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Abstract: The aim of this paper is to estimate nonparametrically theditimnal quantile density function. A non-parametric
estimator of a conditional quantile function density is qmeted, its asymptotic properties are derived via the asitm of the
conditional distribution, as of the conditional quantifethe case of dependent data. To obtain the asymptotic iepere consider
some concentration hypotheses acting on the distribufitimecconditional functional variable.
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The problem of quantile estimation has a very long hist@tmneating quantiles of any distribution is an importanttpar
of Statistics. This allows to derive many applications ineas fields as chemistry, geophysics, medicine, metegyolo.
On the other hand, functional random variables are becomioge and more important. The recent literature in this
domain shows the great potential of these new functiona$stal methods. The most popular case of functional ramdo
variable corresponds to the situation when we observe rardove on different statistical units. Such data are called
Functional Data. Many multivariate statistical techniosinly parametric in the functional model terminology, é&een
extended to functional data and good overviews on this tegaicbe found in Ramsag1,22] and or Bosq §].

More recently, nonparametric methods taking into accounctional variables have been developed with very
interesting practical motivations dealing with envirortries (see Damon and GuillaS][ Fernandez et al7], Aneiros et
al. [1]), chemometrics (see Ferraty and Vid@J)[ meteorological sciences (see Besse etZJ.Hall and Heckman15]),
speech recognization problem (see Ferraty and \ié]),[radar range profile (see Hall et alq], Dabo-Niang et al.4]),
medical data (see Gasser et a4), ...

Estimating the conditional quantile constitutes an im@oiristatistical topic. It is used to build predictive intels;
as a prediction method by the conditional median and to aeterreference curves, predictive intervals etc. It hasibee
widely studied, when the explanatory variable lies withiiimi#te-dimension space (see, e.g., Gannoun etl8].dnd the
references therein).
Jones 17] estimated the quantile density function by kernel meaiastyvo alternative approaches. One is the derivative of
the kernel quantile estimator, the other is essentially¢le#rocal of the kernel density estimator, he gave wayshithv
the former method has certain advantages over the latthis jpaper, Jones discussed various closely related smgothi
issues.

Soni et al. PO defined a new nonparametric estimator of quantile densityction and studied its asymptotic
properties are studied. The comparison of the proposeda&sti has been made with estimators giveriii.|

The goal of this paper is to estimate nonparametrically threditional quantile density function. A non-parametric
estimator of a conditional quantile function density isganeted, its asymptotic properties are derived via the astim
of the conditional distribution, as of the conditional gtilnin dependent data. In a nonparametric context, it isfkmo
that the rate of convergence decreases with the dimensithrepace in which the conditional variable is valued. But
here, the conditional variable takes its values in an irdiditnensional space. So to override this problem is to censid
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some concentration hypotheses acting on the distribufitireaconditional functional variable which allows to oltéhe
asymptotic properties.

1 The modd

We consider a random pdiX,Y) whereY is valued inR andX is valued in some infinite dimensional semi-metric vector
space(.#,d(.,.)). Let (X,Yi), i =1,...,n be the statistical sample of pairs which are identicallyrifiated like (X,Y),

but not necessarily independent. From now Xns called functional random variable f.r.v. Lebe fixed in.% and let
Fvx (+,X) be the conditional cumulative distribution function (ceedf) of Y givenX = x, namely:

vy e R, Fyx(X,y) =P(Y <y[X =X).

Let Qyx (y) be they—order quantile of the distribution of givenX = x. From the cond-cdFyx (., ), it is easy to give
the general definition of thg-order quantile:

Q(VIX =x) = Qyx(y) =inf{t: Fyx(t,x) >y}, 0<y<1 1)

Then, the definition of conditional quantile implies that

Fix (Qux(Y)) = .
On differentiating partially w.r.ty we get

1

f =— .
vix (Qvx (V) %(QY\X(V))

Parzen 19 and Jones17] defined the quantile density function as the derivativ&)oy), that is,q(y) = Q'(y). Note
that the sum of two quantile density functions is again a tjleadensity function. Thus, the conditional quantile dgns
function can be written as follows (se2q )

AlyX =x) =ayx(y) = 0%/ (Qvix(v)

1
 Tux (Qex() 2
fyix (Qvix (V) 2
Let us now, define the kernel estimat%,r‘x(,,x) of Fyjx(.,X)
A > K (0 H (it (y - ¥0)
FY\X(Xay) == (3)

