations. Therefore,
Configurations)_ A is not n||p0tent. ) . .
Moreover, for Configurations a) to cy? = .#> is an
abelian ideal of#, which involves#3 = {0} (i. e. .# is
2-step solvable). This assertion can be trivially proved fo

e <:>J._._; ‘<:>f_‘_’k Configurations a) and b); whereas the proof for

Configuration ¢) requires to take into account the

a) b) o

N o K ) k restrictions over the weights obtained in Proposiion
Finally, for Configuration d), we consider the two
‘m ‘ J possible sets of weights given in Propositi®io assure
' : the existence of the associated Malcev algel#a The
k k k . . .
" N ) first option corresponds to define the law.#f as

[€1,€2] = —C3 381+ CF 52, [€1, €3] = G5 581 + CF 83,

(€2, €3] = C5 362 + C3 563.

If we take the matrixA defined by taking as rows the

coordinate vectors of the brackets with respect to the basis

{e1,e2,3}, then detA) = cc] X — ¥l (= 0. In

addition, the leading principal mind; is non-zero and

hence, #, = spar{—cf & +cgj, ¢ & +c &) and is a

2-dimensional ideal. Since

_ (e + cejicl @+ cad = 0, then . is 2-step

Configuration a) and bM (e, &, €j) = —(c/ )2k & #0;  solvable. '

Configuration c)M(g;, &, €j) = ¢ o o 0: If we take the second set of weights for Configuration
g IM(@, 8 €j) = €0, 7 d), then the law of# consists of

Fig. 5: Forbidden configurations in digraphs associated with
Malcev algebras.

Proof. Suffice it to prove that some Malcev identity is not
zero. Effectively, if we consider the basis vecterg; and
e, we obtain

Configuration d):

N ol J \20k .

M(er, e €)) = ;G Cj k& — (i j)°Cl & # O; [e1, €] = C3 561 — Ci 50, [e1,65] = —CE 361+ C 565,
Configuration e): _ .

M(e,ej, &) = (cy)%c] & +2c]; (c}fk)zeK #0; (€2, €3] = 5382+ C3 583,
Conﬂgurat?on H:M(ej,a,8) = —(C},j)ZC},kQ #0; By using an analogous reasoning, we construct the matrix
Configuration g): _ _ A again, but now dén) = —2c¢, ¢! ¢, —c<,c! K #0.

P i o . - |',k j.k j,k. J,klj,k |,k'

M(e, e, &) = —C ;G ;G k& — (€ j)°Ci & #0; Hence,.#» = .# because it is a 3-dimensional ideal of

Configuration h): A . ConsequentlyZ is perfect. O

M(e.&,e) =d (c! )% —2c (¢!, )%ej £ 0.
(& @.€)) = Gj(Cju)°8 — 265, (Cj)7e) 7 Example 2Now we show two examples of Configuration
However, we cannot trivially find a non-zero bracket d) in Figure 4: one being 2-step solvable and
for Configuration i). On the contrary, we need to considernon-nilpotent and other being perfect. First, we consider
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the 3-dimensional Malcev algebra#z with law to introduce non-zero brackets of the
[el 82] =e+e [el 83] =e +e; [82 63] =e —es In algebra and its dimension in subprocedure

law",’onapprove’=Shutdown("Continue"),

this case, 7, = M =3 = sparie; + e, €; +€3) and ‘oncancel’=Shutdown("Aborted"))):

M3 ={0}; 1. e..# is 2-step solvable, non-nilpotent. > Maplets[Display)(maplet):
If we consider the 3-dimensional Malcev algebra f‘;;'ggﬁg'ggjy
with law [e,e] = e — e, [e1,e3] = —e; + €3, if i=j then O; end if;

; it (ij)=... then ..; end if;
hence, 7 is perfect. :f (") fen . end |

else 0; end if;

>
>
[e2,€3] = € + €3, then.2Z, = sparfer, ey, 3) = . and 7 If = then JawGi); end i
.
>

end proc;
5 Algorithm to obtain digraph associated The ellipsis in commandassign  corresponds to
with Malcev algebra write the dimension of# . The following two suspension

points are associated with the computatiofenfg;]: first,
This section is devoted to introduce an algorithm whichthe value of the subindex€s j) and second, the result of
computes the digraph associated with a given[e,ej] with respect taZ. The last ellipsis denotes the rest
finite-dimensional Malcev algebra starting fromits law.  of non-zero brackets. For each non-zero bracket, a new
Under the same notation as in Sectigrwe consider  sentencéf has to be included in the cluster.

