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Abstract: Newton cooling-law equation in terms of a fractional nonabtime Caputo derivative of order @ a < 1 is solved
analytically by the conventional Laplace transform. Srhaalutions in terms of Mittag-Leffler function show two d@ifent behaviors
when compared to the exponential decay solution from tresidal integer-order model: 1) fast heat dissipation attgimoes, this is
characterized by transient solutions showing faster ngddisa tends to 0; 2) slow heat dissipation at medium-large timelsitisns

in this regime exhibit slower cooling as approaches 0. Moreover, for < 1 and as time tends to infinity, the temperature decays
algebraically with time rather than exponentially. On thlees hand, we used the fractional complex transform metbatktive the
local fractional Newton’s law of cooling differential edi@n of ordera. This model defined on Cantor sets, is analytically solved vi
the Laplace transform. Our staircase shaped solutionanpared with those from the model with Caputo derivativegilsirities and
differences between these two approaches are pointed opéftily, this generalization of Newton'’s law of coolinglixallow both
gaining a better insight into heat convection processesthr fractal media and developing a wide variety of new apgitbns.
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1 Introduction

Fractional calculus is an area of classical mathematicsiwiiéals with the generalization of derivatives and intisga
arbitrary orders. Fractional calculus is an old concept ltlaa gained importance during the last few decades in \&riou
fields of science and engineeririg.[Recently, some researchers have been studying thelfvacsion of simple physical
models found in classical mechanics. These types of arsafiregperformed from a heuristic point of view, the idea behin
this is to replace the integer order derivatives of an omginiéferential equation for fractional derivatives. Thestulting
fractional differential equation can be solved by transfonethods. Some examples of this procedure can be found in the
study of projectile motion in a resisting mediui2],[ mechanical oscillations3], relaxation phenomena in viscoelastic
materials f], particle falling through a resisting mediurs, ], and so on.

In this article we study a simple thermal model for convattooling commonly known in literature as Newton’s
law of cooling. The main purpose is to extend this cooling eldxy including fractal properties as power law long-term
memory observed in many natural and artificial systems. &qunently, two approaches based on fractional calculus were
developed. Typically, Newton’s law of cooling is stated énrhs of a first order differential equation whose integeeord
derivative was replaced by a nonlocal fractional Caput@tdarivative. The resulting fractional differential eqoatof
ordera was solved by the traditional Laplace transform technitjuéhis way we obtained a variety of smooth solutions
for different values ofo in the range O< a < 1. These solutions include the typical case= 1 in which the cooling
process is characterize by an exponential decay. In contvasna < 1 the solutions show an algebraic decay associated
with memory effects.

Furthermore, we obtained a fractal version of Newton’s ldwamling in terms of a local fractional derivative which
generalizes the usual derivative to fractional order kegpieir local nature intac]. This local fractional operator of
ordera is introduced with the motivation of studying the local peoties of fractal structures and processes. The fractal
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model with local derivative is solved by Laplace transfoifh Dur staircase shaped non-differentiable solutionsatjos
follow the trend of the solutions from the model with Capuéridative especially for values af close to one.

In some sense, the results from the two above mentioned agpee represent a generalization of the classical
Newton’s law of cooling that hopefully can be used to descabwide variety of thermal physical situations important
for practical applications, which until now have not beeepted by the limitations of the original integer order rabd

The plan of this manuscript is as follows. In the next sectimntraditional Newton'’s law of cooling stated in terms
of an integer order differential equation is analyzed byiefhen, the cooling law of Newton is expressed in terms of a
fractal differential equation with non-local Caputo timerivative; the solutions of this model are presented antldised.
Likewise the cooling law model is derived in terms of a logaktional derivative; solutions and discussions of thisleio
are given. In Section 3, some solutions from cooling modétk lecal and non-local derivatives are compared. Finally,
some concluding remarks are drawn in Section 4.

2 Newton’s law of cooling

“The rate at which the temperatufE(t) , changes in a cooling body at tinhés proportional to the difference between
the temperature of the body(t) , and the temperature of the surrounding mediuh[ 8].
Newton’s law of cooling is usually modeled with the first-erdnitial-value problem

4T — k(T — T
ﬁm:% )} @)

whereTy is the initial temperature of the body akds the constant of proportionality. Ty, is constant, the differential
equation (1) is separable, resulting 8}:[

T(t) = (To— T + T 2)

Recall that ifk < 0, lim; €' = 0. Hencelim;_,»T(t) = T, the temperature of the body approaches that of its
surroundings.