_iK (htd(x, %))

whereK is a kernel functiontd a cumulative distribution function artk = hx » (resp.hy = hy ) @ sequence of positive
real numbers. Note that using similar ideas, Rousagsifitroduced some related estimate but in the special casmwh
X is real, while Samant&f] produced previous asymptotic study. As a by-productlpafd @), it is easy to derive an

estimatorQy|x of Qy|x :

Quix(v) =inf{t: R (6.0 = v} = Ry (Quix () (4)
Let
S K(RO0) O ()
R (xy) = —= (5)

iK (htd(x, %))

be thejth successive derivative tﬁ{‘x(x, y), fyx(%,y) is conditional density function, such thify (x,y) = Fé‘l))((x, y).
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Nair and SankarariB] defined the hazard quantile function as follows:

f(Q(y)) -1
H(y) =h(Q(y)) = =(A=y)aly))

(y) =h(Q(y)) SQ) (1=y)a(y)
Thus hazard rate of two populations would be equal if and dmilgeir corresponding quantile density functions are
equal. This has been used to construct tests for testindigopffailure rates of two independent samples. Now, from
this definition, let us introduce theorder conditional quantile of the conditional hazard fiime

fyix (Qvx(¥)) 1
vix (V) = hyix (Qvix (V) S (Qv(Y) (A=y)ayx(y)
The smooth estimator of the conditional quantile densitcfional defined as follows:
1
dx(y) = —F——- (6)
fyix (QY\X(V))

wherefAY‘X(x,y) is a conditional kernel density estimator fx (x,y) and@Y‘x(y) is the conditional empirical estimator
of the conditional quantile functioQy x (y). Let

3 K (Rd(0) O (=)

fyx(x,y) =

3

_iK (i td(x %))

and

| hy iK (hd(x X)) HUH (ht(y = Y0))
i Ooy) = —-

iK (htd(x, %))

hk = hk n (resp.hy = hy ) is a sequence of positive real numbers which goes to zerdexgds to infinity, and with the
convention 0= 0.
Let's now derive the asymptotic properties of our condidibquantile density function.

(H1)vh > 0, P (d(x,X) < h) =P(X € B(x,h)) = @(h) > 0, (with B(x, h) the ball of centex and radiug)
(H2)supP((Xi,Xj) € B(x,h) x B(x,h)) =P(W < h,W; <h) < gx(h), whereyy(h) — 0 ash — 0. Furthermore, we assume
i#]

thatyx(h) = O(g (h)).
(H3)H is such that, for ally:,y2) € R?, [H(y1) — H(y2)| < Clyr —yo|

and its first derivatived (1) verifies/|t|b2H(1> (t)dt < o,
(H4)K is a function with support0, 1) such that 0< C; < K(t) < C; < oo,

. o logn

(HBR3] > 0,¥1, 11 < |, fyf) (Qux(v)) =0 and| 1l (Quix(v))| >0

2 Main result

2.1 Estimation of conditional quantile density function

Theorem 1.Let gy x (y) be the conditional density function corresponding to a itgrfisnction % (Qyx(y)) anddyx (y)
denote the estimator of.g (y). Then under the assumptions (H1)-(H6) and as n tends to ifiné have

Sypm\(\x(y) —ayx(y)| —0  a.co.
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Proof. At first let us consider

Go(y) = =
X ﬂ\x(@v\x(y))
1
- fyix (@Y\X(V)) — fyix (Qvix (V) + fyx (Qvix (V)
- 1 1
Q) | 1 B
Then, we get
s (4] = 1 - fyix (QY\X(V)) — fyix (Qvix (V)
R fyix (Qvix(¥)) fyix (Qvix(¥))
PN 2
. 1 (fv\x (QY\X(V)) — fyix (QY\X(V)))
fyix (Qvix(¥)) f\?‘x (Qvix(v)
- 1 (ﬁ(\x (@Y\X(V)) — fyix (QY\X(V)))s N
frix (Qvix(¥)) 9 (Qvix (V) )
hence

—fyix (@\X(V)) + fuix (Quix(y)

Avix (V) — Ayjx (V) =

f\?‘x (QY\X(V))
. (fY\X (Qv\x ) fyix (Qvx(¥) ))2
Y\X (QY\X )
- (fv\x (Qv\x )) x (Qvx(v) )3 .
vix (Qux (V)

With
fyix (QY\X(V)) = fyx (Qvx(v)) + (QY\X(V) - QY\X(V)) fA/Y\X (Qux(y)) +
(Gri(¥) — Q) T (@ux(¥)
2!