an-dimensional Malcev algebra/ with basis#. In this Nke>;t, Wﬁ. hr?ve |mpleimenttﬁzd the gubtprgcggure Cf‘"ed
) o racket which computes the product between two
way, we consider a law consisting only of braCketSarbitrary vectors of .#, being expressed as linear

e, €] = ¢ ;& +c/ e, avoiding full triangles and dealing  combinations of the vectors i#. The subprocedutaw
only with digraphs. is called in the implementation.
We have designed the following algorithm to obtain . p.cet-=proc(u.v.n)

the digraph associated with#, structured in four steps > local exp; exp:=0;
> for i from 1 to n do

1. Computing the bracket product between two arbitrary? for j from 1 to n do

basis vectors ing. %Zfr_(ﬁxg[q) xcoeff(v.ef])  *law(i,j);
2. Evaluating the bracket between two vectors expressed end do;

as a linear combination of vectors from bagfs o
3. Imposing the Malcev identity and solving the > end proc:

corresponding system of equations.

: : . ; Now, we implement the main procedubMalcev ,
4'a|gg?)v:£2_the digraph associated with the Malcev which checks if the vector spac#’ is or is not a Malcev

algebra. This procedure receives as input the dimension

To implement the algorithm, we have used the of the vector space# and returns the solution of a
symbolic computation package MAPLE 12, loading the system of equations obtained from imposing all the
libraries linalg , combinat , GraphTheory and Malcev identities for.# (this is done by using all the
Maplets[Elements] . The first three libraries allow permutations of three basis vectors). If there are no
us to apply commands of Linear Algebra, Combinatoricssolutions for the system, then the vector spates not a
and Graph Theory, respectively; whereas the last is useMalcev algebra. Otherwise, we obtain the set of
to display a message so that the user introduces theonditions over the structure constad§§ so thatZ is a
required input in the first subprocedure, corresponding toMalcev algebra.
the definition of the law of the algebr# . >Malcev:=proc(n)

The first subprocedure, namddw , receives two > jocal LMN.P:
natural numbers as inputs. These numbers represent threL:=0:M:=[:N:=[;P:=[];
subindexes of two basis vectors 4. The subprocedure 2 7 Lo & 10 " @
returns the result of the bracket between these two- end do;
vectors. In addition, conditional sentences are inseded t f'\g:rzfef;g‘n{‘]‘el('-g)?nops(,w) o
determine the non-zero brackets and the skew-symmetry eq(j:=bracket(oracket(e[MEI[LI],eMEIL2]].n),
property. Since the user has to complete the subproceduieacket(eM[1]].eM][3]].n),n)- .
inserting the non-zero brackets.of , we have also added gyt tracke (MU eMBlZln).
a sentence at the beginning of the implementation pracket(bracket(bracket(e[M[[2]].e[M[]3I].n).
reminding this fact. Note that before running any other?[’r‘{a'[g]&]t](g‘r)é‘zL“g{"(]tgigéﬂ?et(e[Mm[3]] ML)
sentence, we must restart all the variables and delete ad{mjay.n).emgl2n.n): ' o
the computations saved for previous law. Additionally, we > end do;
must update the value of varialidém with the dimension N:=lseda(eqlkl, k=1.nops(M))L;

\%

> for k from 1 to nops(N) do
of #. > for h from 1 to n do

> P:=[op(P),coeff(N[k],e[h])=0];
> restart: > end do;
> maplet:=Maplet(AlertDialog("Don’t forget > end do;
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> for k from 1 to n do
> for h from k+1 to n do 1
> if coeff(law(k,h),e[h])<>0 then
P:=[op(P),coeff(law(k,h),e[h])<>0];
> if coeff(law(k,h),e[k])<>0 then
P:=[op(P),coeff(law(k,h),e[k])<>0];
> end do; 1
>end do;
>solve(P);
>end proc: -1

Finally, the last step of our algorithm is implemented
to represent the digraph associated with the Malcev
algebras obtained in the previous step. To do so, we have = 1 5
defined two sets: vertex-sgt containing all the natural
numbers up ta; and edge-sdE consisting of each edge

determined by a non-zero weight, which must be included Fig. 6: Digraph corresponding to Configuration c).

in the definition ofE according to the brackets defined in

D.

> V= i,i=1..dim)]; . .

