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Abstract: In this work we study the baroclinic potential vorticity (BPV) equation. We apply a variety of ansatze approaches. The
analysis leads to a variety of travelling wave solutions of distinct structures.
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1 Introduction

In recent years, there has been an increasing interest in
the study of nonlinear evolution models that exhibit sign-
ificant features of scientific phenomena. It is necessary to
determine exact solutions for these nonlinear equations to
enable us to get an insight through qualitative and quan-
titative properties of these equations. Many powerful
methods [1,2,3,4,5,6,7] were established to achieve the
exact solutions of nonlinear equations.

The aim of this work is to present a reliable treatment
for studying the baroclinic potential vorticity (BPV) equa-
tion. The (3+1)-dimensional BPV equation reads

vt + uxvy − uyvx +β ux = 0,

v = uxx + uyy + uzz,
(1)

where β is a constant, andu ≡ u(x,y,z, t) and
v ≡ v(x,y,z, t). Eliminatingv, the BPV takes the form

(uxx + uyy + uzz)t + ux(uxx + uyy + uzz)y

−uy(uxx + uyy + uzz)x +β ux = 0.
(2)

In [1], it was indicated that there are difficulties to
derive solutions for the BPV equation (2) by some
specific methods such as symmetry reductions or the
Jacobi elliptic method and other methods as well. How-
ever, the reductive perturbation method was used in [1]
where three types of generalized (2+1)-dimensional KP
equations were derived from the BPV equation.

In this work we will apply a variety of useful methods
to obtain travelling wave solutions for the baroclinic

potential vorticity (BPV) equation (2). The obtained
solutions show distinct physical structures. The constra-
ints that will guarantee the existence of specific solutions
will be investigated.

2 The (3+1)-Dimensional BPV Equation

As stated before we will apply a variety of methods to
determine travelling wave solutions. We will begin our
analysis by introducing the wave variable

ξ = kx+ ry+ sz−ωt, (3)

wherek,r, and s are constants, andω is the dispersion
relation.

2.1 The tanh/coth Method

The tanh method [7,8,9,10,11,12,13] is now well-known
in the literature, hence we skip details of this method.
Using the balance method, between linear and nonlinear
terms of the BPV equation (2), we findM = −1. In view
of this, the tanh method admits the use of the solution in
the form

u(x,y,z, t) =
1

a0+ a1 tanh(kx+ ry+ sz−ωt)
, (4)

where a0, a1 are parameters that will be determined.
Substituting (4) into (2), collecting the coefficients of
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tanhi(ξ ), i = 0,1,2, and equating each coefficient to zero
we find

a0 =±a1,

ω = β k
4(k2+r2+s2)

,
(5)

wherea1 will be left as a free parameter. This will give the
singular solution

u(x,y,z, t)

=± 1
a1(1+tanh(kx+ry+sz−(β k/(4(k2+r2+s2)))t))

.
(6)

The obtained solution blows up forx →−∞.
However, using the coth ansatz, we may also assume

the solution takes the form

u(x,y,z, t) =±
1

a0+ a1coth(kx+ ry+ sz−wt)
. (7)

Proceeding as presented earlier we obtain

a0 =±a1,

ω = β k
4(k2+r2+s2)

.
(8)

This in turn gives the singular solution

u(x,y,z, t)

=± 1
a1(1+coth(kx+ry+sz−(β k/(4(k2+r2+s2)))t))

,
(9)

which also blows up forx →−∞.

2.2 The tan /cot Ansatze

The tan ansatz introduces the solution in the form

u(x,y,z, t) =
1

a0+ a1 tan(kx+ ry+ sz−ωt)
, (10)

where a0, a1 are parameters that will be determined.
Substituting (10) into (2), collecting the coefficients of
tani(ξ ), i = 0,1,2, and equating each coefficient to zero
we find

a0 =±ia1, i−
√
−1,

ω =− β k
4(k2+r2+s2)

,
(11)

wherea1 will be left as a free parameter. This will give the
complex solution

u(x,y,z, t)

=± 1
a1(i+tan(kx+ry+sz+(β k/(4(k2+r2+s2)))t))

.
(12)

However, using the cot ansatz, we may also assume the
solution takes the form

u(x,y,z, t) =±
1

a0+ a1cot(kx+ ry+ sz−ωt)
. (13)

Proceeding as before we find

a0 =±ia1, i =
√
−1,

ω =− β k
4(k2+r2+s2)

.
(14)

This result leads to the complex solution

u(x,y,z, t)

=± 1
a1(i+coth(kx+ry+sz+(β k/(4(k2+r2+s2)))t)

,
(15)

which also blows up forx →−∞.