(G~ Qx(1) TPy (@ux(v)
3l -

+

Therefore

fyix (Qv\x( )) fyix (Qvx(¥)) = Frix (Qux (V) — fyix (Qvx(v)) +
(Qrix (") = Qux(1)) R (Quix(v)) +

(Qvix () = Qux(¥)) " R (Qx(v) N

(Qrx(y) — Qux(

N

2!

= Qyix(V )) Y:‘?((QY\X(V))
3l +

()
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Now, it rests to show the following convergence

—0 a.co.
n—oo

Slpr]@Y\x(v) —Quix(y)

Sl;pm\x (Qvix(¥) — fyx (Qyx(¥)) |—0  aco.

N—o0
It was shown in 8] the following results

Sl;D@Y\X(V) —Qux(y)| =0 aco.

R by by logn 4
Qi -1 =0+ ) +Ouca i)

and

() b1 4 P2 logn
RxxXY)|=0(ht+hf)+0aco | /=571 —— 8
FYlcy) — Rk xl = O (e 1) ( nhﬁl‘lmhm> Y

Note that,ﬂ‘x = lfé‘l)l, so applying 8) for j = 1, we get

~ I
Ifyix (Qvix (V) — fvix (Qvx(¥)) [ = O (hﬁl + hE.Z) + Oaco. ( W%) : 9)

Based on datXi, Xy, ..., Xn, We propose a smooth estimator of the conditional quanéfesity function, Ferratgt al.
[8] proposed a kernel-type estimator of conditional quantitéch is is a conditional version of Parzen’s estimator ia th
univariate case (see Parzdi9]).

For an appropriate kernel functiétl and a bandwidth sequenbg. We suggest an estimator @f x (y);

) 1 H (' (v—v)
qY\X(V) hH /0 fY‘X (QY‘X( )) dv (10)

The next theorem proves consistency of the proposed estimgthe conditional quantile density function.

Theorem 2.Let gy x (y) be the conditional density function corresponding to a dtgrfisnction fx (Qyx(y)) andd\l(‘x(y)

given by (0) the proposed estimator of,g(y), the conditional quantile density function. Then underdtppses (H1)-
(H6) as n tends to infinity, we have

Sblp q\lf\x(y)—QY\x(V) —0  a.co.

Proof.
(10) gives the estimator of the conditional quantile densityctionq(y) as

) 1 [LH (hglv—y)
Grix(¥) = hH/OfYX(QY—X())d

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

18 %N S\ A. A. Bouchentouf et al.: Nonparametric Estimation of a Qtindal Quantile...

Hence
1H (hol(v—
Gvix (V) — avix(¥) = %/ MdV— yix (V)

0 fyx (@Y\X(V))

_ 1 tH (htv—y)) 1 [1H (ht(v—y)
= E/O H—dv— / —dV
LTH (hgt(v y))dv 1

fyix (@Y\X(V)) h Joo fypx (Quix(V))
) / - —
hi Joo fyix (Qvix (V) fyix (Qvix (V)

1 1 1 !
= —— [ H(hg'(v— - d
hu /0 (h(v=y)) |:fy)( (QY\X(V)) ﬁ(\x (QYX(V))] '
1 [1H (hg'(v—y)
hH/O frix (Qvix (V) v frix (QY\X(V))
L o (@) s (@t
=—— [ H(hg'(v—y) dv
hH/o (i ) { fyix (QY\X(V)) frix (Qvix (V) ]

1 TH (hgt(v—y)) B 1
hH/O fyix (Qyx (V) @ fyix (Qvix ()

Using Theorenti, sup\fmx(y) - qy‘x(y)| r:>0 a.co. Hence the above expression asymptotically redaces t
y 00

——/ (hgt(v—y)) qy\x(V))z{ﬂ\x (@\X(V))—fv\x (Q\(\X(V))}d"Jr

1 AH (hg'v-y) 1
hy /o fyix (Qvx(v)) av frix (Quix(y))
1

= R R ) e [ Fe () B9 — e (R (W) ()] v +

hu Jo
1 1H/ (hﬁl(v— y)) B 1
hu /0 fy‘x (Q\(‘X(V)) dv fY\X (QY\X(V)) '