> E::ﬁ[‘iﬂ,(z:l_{i,j}”jr[q[},]i],c_{i,j}Ai],...}; 5.1 Computational and complexity study

and the following sentence provides us the representatiofl€xt, we show a computational study of the previous

of the digraph algorithm, which has been implemented with MAPLE 12,
in an Intel Core 2 Duo T 5600 with a 1.83 GHz processor

> G:=Digraph(V,E): DrawGraph(G); and 2.00 GB of RAM. Tabld shows some computational

data about both the computing time and the memory used

Example 3Now, we show an example with Configuration {0 return the output of the main procedure according to
c) from Figure4 with the 3-dimensional Malcev algebra the value of the dimensiomof the algebra.

given by the law To do the computational study, we have considered the
family of Malcev algebras, spanned bye }! ;, with law
1 2 . 3 .. 3
[€1,€2] = C1 281+ C 2€2; [€1, €3] = CF 3€3; [€2,€3] = C3 3€3. [a.en] =&, Yi<n
First, we have to complete the implementation of the This family has been chosen because it constitutes a
subprocedurlaw as follows special subclass of non-nilpotent, solvable Malcev
algebras, which allow us to check empirically the
> if (i)=(1,2) then c121 e[l]+c122 «e[2]; computational data given for both the computing time and
> end if;
> if (ij)=(1,3) then c133 «e[3]; the used memory.
> end if;
> if (i,))=(2,3) then c233 *e[3];
> else 0;
Table 1: Computing time and used memory fidialcev .
After that, we must run the Subprocedlb'ﬁacket |nput Computing time Used memory
and the proceduriglalcev . Now, if we evaluate the main n—>o 0s OVB
procedure over the variabiém , we obtain the restrictions — 0s oOMB
{c121=-c122 +c233/c133, c122=c122, c133=c133, n=4 0.11s 3.13 MB
€233=c233},{c121=c233,c122=-c133,c233=c233, n=>5 0.15s 5.06 MB
€133=c133} n—=6 0.43s 5.38 MB
. . . =7 1.05 5.56 MB
According to the previous output, we consider one of 2: ) 567 : 606 VB
the Malcev algebras associated with this digraph in order — 6'98 S 7'06 VB
to obtain its representation =10 5027 S 825 MB
_ _ n=11 61.17 s 11.50 MB
(€1, €] = €1 — €27 [€1, €3] = €3; [€2, €5 = & n=12 187.89 5 13.87 VB
L . . n=13 804.73 s 51.93 MB
Now, this digraph can be easily represented by using
the following orders
> V:=[1,2,3]; . .. .
S B[ 2112 2L 3] 1L[2.3) A ] Next we show some brief statistics about the relation
> G:=Digraph(V,E): DrawGraph(G): etween the computing time and the memory used by the
implementation of the main proceduvialcev .
(© 2015 NSP
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In this sense, Figur& shows the behavior of the say thatf(x) = O(g(x)) if and only if there exisM € R*
computing time (C.T.) for the proceduialcev with andxp € R such that f (x)| < M- g(x), for all x > xo.
respect to the dimensiam In turn, Figure8 graphically We denote byNi(n) the number of operations when
represents the behavior of the used memory (U.M.) withconsidering the step. This function depends on the
respect to the dimensiam Note that the computing time dimensionn of the Malcev algebra. Tabl2 shows the
increases more quickly than the used memory and both ofiumber of computations and the complexity of each step,
them fit a positive exponential model. as well as indicating the name of the procedure
Next, we have studied the quotients between usectorresponding to each step.
memory and computing time, obtaining the frequency
diagram shown in Figur®. In this case, the behavior also

fits an exponential model, but being negative this time. Table 2: Complexity and number of operations.

Step| Routine | Complexity Operations
1 law o(n?) Ny(n) =24 01
n n
= 7 2 | bracket o(n*) Na(n) = Ny (n)
e iz\j;
o Ty N3(n) = O(n) +O(n3)
300 n3
e - +2'5 No(n)+
°3 2 4 6 . 1‘0 12 14 3 Malcev O(n7) i; 2( )
n n
Z 1
Fig. 7: Graph for the C.T. with respect to dimension. J=1k=1
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Finally, we compute the complexity of the algorithm
taking into account the number of operations carried out in
the worst case. We have used the Digotation to express
the complexity. To recall the bi@ notation, the reader can
consult B]: given two functionsf,g: R — R, we could
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