2.3 The sinh/cosh Ansatze

The sinh ansatz admits the use of the solution in the form

u(x,y,z, t) = a0+ a1sinh(kx+ ry+ sz−ωt), (16)

wherea0 and a1 are parameters that will be determined
later. Substituting (25) into (2), collecting the coefficients
of cosh, and solving the resulting equation we obtain

ω =
β k

k2+ r2+ s2 , (17)

wherea0 anda1 are left as free parameters. Consequently,
we obtain the solitary pattern solution

u(x,y,z, t) = a0+ a1sinh(kx+ ry+ sz−
β k

k2+ r2+ s2 t).

(18)
In a like manner, we can use the cosh ansatz where we

can set the solution in the form

u(x,y,z, t) = a0+ a1cosh(kx+ ry+ sz−ωt), (19)

wherea0 and a1 are parameters that will be determined
later. Proceeding as before we find

ω =
β k

k2+ r2+ s2 , (20)

wherea0 anda1 are left as free parameters. Consequently,
we obtain the solitary pattern solution

u(x,y,z, t) = a0+ a1cosh(kx+ ry+ sz−
β k

k2+ r2+ s2 t).

(21)
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2.4 The sin/cos Ansatze

To derive periodic solutions that satisfy the BPV
equation, it is normal to use the sin/cos ansatze. The sin
ansatz introduces the solution in the form

u(x,y,z, t) = a0+ a1sin(kx+ ry+ sz−ωt), (22)

wherea0 anda1 are parameters. Substituting (22) into (2),
collecting the coefficients of cos, and solving the resulting
equation we obtain

ω =−
β k

k2+ r2+ s2 , (23)

wherea0 anda1 are left as free parameters. This in turn
gives the periodic solution

u(x,y,z, t) = a0+ a1sin(kx+ ry+ sz+
β k

k2+ r2+ s2 t).

(24)
To use the cos ansatz, we assume the solution takes the

form

u(x,y,z, t) = a0+ a1cos(kx+ ry+ sz−ωt), (25)

wherea0 anda1 are parameters to be determined. Proce-
eding as before we find

ω =−
β k

k2+ r2+ s2 , (26)

wherea0 anda1 are left as free parameters. Consequently,
we obtain the periodic solution

u(x,y,z, t) = a0+ a1cos(kx+ ry+ sz+
β k

k2+ r2+ s2 t).

(27)

3 Discussion

We examined the baroclinic potential vorticity (BPV)
equation. We applied a variety of methods and specific
ansatze. We derived a variety of travelling wave solutions
with distinct physical structures. The obtained solutions
vary from singular solutions, through solitary pattern
solutions to periodic solutions.

References

[1] Z. Huan-Ping, L. Biao, C. Yong, and H. Fei, Three types of
generalized Kadomtsev-Petviashvili equations arising from
baroclinic potential vorticity equation, Chin Phys. B,19(2)
2010)020201.

[2] A. H. Khater and M. M. Hasan, Travelling and periodic wave
solutions of some nonlinear wave equations, Z. Naturforsch,
59 a (7/8) 389–396 (2004).

[3] E. Infeld and G. Rowlands, Nonlinear waves, Solitons and
Chaos, Cambridge University Press, Cambridge, England
(2000).

[4] M. Wadati, Introduction to solitons, Pramana: journal of
physics, 57(5-6), 841–847, (2001).

[5] M. Wadati, The exact solution of the modified Kortweg-de
Vries equation, J. Phys. Soc. Japan, 32, 1681–1687, (1972).

[6] M. Wadati, The modified Kortweg-de Vries equation, J. Phys.
Soc. Japan, 34, 1289–1296, (1973).

[7] W. Malfliet, Solitary wave solutions of nonlinear wave
equations, Am. J. Phys., 60(7) 650–654 (1992).

[8] A. M. Wazwaz, The tanh method for travelling wave solutions
of nonlinear equations, Appl. Math. Comput., 154 (3) 713–
723 (2004).

[9] A. M.Wazwaz, The tanh method: exact solutions of the
Sine-Gordon and the Sinh-Gordon equations, Appl. Math.
Comput., (2005) In Press.

[10] A. M.Wazwaz, Partial Differential Equations:Methodsand
Applications, Balkema Publishers, The Netherlands, 2002.

[11] A. M. Wazwaz, New solitary-wave special solutions
with compact support for the nonlinear dispersiveK(m,n)
equations, Chaos, Solitons and Fractals, 13(2) (2002) 321–
330.

[12] A. M. Wazwaz, A study of nonlinear dispersive equations
with solitary-wave solutions having compact support, Mathe-
matics and Computers in Simulation, 56 (2001) 269–276.

[13] A. M. Wazwaz, Compactons dispersive structures for
variants of the K(n,n) and the KP equations, Chaos, Solitons
and Fractals, 13(5) (2002) 1053–1062.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The (3+1)-Dimensional BPV Equation
	Discussion