2.1 Newton'’s law of cooling with non-local derivative

In this section, we use the Caputo fractional derivativesféunction of timef (t); this operator is defined a&()

t
Cpafy 1 - (1)

wherel () is the Euler Gamma function,= 1,2, ... ¢ 0 andn—1 < a < n. We consider the case whanr=1, i. e., in
the integrand there is only a first-order derivative. Sohia tase the order of the fractional derivativés defined in the
interval 0< o < 1. The Caputo fractional derivative fulfills the followinggperties:

§Dfc=0, (4)

6D [f(t) +g(t)] =G5Df (1) +5D{ g(t). (5)

Equation 4) represents the derivative of a consterand equations) is the linearity property. It should be remarked
that the Caputo fractional derivative is defined using aegril, so it is a non-local operator. The fractional deiein
time defined by equatior8) contains information about the function at earlier pqistsit allows modeling a memory
effect [11]. Asin [2,3,5], we replace the integer time derivative by the fractiorzem@tor

d . 1 d?
dt = gl-adta’
where % = D , and a represents the order of the fractional time derivative afwer To assure dimensional

homogeneity on both sides of the differential equatitp) ¢ must have dimension of seconds] = s . The time
parametero!~? is associated with the fractional time components of theéesyg12], of course its dimensionality is

(6)
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st=@ | This non-local time is called in the literature the cosniine [13]. Thus, we have the following fractional
differential equation of order & a <1

1 doT
mwz—k(T—Tm% (7)
subject to the initial condition
T(0) =To. (8)

It should be recalled that the minus sign of the constantequation 7) is introduced to model a cooling process. In
order to reduce the number of parameters in the problemotlusving dimensionless variables are introduced:

T

- L] (10)

where® andt represent dimensionless temperature and time, resplgctvel the reference scales are set as

[T] = Tm, (11)
[t] = kéc;;la“' (12)

It is worthy of note that the time reference scale, equatid), (represents the fractal time constant of the system.
Indeed, fora = 1, equation 12) reduces ta. = 1/k, which is the time constant of the ordinary ca%é€][
Substituting equationd () and (2) into equations¥) and (L0) and the result into equationg)(@nd @), yields:

o _1_0@
80)-p } (13)

The behavior of the systeni) only depends on the values of the dimensionless param@terSy/ T anda . It
should be noted thg® > 1, since the cooling process only occurs Tgr> Tp,. Also important is to note that the value
of B has to be determined in function of the relative contrimsiof convective and radiative heat-transfer ratés. [We
set as an upper limf8 = 4.5 which is reasonable if we consider standard conditionsmfoerature ai,, = 20°C. The
initial value problem represented by equatioh3) (s solved by applying the Laplace transforé]. Thus, the solution
is expressed as follows:

O(1) =1+Eq(-1%) [B—1]. (14)

The analytic solutionX4) contains the Mittag-Leffler functioi, (—1%), which is a generalization of the natural
exponential function and represents attenuation wittgtrmemory effect. Figure 1 shows graphs of equatibh for
various values ofr and for a fixed value of the initial conditigh. The thick dashed green line represents the solution for
the ordinary case which is obtained by setting- 1. Clearly, the steady state condition for the ordinary ¢aseached at
around five time constants. However, as the order of the tieneative decreases, the solutions show an algebraic decay
This behavior is explained by taking into account the asytipbehavior of the Mittag-Leffler function for large vakie
of arguments17]:

1 1

Ba(-T) ~ Fayte

(15)

Furthermore, Fig. 1 shows that agdecreases the steady state solution is reached at longg: fithis, of course, is a
consequence of the algebraic decay of solutions. Figur@®sthe time constants to reach the steady state for differen
values ofa. Each point of this graph was calculated by enforcing thiefdghg condition:

Bo (-1 [B-1]~ o, (16)
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Fig. 1. Newton'’s law of cooling with time Caputo derivative for difent values ofr and for3 = 4. The thin dashed line represents
the steady state environmental temperature.
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Fig. 2: Order of the time derivatived ) vs. time constantst ) to reach the steady state. This curve was computed fromlEjw(ith
B=4andp=0.02.

whereg@ is a small positive number; according to Eq. (14), the exgoes(16) represents the transient response of the
fractal model. Thus, by combining Egs. (15) and (16) is rgedund

Note that all calculations were performed by setting 0.02.

Solutions from some analogous models to our thermal systam@ been published in the past. Very similar curves
as those presented in Fig. 1 can be founddinlp this article, the fractional generalization of the ficsder differential
equation governing the phenomenon of viscoelastic relaxxét treated. Another analogous system with similar sohst
as those from Fig. 1 is represented by a fractional R-C dieuth resistanceR and capacityC ), which is used to
simulate the aging of alkaline batteries after repeatedgetidischarge cycles [18]. Figure 3a depicts a zoom of Fig.
1 of the transient response of cooling law with time Caputdvdéve for different values ofx and for short times.
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Fig. 3: a) Transient solutions of Newton’s law of cooling with tim@gito derivative. The valuas and3 as well as the colors used
in curves correspond with those in Fig. 1. b) Transient smhstafter the transition zone, time constants for eare indicated with
arrows; 7 ‘0:1: 1,1¢ ‘0:0'8% 1.08 , 1¢ ‘a:oﬁ% 1.3 ,1¢ |g:0_4% 1.95,1¢ |g:0_2% 7.2.