SincedFyx ((Qvix (V) = f((Qvx(V)) avix (v)dv, hence

1 /1 . ~
B (V) = () =~ [ H (0= ) a9 [0 (@) — AR (Quie(v) | v

1 A (htv—y) 1
hH/o fyix (Qvix (V) v frix (Qvix(v))

Writing H*(y,v) = H’ (hgl(v, Y)) dv|x (v) and integrating by parts in the first integral, we get

G\l(‘x(y) —0yx (V) = [—% (H*(vy)) ('Ev\x (QY\X(V)) —Fyix (QYX(V)))]:

+%/1dH* (v,v) {'?Y\X (@Y\x(V)) —Fix (QY\X(V))} at

1 TH (h'v=y) . 1
hH/O fyix (Qvix (V) v frix (Qvix(¥)

(@© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro4, No. 1, 13-21 (2015) www.naturalspublishing.com/Journals.asp NS = 19

SinceFy x (Qvx(0)) = ﬁv\x (@Y‘X(O)) andFy|x (Qyx(1)) = ﬁv\x (@Y‘x(l)) , the above expression transforms to

1)~ ) = i [ aH (9 [Fex (@ex () ~ Fre (Grx(w)

1R v-Y) 1
+hH/0 P (Qrx() ok (Qux(v)
Puttingh, (v —y) = zand using ),

1 AR (A=) L M g+ 2w oz vl (11)

i Jo fyx (Qvx(v)) " fyx (Qvix(¥)) D Jyny

Using Taylor series expansion, we can write

I (zh)

qY‘X(VHm)_qY‘X(V):Zl n qY\><(V)+(Zm)J o)

Sy

wherey < y* < y+zhy, assuming higher derivatives af x () exist and are bounded.

Hence (1) can be written as

1-y/h
[ W <QYx(V)
—¥/buH

Forn — o, hx — 0, (12) converges to| H'(z)ay x(y)dz— ayx(y) which equals zero a$ H'(z) = 1.
R R
This gives

2 q&';(m) ) 12)

Gy () — avix(¥) = % / A () [ ( Q) — P Q)| o (13)

Since S\/U#)l?y‘x (@Y\x(v)) —Fyx (Qyx(v)) ‘ —20, hence sutﬁi‘x(v) - QY\x(V)‘ —20.

The following theorem proves asymptotic normality of thepwsed estimator.

2.2 Asymptotic normality

In this section we give the asymptotic normalitycﬁfx (y)

Theorem 3.Suppose that F is continuous. Assume th@j Katisfies the conditiong11) — (H6) given in section 2. For

0< y< 1, we have
Vna(h) (G%x(v) - qv\x(v))

is asymptotically normal with mean zero and variamcgy) where

o?(y) = " (/ dH* (y,v)Fyx (Qvix ()))2.

Proof.
Using (13), we have

Vo) (@) — () = Y2 / dH* (V) [Frx (Qvix (¥)) — Fex (Quix ()]

Using the results of Ezzahrioui and Ould S&if] for 0 < y < 1,
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(ng(hy )2 (@Y‘x(y) —Qy‘x(y)) is asymptotically normal with mean zero and variance
as Rx (Qux(¥) (1—FRyx (Qvix(¥)))

()2 2 (Qx() |

(nq;((hK))l/2 (I?y‘x(x,y) — Fy‘x(x,y)) is asymptotically normal with mean zero and variance
O = X Y) (1= Ryx(y).

We have alsognc&(hK)))l/2 ('fv\x@\(/x (1) — Fyx (Qvx (t))) is asymptotically normal with mean zero and variance
a2(x).

With

£2(x,Qux(y)) =

o2(x) = — Y1 YV)EX)
(fy/x(QY\X(V)))ZaE(X)
. 1 .
209 =KI(W) — [ (K)(9)B(s)ds j=1.2.
and
vs€ (0,1, lim gu(sh)/gx(h) = B(9).

Since R (Qvx(¥)) = 1, (ng(hk))Y/2 {lfy\x (QY\X(V)) —Fyix (QY‘X(V))} is asymptotically normal with mean
zero and variancé? (x,Qyx(V))-

Using Delta method and Slutsky’s theorem (Serfligp]], we get that /n@(hk) (a%x(y —qy‘x(y)) is

i - . K)o (L e (& 2
asymptotically normal with mean zero and variaocgy) = 2 E /o dH*(y,V)Fy)x (QY‘X(V)) .
H

The expression ob?(y) in the above theorem cannot be simplified analytically and oan estimate it using
bootstrapping.
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