Three regions of different behaviors are identified. Theaegn blue,0< 7 < 0.58 , reveals faster heat dissipation as
o decreases from 1 to 0. The no-color regiorh&®< 1 < 0.85, can be seen as a transition zone where the solutions
are overlapped intersecting each other at 0.72. After this overlapping zone, the model predicts an oftpdeehavior
than that observed in the blue region. Namely, in the dom&54Q 1 < 1.5, the third region in purple is characterized by
slower heat dissipation asdecreases from 1 to 0; this of course is the expected thereralry effect. Figure (3b) shows
transient solutions for different values af When the time constant is of courge= 1, which physically represents the
time required for the temperatu@eto fall 63.2 % from the initial temperatup®to the limiting environmental temperature

© = 1. The time constant for any value afcan be found by solving numerically the following equation

Eq (—19) ~0.368 (18)

Itis clearly observed that the time constagincreases ag decreases; again, this behavior can be associated with a
memory effect.

Figure 4a shows transient solutions of cooling model withetiCaputo derivative for different values efand .
Interestingly, the transition point @t~ 0.72 seems to be independent of the valug oOn the other hand; as expected,
the exponential decay characterizeddy= 1 implies reaching the steady state solution at around five tonstants
independently of the value @f. Nevertheless, fomr < 1, the stationary solutions strongly depend on the valy &ach
curve from Figure 4b shows the time needed to reach the sstattydepending on the valuesmfindf3; clearly, as3
increases, longer times to reach the stationary solutimmseguired. Of course, this last result is a consequendeeof t
algebraic decay of solutions for < 1.
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Fig. 4. a) Transient solutions of Newton'’s law of cooling with timeilito derivative fof3 = (1.5, 3 and 4.5). The values afas well
as the colors used in curves correspond with those used il Apte that for the sake of clarity, the curves foe= 0.2 anda = 0.4
were removed. b) Each of the three curves depicts the ordbeafme derivative @ ) vs. time constantst; ) to reach the steady state
(Eg. (17) was used to compute curves).

2.2 Newton'’s law of cooling with local fractional derivagiv

The fractal complex transform [19], expressed as:
_ (p&)°
Cr(l+a) (19)
is applied to switch the conventional differential equatid Newton’s law of cooling into local fractional differaat
equation. So, substituting Eqg. (19) into Eq. (1) yields:
1.d7(§)
pC{ dEG

=—Kk(T(&) = Tm), (20)
with the constant parametpf = 5’%.

Here we argue that parameteplays the same role asused in equation (7); i. e., the units in equation (20) ararzd

by p.
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After renamingé ast , equation (20) becomes

1doT
g = KT =T, (21)

Equation (21) subject to the initial conditidn0) = Ty represents the fractional cooling model with local defeat
This local fractional derivative operator on Cantor setdained by [7]

with A9(f(x) — f(xo)) = ' (1+ a)A(f(X) — f(x0)). Now, the parameters in equation (21) can be reduced using
dimensionless variables as those defined by equationsdq)L8j. In this case the reference scale for temperatursas al
set agT] = T ; however, the reference scale for time is defined as:

=g

After substituting equations (11) and (23) into equati®)safpd (10) and the result into equation (21), and taking into
account the initial conditioit (0) = To , the dimensionless model becomes

d’o _ 1-0
dr?
9(0):%:[3}- (24)

(23)

Now, the behavior of the initial value problem (24) only degs on two dimensionless paramet@snda. Equation
(24) can be solved by the Laplace transform, which is defisdd]a
- - 1 o
(o {f(x)} = fLla :7/E— a)f a <1 2
aAf00} = 5908 = Fygy fp Eel-X¥) (@0, 0<a<1 (25)
wheref (x) is a local fractional continuous function.
Finally, after applying the Laplace transform to the iditralue problem (24), the solution in terms of the Mittag-
Leffler functionEg, is:

O(1) =1— Eq (—1%) + B Eq (—19). (26)

The exact solution (26) far =In2/In3 = 0.631 is shown in Fig. (5). It is worth noticing thet= 0.631 corresponds
to the fractal dimension of the Cantor middle-1/3 set. Thisintegrable staircase shaped curve is only plotted inghee
0 <1 <1, sincer? is closely related to the Cantor-Lebesgue function defimefpl]. The geometrical characteristics
of this solution are not only interesting from a physicalrgodf view, but also of great practical importance if one
wishes to exploit the fractal configurations in engineedeuyices. In relation to the first aspect and in some analogy wi
quantum systems, the steps of the staircase shaped curydé®melated to the energy states of a submicroscopic thermal
convection system.

Figure 6 depicts graphs of Eq. (26) for different values efander of the derivative . As a approaches 1, solutions
appear smoother tending to the classical integer ordetisolior o = 1 (dashed curve in the figure).dfis very close to
unity (i. e., whena =1n2/(In2001—In1000 = 0.999, see inset on Fig. 8), the curve will be continuous to died eye,
but when zooming in, the staircase shaped structure wilkgene

3 Comparisons between models with local and non-local derivative operators

Figure 7 shows a comparison between solutions from equsafiie) and (26) corresponding to models with non-local and
local derivatives, respectively. Clearly, both curvesslacsimilar trend; nevertheless, the staircase shaped towvehe
model with local derivative indicates faster heat dissgrathan that shown by the smooth continuous solution froen th
model with Caputo derivative. This behavior is observedrfer 5 ; conversely, for > 5, the smooth solution indicates
faster heat dissipation. This interesting behavior co@ldbpractical interest in developing thermal convectiovickes
using fractal configurations defined on Cantor sets. Indbétlidea needs to mature before giving concrete examples.
As shown in Fig. 8, a comparison between solutions (14) ajif¢# different values ofr is shown. The approach
with local fractional derivative predicts higher heat @isgion at short timest(< 5 ) than that predicted with Caputo
derivative; conversely, for > 5 the heat dissipation from model with local derivative ssl¢han that predicted from the
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Fig. 5: The plot of nondifferentiable solution (26) with the pardere& =In2/In3 = 0.631. The initial condition in this case was set to

B=4.

= a=In(2)/(In(101)-1n(50))
o a=In(2)/(In(13)—In(6))
+ a=In(2)/In(3)

. a=1

00 02 04 06 08 10"

Fig. 6: The plot of nondifferentiable solution (26) for differerilues ofa. o = In2/In3 = 0.631 for a Cantor middle-1/3 set; =
In2/(In13—1n6) = 0.896 for a Cantor middle-1/13 set; and= In2/(In101— In50) = 0.986 for a Cantor middle-1/101 set [20].
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Fig. 7: Comparison between the exact solutions (14) and (26) of dieataw of cooling with non-local and local fractional degdives.
Both curves were computed for=In2/In3 = 0.631 , which corresponds with the fractal dimension of thet@amiddle-1/3 set.
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Fig. 8: Comparison between the exact solutions (14) and (26) of di@s/taw of cooling with nonlocal and local fractional dexiives
for different values ofx.

model with Caputo derivative. Although this behavior is @ly®d for three different values of, it becomes less visible
asa tends to unity. The inset in Figure 8 shows graphs of solst{dd) (dashed line) and (26) (solid orange line) for a
Cantor middle-1/2001 set; clearly, it is not observed afffetince between both solutions.
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4 Conclusions

Two fractal versions of Newton'’s law of cooling were devaddpOne of them is expressed in terms of non-local Caputo
time derivative. The behavior of the smooth curve solutifros this approach strongly depend on two parameters:
the order of the fractal derivative and the initial condition3. Our solutions in terms of Mittag-Leffler function show
two different behaviors when compared to the exponentiehgsolution from the classical integer-order model (this i
observed fo3 > 1): 1) Fast heat dissipatioat short times, this regime is characterized by transiesgiarses showing
faster cooling asr tends to 0. 2Slow heat dissipatioat medium-large times, solutions in this regime exhibitv&b
cooling asx approaches 0. As decreases (from 1 to 0) the stationary solutions of the thesystem are reached at longer
times, this is true fo} > 1. In other words, foor < 1 and as time tends to infinity, the temperature decays gty

with time rather than exponentially. Even this behaviordsemtuated when increasing the initial temperature, the.,
time to reach the steady state increases Wit few words the approach using Caputo derivative quite iwebrporates
and describes long term memory effects which are related sdgebraic decay clearly seen in the solutions. In the other
approach we replaced the integer order derivative by a foaational derivative defined on Cantor sets. Curves from th
model show a peculiar staircase shape and are similar id wéh those obtained from the model with Caputo derivative.
In particular, when the Cantor middle-1/3 set is considgttel staircase shaped curve from model with local derigativ
indicates faster heat dissipation than that shown by theofimmntinuous solution from model with Caputo derivative.
Although this behavior is observed for three different eslofa, it becomes less visible astends to unity. It is important

to point out that the classical solution of Newton’s law obBog is recovered from the two above-mentioned approaches
whena = 1. So, in this sense, the two fractal versions of the therroalection model developed here represent a
generalization of Newton’s law of cooling. Hopefully, tieesew results will allow to understand better the convection
cooling processes through fractal media, to extend theerah@pplicability of Newton’s law of cooling model and to
develop novel practical engineering technologies basembawection cooling.
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